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Color Space Analysis of Mutual Illumination 

Brian V. Funt and Mark S. Drew 

Abstract- Mutual illumination occurs when light reflected from one 
surface impinges on a second one. The resulting additional illumination 
incident on the second surface affects both the color and intensity of 
the light reflected from it. As a consequence, the image of a surface 
in the presence of mutual illumination differs from what it otherwise 
would have been in the absence of mutual illumination. Unaccounted for 
mutual illumination can easily confuse methods that rely on intensity 
or color such as shape-from-shading or color-based object recognition. In 
this correspondence, we introduce an algorithm that removes mutual illu- 
mination effects from images. The domain is that of previously-segmented 
images of convex surfaces of uniform color and diffuse reflectance where 
for each surface the interreflection occurs mainly from one other surface 
and can he accurately accounted for within a one-bounce model. The 
algorithm is based on a singular value decomposition of the colors 
coming from each surface. Geometrical information about where on 
the surface the colors emanate from is not required. The RGB triples 
from a single convex surface experiencing interreflection fall in a plane; 
intersecting the planes generated from two interreflecting surfaces results 
in a unique interreflection color. Each pixel can then he factored into 
its interreflection and no-interreflection components so that a complete 
no-interreflection image is produced. 

Index Terms-Mutual illumination, interreflection, color vision, color 
histogram, computer vision, shape from shading. 

I. INTRODUCTION 
The interreflection of light in color images can substantially alter 

colors and intensity levels of pixels corresponding to points receiving 
light, not just from a light source, but by reflection from other surfaces 
in the scene as well. This interreflected light is often called mutual 
illumination and its effects are well known [13], [6], [7], [20], [9]. 

The mutual illumination effect can be slight when there is a lot 
of illumination directly from a light source [3], [9], [4]; however, in 
enclosed spaces such as a room, the infinite exchange of radiation 
between the walls provides a large fraction of the light in the room 
[14]. In computer graphics, it has been necessary to model these 
interreflections using the radiosity method [ l l ]  in order to obtain 
realistic images. 

For computer vision, the one-bounce model of mutual illumination 
proposed in [3], 191, [4] provides a good approximation in many 
situations. The one-bounce model simply makes use of the fact that 
the intensity of the interreflection diminishes substantially with each 
bounce. 

Even when mutual illumination is small as a percentage of the 
total illumination, it may profoundly alter the results of computer 
vision algorithms [6], [7]. In part, this is because mutual illumination 
changes image intensities in a consistent, nonrandom way so that 
errors it introduces into, say, a shape-from-intensity solution accu- 
mulate rather than cancel out. For example, imagine the region near 
a concave fold in a surface of a uniformly colored object. Intensities 
of points near the fold are all increased (but by differing amounts) due 
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to interreflection and this increase will lead most shape-from-intensity 
algorithms into ascribing an incorrect set of direction cosines to the 
surface there. Nayar [20] observes that the concavity will always 
appear as being shallower than it actually is. 

Nayar overcomes this problem by using an iterative scheme in 
which first an estimate of the shape is calculated from the intensity 
data; then with this shape estimate as input, the radiosity method 
is applied to estimate a corrected, no-interreflection image intensity 
distribution. These steps are iterated until convergence. The method 
as it stands is flawed, however, because it does not take into account 
the color of the interreflected light. 

Near a concave edge formed by two surfaces of different color, 
interreflection causes a significant component of the light reflected 
from either side to have a color which differs from that of either of 
the original surface colors. The spectrum of the interreflected light is 
formed as the product of the illumination spectrum and the spectra of 
the two surface reflectance functions. In fact, the surface reflectance 
functions multiply together as many times as the light is interreflected, 
with the total mutual illumination contribution equaling the sum of 
an infinite number of interreflections. The resulting spectrum is then 
filtered by the sensor response functions to obtain an RGB triple 
representing the color. 

Instead of calculating the energy leaving each surface facet in terms 
of the complete spectrum, or in three bands, Nayar et al. [20] assume 
that the reflectance can be summed up by a single number, the albedo. 
The difficulty with this assumption can he seen by considering a 
concave edge that is red on one side and blue on the other. In the 
extreme case, the spectral reflectance function of the red will be 
zero at the blue end of the spectrum and vice-versa. The product 
of the red and blue spectra will therefore be zero everywhere. As 
a result, while mutual illumination is to be expected based on the 
edge geometry, none in fact occurs; and the radiosity step of Nayar’s 
algorithm, which describes surface reflectance by a single albedo 
value, will over-estimatc thc interreflection and lead to an incorrect 
calculation of the surface shape.’ The problem persists even for less 
extreme cases, such as an edge which is red on both sides, because 
the product of the red spectrum with itself does not equal itself.’ 

Color and mutual illumination are inextricably interrelated. Unless 
we are to restrict ourselves to surfaces that are varying shades of 
gray, color will be fundamental to the analysis of mutual illumination. 
Conversely, mutual illumination can be important to the analysis of 
color. In previous work, [3], [9], [4] we analyzed mutual illumina- 
tion to obtain color constancy (i.e., illumination-independent color 
descriptors). In fact, it is possible to reconstruct good approximations 
to the entire surface spectral reflectance functions for two surfaces 
participating in mutual illumination. 

This is strong color constancy in that the entire spectrum is 
established [12]. Weaker versions of color constancy have also been 
advocated. For example, Forsyth [SI has suggested that RGB values 
obtained under a canonical illuminant may be viewed as color- 
constant descriptors. 

In the present correspondence, we describe an algorithm that 
produces an image which is free of mutual illumination effects. Since 
these effects include induced color shifts, their elimination is also 
related to the general problem of determining stable color descriptors, 

‘In response to this criticism raised in [8], Nayar I191 has recently extended 

’This last observation is due to Michael Swain, personal communication, 
his original algorithm to narrowband RGB sensors. 

Dec. 1990. 
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but in a weaker sense than either of the above definitions of color 
constancy. Our algorithm finds the color of each object independent of 
mutual illumination, where “color” means the RGB values produced 
under the light source in use, not a canonical source. 

The domain is restricted to interreflections between two matte, 
convex surfaces, each of uniform color, with illumination that can 
vary spatially in its intensity but not in its spectral composition. The 
algorithm generates two images. One is a no-interreflection image in 
which the colors and shading on each surface are as they would have 
been if the alternate surface had not been in the scene. The second 
is an image of the mutual illumination distribution, the magnitude of 
which represents a type of “configuration factor” between the objects 
[23]. Here, we use the term “interreflection factor” to describe this 
field because it includes the effect of multiple interreflections within 
a one-bounce model; whereas, a true configuration factor represents 
only a single bounce. This interreflection factor encapsulates a good 
deal of information about the scene geometry including orientation, 
occlusion, and shape. Potentially, it could be used to extract some 
of these features. 

A one-bounce model of mutual illumination predicts that the RGB 
triples measured from each of an interreflecting pair of surfaces 
should consist of linear combinations of a no-bounce color and a 
one-bounce color. A no-bounce color means the only-reflected-once 
(i.e. no interreflections involved) color that results from the reflection 
of the source illuminant off one of the surfaces. A one-bounce color 
results from the reflection, by the second surface, of the first surface’s 
no-bounce color. Although in general there are two no-bounce colors, 
one for each surface, there is only one one-bounce color because of 
symmetry. 

To the extent that the one-bounce model holds and the domain 
restrictions apply (i.e., no self-reflection or specularities), the linear 
combination of two components means that there will be a plane 
in RGB color space containing all the RGB triples of a surface. A 
reliable method for determining the plane is to carry out a singular 
value decomposition (SVD) of the RGB values [lo]. A good plane 
for the SVD to find will only exist, however, if there is mutual 
illumination present and the hue of the one-bounce color differs 
sufficiently from the no-bounce color. If either of these two conditions 
is violated, the RGB values will fall in a one- rather than two- 
dimensional subspace as discussed further in Section 11. 

In this correpsondence, we assume that the the image has been 
segmented, but this restriction could be weakened by using a Hough 
transform to identify candidate planes in Hough space. Other ap- 
proaches are discussed in [l], [22]. 

We would like to find the RGB vectors of the one-bounce and no- 
bounce colors. The two principal SVD eigenvectors define the plane, 
but unfortunately they do not represent these colors. Nonetheless, 
in principle once a surface’s color-space plane is known, bands 
within which these colors must lie can be determined by the method 
originated by Lawton and Sylvestre [17] and further elucidated by 
Kawata et al. [15]. This method treats each surface independently. 

We can, however, make use of the fact that the two color planes 
are related via their common one-bounce color. For example, the 
spectrum of light from a red surface reflected secondarily by a blue 
surface is the same as that of light from a blue surface reflected 
secondarily by a red one; hence, we can expect both the color 
planes of the two surfaces to contain the same one-bounce, red- 
blue, interreflection color. Intersecting these planes will yield the 
one-bounce color. 

The idea of intersecting color-space planes has been used before, 
but in the analysis of specularities. In the analysis of interreflections, 
we will follow the SVD analysis used by Tominaga and Wandell 
[25] in their treatment of surface and body reflectance from multiple 

Fig. 1. Two semi-infinite planes that join with opening angle y. In Section 
111, we use y = 4 5 O ,  creating an edge that appears much more closed. 

surfaces under a simple model of specularity. They make use of the 
fact that it is possible to derive the spectrum of the illuminant, within 
the dichromatic reflection model [21], [16], by crossing the planes 
of color signals (entire spectra) from each of several surfaces [26], 
[27] (and see also [24]). Then the SVD analysis for each surface can 
be combined, via the Lawton and Sylvestre method, to determine a 
band of spectra within which the body reflection function must lie. 

Section I1 sets out the color space analysis of mutual illumination: 
how the color planes are found and how the one-bounce color is 
determined. The no-bounce color lies within a band defined by the 
one-bounce color along with the constraint that all colors must have 
entirely nonnegative components. Given the no-bounce color of a 
surface, the shading and the geometric interreflection factor are easily 
calculated at each pixel. 

We make use of 3-component vectors, not entire spectra, so that ab 
initio it is not clear how well the SVD method will work. Therefore 
it is useful to start with a simple, simulated image. Since the physics 
of a planar edge under diffuse illumination is perfectly understood 
[23], in Section 111, we examine the simulated image of a two- 
color, semi-infinite planar edge (cf. [3]). We find that the Lawton 
and Sylvestre method runs into problems because the vectors have so 
few components (i.e., 3) and present a modified method for this case. 

Section 1V details the result of applying the algorithm to a real 
image as well as a method for automatically evaluating the confidence 
with which the method has identified the correct surface colors, 
shading fields, one-bounce color, and interreflection factor fields. 

11. MUTUAL ILLUMINATION AND COLOR SPACE ANALYSIS 

A.  One-Bounce Model of Mutual Illumination 
Consider a semi-infinite edge formed by two differently colored 

materials, as shown in Fig. 1. Mutual illumination can occur between 
nontouching surfaces as well, as shall be shown in Section IV, but the 
edge in Fig. 1 will be studied in Section I11 and might be considered 
fundamental to the problem. 

Suppose the edge is illuminated with spectral power distribution 
E(X). Denote the surface spectral reflectance function for surface A 
by S A ( X )  and that for surface B by SB(X). Let us assume that all 
surfaces are Lambertian, or at least that we exclude specularities, and 
call the RGB values resulting from the direct illumination impinging 
on both surfaces, plus the results of all interreflection, p k ,  k .  . . 3 .  
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Naturally, the values of P k  vary over the surfaces and B and 
especially while moving away from the edge. 

To exactly model the P k  requires evaluating an integral equation 
representing the infinite-bounce interreflection at each wavelength and 
then applying the color filters. The physics of the situation is given in 
[23]. To simplify the analysis, we adopt a one-bounce approximation 
of the radiant exchange between the two surfaces [3], [9], [4]. 

The one-bounce model describes the color signal CA(s ,  A )  from 
a pixel at location s on surface A as 

A similar equation can be written for surface B. 
Equation (1) states that C is comprised of the light reflected from 

surface A with no interreflection-the no-bounce color signal-plus 
the light reflected from surface B and then reflected again from 
surface A. Of course, this once-reflected light will reflect again off 
B,  but we truncate an infinite series of bounces and call the second 
term the one-bounce contribution. 

Due to changes in surface orientation and position, the intensity of 
the direct illumination E will generally vary spatially, although its 
spectrum is assumed to remain constant. The factor a A ( s )  represents 
this intensity variation or shading at point s. 

For reflection from surface B to surface A, the proportionality 
factor P B A  (s) represents the relative contribution of interreflection 
to the color signal. It encapsulates into a single number all the 
possible circumstances that can affect the magnitude of the one- 
bounce contribution, including the local surface orientation at r, 
the overall shape of both surfaces, the shading on both surfaces, 
and the possibility that some points on surface B are occluded 
from the vantage point of pixel s. For image synthesis, calculating 
p B  (s) poses a computationally intensive problem (cf. [ll]); for 
image analysis, on the other hand, deriving the proportionality factors 
a ( r )  and p ( s )  given an RGB image can be done quite efficiently. 

To derive the colors and proportionality factors, we must consider 
the nature of the color space. On sensors of sensitivity Rk (A) ,  a color 
signal C creates sensor response p’ according to 

P k ( s )  = c ( x 3  X ) R k ( X ) d X .  (2) J 
Application of (2) to the C(X) in equation (1) leads to vectors p’ 

on surfaces A and B given by 

p2(1)  a 4 ( r ) p ~ - n o b o u n c e  + ~ B A ( ~ ) ~ ; n e b o u n c e  

p f ( r )  C V B ( r ) P f - n o b o u n c e  + p A R ( s ) P ; n e b o u n c e  
3 (3)  

where 

P k  4-nobounce = 1 E(X)sA(X)Rk(X)dX 

E ( X ) s B (  X ) R k ( X ) d X  B-nobouncc  = J 
P k  

and 

P k  onebounce = J E(X)SA(X)SB(  X)Rk( A)dA. 

All p’ from surface A are formed by a linear combination of 
;A-nobounce and g o n e b o u n c e  . Similarly, on surface B the p’ are made 

and the same p + O n e b o u n c e  . To the extent that (1) 
correctly approximates the color signal from surface A, all the p’ 
arising from surface A will lie in a plane in +pace. In Brill’s 
terminology [2], the p’ form a rank-2 image field. 

up of p&-nobounce 

B. SVD Color Space Analysis 

Since the two color-space planes formed by all the p t  and all the 
pf contain the common color gonebounce it lies in their intersection 
and so is easy to compute. Singular value decomposition (SVD) 
analysis provides a reliable method of finding the planes. The SVD 
operates on the matrix R of all the data from surface A. R is 
N x 3, where N is the number of pixels. The SVD analysis generates 
additional matrices that decompose R as 

R = UAV 

where U is an N x 3 matrix, A is a 3 x 3 diagonal matrix of 
eigenvalues, and V is a 3 x 3 matrix of eigenvectors in three- 
dimensional RGB color space. If the third eigenvalue in A is much 
smaller than the first two, then most of the pixels lie in the plane 
defined by the principal component vectors V; , V; formed from the 
columns of V. 

C .  One-Bounce Color from Crossing Planes 

By analogy to the similar situation that arises with specularities 
[26], [27], [24], we proceed to cross the color space planes gener- 
ated from the two surfaces in order to find the one-bounce color 
zonebounce . In [24], the planes were embedded in high-dimensional 
spaces of vectors representing entire spectra, so the SVD method 
was used in calculating their intersection. In the present situation, 
however, the planes are simply embedded in three-space, so that 
the crossed-planes color gonebounce is unique and can be found by 
algebra. 

If the first two principal component vectors on surfaces A and B 
are t i 1  , Gt, $?, i i . . then solving the following vector equation in the 
three unknowns u2, wl ,  w2 yields the intersection vector: 

+A 

(4) 
+B +I3 + i7; + u2c; - w1111 - w2u2 = 0. 

Therefore, 

bonebounce = 5; + u2ii;. (5)  

For surface A, the one-bounce model predicts that any p’ is 
composed of the above color and the no-bounce color for surface A, 
Pobounce . As will be addressed in the next section, the problem 
remains of how to find the no-bounce color of each side. 

D. Quarter-Circle Analysis 

Within the one-bounce model of mutual reflection, each p’ is 
composed of a linear combination of gonebounce and flnobounce. 

has already From a measured set of p”s and the fact that 
been calculated, we wish to derive gnobounce . For this purpose, the 
most convenient phrasing of the Lawton and Sylvestre [17] analysis 
is that given by Tominaga and Wandell [25], which they called 
‘quarter-circle’ analysis. Following this petted, we first project all 
the measured p’ on surface A onto the u t ,  u t  plane and then rotate 
each p‘ into a new coordinate system with axes a; E Pnebounce and 
a‘; perpendicular to a; in that plane. 

Described in this new coordinate system and normalized to unit 
length, each measured p’ vector must lie within the first quadrant of 
a unit circle (see Fig. 2). Each 6 therefore, has positive components 
a l ,  a2 along the a;, a; directions. The task is to establish limits on 
the direction of dnobounce. 

The first constraint on stems from the fact that of the 
measured p”s, the one closest to the a; axis represents the point on 
the surface where the mutual illumination is least. The p’ nearest to 
U‘; has the largest ratio of its components, a2/al (histogramming 
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The coefficient b, is proportional to the shading, while b l  is the 
relative magnitude of the light from the other surface. 

$1 

Fig. 2. Projecting normalized RGB vectors onto the cross-planes direction 
and a perpendicular to it in the object’s color plane yields vectors all on a 
quarter-circle. 

the ratios avoids picking an outlier). This p’ gives a lower bound on 
a2/a1 for pnobounce: 

Although our experiments in Section 3 below indicate that the 
lower bound is the more useful, a theoretical upper bound follows 
from the condition that dnobounce cannot have negative components. 
Since ai has positive components and a; is perpendicular to it, it 
follows that a; has some negative components in RGB color space. 
As we move away from a: toward ai, we reach a point where every 
component of the p’ vector is nonnegative. That point is the upper 
bound for a 2  / a l .  

The limiting vector contains just enough of ai added to a; that 
the component corresponding to the most negative component of a; 
becomes precisely zero. The condition is 

so that 

Once the band of possible dnobounce vectors has been established, 
the original image p’ data is easily decomposed into its components 

directions. Of course, the previous 
analysis has established only that p’ lies within a band, so 
the components are only restricted to be within a band as well. 

Given a particular choice of flnobounce from the band of possible 
flnobounce vectors that forms an angle 8 with f lonebounce  , the 
components of any p’ in these one-bounce and no-bounce directions 
are given by 

and in the p o n e b o u n c e  

(6) 
p” b c p n o b o u n c e  + b l g o n e b o u n c e  

with 

b ,  = a2/  sin8. b l  = a1 - a 2  tan 8. 
n l  = p’. p o n e b o u n c e  

E. Special Cases 

There is a special case caused by white surfaces in which the 
SVD analysis breaks down. For example, suppose a red surface 
interreflects with a white or gray surface (i.e., S(X) = constant). 
In that case, the no-bounce color on the red side will equal the one- 
bounce, interreflection color; and as a result, the second and third 
eigenvectors will arise from a combination of the second and higher 
bounces, not the first bounce. 

Since the red will be unchanged by reflection off the white surface, 
it will not be possible to distinguish the no-bounce red from its 
one-bounce counterpart and the SVD analysis will discover a one- 
dimensional, not two-dimensional, subspace of color space. As a 
result, on the red side the mutual illumination component cannot 
be removed by the algorithm. Being able to determine the effective 
dimensionality of the subspace is a major strength of the SVD 
method and parallels its use in determining effective rank of matrices 
in pseudo-inverse methods. In the present case, it means that the 
algorithm can report the circumstances in which it will fail. 

On the white side, however, the subspace is two-dimensional. 
Running the algorithm as usual will still produce correct results on 
the white side. The first eigenvector on the red side will lie essentially 
along the red no-bounce direction and any plane formed on the red 
side will therefore necessarily include that red. The white side’s 
white-red plane will intersect the red side’s -V; plane in the 
red no-bouncelone-bounce color. As a result the one-bounce color 
is correctly determined and the mutual illumination component will 
be removed successfully from the white side. 

Exactly the same reduction in subspace dimensionality occurs 
whenever the one-bounce color happens to produce the same hue as 
one of the no-bounce colors. For example, if one object is a saturated 
red and the other object (a yellow, say) has a reflectance spectrum 
that is constant over the the red region of the spectrum then the 
one-bounce color will have approximately the same hue as the red. 
In these cases, the SVD analysis of dimensionality is again a useful 
indicator of problems. 

The other obvious special case in which the SVD analysis does not 
apply arises when there is no interreflection. This can occur for two 
reasons: the edge may be convex not concave; or it may be that the 
product of the two reflectance spectra is zero. An example of the latter 
is a saturated red interreflecting with a saturated blue. Since the blue 
will reflect almost none of the red, the one-bounce “color” is black. 

Instead of analysing interreflection in color space it could analysed 
in chromaticity space. For RGB values inhabiting a plane, the 
corresponding chromaticity coordinates form a line. The intersection 
of two such lines will give the chromaticity coordinates of the one- 
bounce color. This is similar to the chromaticity space analysis of 
body and specular reflection in [18]. Whether or not the analysis 
is done with the two-dimensional chromaticity data or the original 
three-dimensional RGB data makes little difference. In either case, it 
is useful to find the lines or planes via the SVD so that the effective 
dimensionality of the data can be determined from the eigenvalues. 

In the next section, we apply our method to a simulated image to 
test the accuracy of the one-bounce model and determine the width 
of the band of possible no-bounce colors. 

111. SIMULATED IMAGE TEST 

A. Determining the One-Bounce and No-Bounce Colors 

We constructed a multispectral image of a theoretical edge com- 
posed of two semi-infinite planar surfaces illuminated by diffuse 
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light (see Fig. 1) using the infinite-bounce method described in [3]. 
We used the reflectances of pink and green Pantone papers and the 
spectrum of standard illuminant A [28]. From the multispectral image, 
8 vectors are calculated using the spectral transmission curves of the 
common color-separation filters, Kodak #25 (red), #58 (green) and 
#47B (blue). 

To challenge the algorithm, we chose a fairly small opening angle 
y = 45' and made side B twice as long as side A. This means that 
even at the pixel located at the maximum width of side A, with 
E = zmaz, we expect a comparatively high mutual illumination 
contribution. At the maximum width pixel on side B,  though, the 
mutual illumination effect will be negligible. The simulation includes 
no noise or spatial variation of the illumination. 

The first question is how well does the one-bounce model fit this 
data? An SVD analysis on each side of the edge separately finds 
eigenvalues for side A of A = (22.6,0.141,0.00296) and for side 
B of A = (22.6,0.454,0.030). Since the first two eigenvalues 
outweigh the third in each case, the vectors p' on each side are 
well modeled by a plane in RGB space. The ,Zonebounce direction 
is found by crossing these planes, and the normalized result is 
donebounce = (0.613,0.625,0.484). 

Does this color match the actual one-bounce color of the simulated 
edge? The actual color is (0.621,0.63,0.417) and in RGB space the 
angle between the derived donebounce and the correct one is 4.4'. 
As an alternate error measure, we calculate the rms error between the 
actual and derived one-bounce colors by forming 

The result is 7.7%), which seems reasonable. 
Of course, we are more interested in whether or not the two 

no-bounce colors are correct and what choice of best 
represents the band of possible bnobounce vectors. The ratios a2/al 
for side A range from 0.497 to 0.525. Therefore, the lower bound 
on this ratio for the no-bounce color is 0.525. The nonnegativity 
constraint imposes an upper bound of 0.881 on the same ratio. Using 
the lower bound to calculate the corresponding no-bounce color for 
side A results in flnobounce = (0.900,0.400,0.173). This compares 
favorably to the actual = (0.914,0.376,0.151), with an 
angular difference of 2.05" or E = 3.5796. 

Using the upper bound to calculate the no-bounce color results in 
pnobounce = (0.968,0.251,0.000), which is off by 13.7". Clearly, 
this error is high. Even the average of the two estimates leads to an 
error of 4.82'. On side B the situation is even more lopsided: the 
lower-bound, no-bounce color has a small error4.435'-whereas 
the upper-bound vector has a large error-27.9'. For side B using 
the lower-bound we calculate - - (0.430,0.785,0.446) 
compared with the correct values (0.423,0.789,0.446). 

Although the nonnegativity constraint is theoretically well founded, 
it actually is producing a very poor limit on the band of no- 
bounce vectors because it requires that one out of the three RGB 
components be zero. In Tominaga et al. [25], the same theoretical 
limit works better because there are many more samples taken across 
the spectrum. In that case, only one small section of the spectrum is 
restricted to zero in the limiting vector. 

Based on the observation that in all the cases we tried the correct 
vector lies much closer to the limit imposed by the lower bound 
constraint than that imposed by the upper bound constraint, we 
abandon the nonnegativity part of the quarter-circle analysis as 
ineffective and shift to estimating a2 /a l  entirely on the basis of 
the data point found to be farthest from the crossed-planes color. In 
essence, this is equivalent to assuming that each surface has at least 
one point where mutual illumination is negligible. 

On a CRT display, the recovered no-bounce colors are indistin- 
guishable by eye from the correct colors. The one-bounce color is an 
intermediate color between the pink and green of the Pantone papers. 

B. Shading and Interreflection Factors 

once d o n e b o u n c e  and robounce are known, equation (6) will 
generate coefficients b , ( z )  and b l ( z )  for every image location z. 
using $nobounce  for side A, the image b c ( ~ ) $ n o b o u n c e  predicts what 
side A would have looked liked had side B not been in the scene. The 
image b ~ ( . r ) ~ o n e b o u n c e  represents the mutual illumination incident at 
each point. Since all the parameters of the simulated edge are known, 
we can assess how well the algorithm performs by comparing these 
images to corresponding theoretical ones. 

Since the simulated edge was illuminated by diffuse light, we 
expect that in the absence of mutual illumination there will be no 
spatial variation in the shading anywhere on either surface. Thus 
bc(a)  should be constant everywhere and equal to 1 if the normal- 
ization is chosen correctly. Fig. 3(a) shows that this expectation is 
bome out, with the normalization accomplished by dividing by the 
exact 11; 11. Normalization is necessary because the derived 
lliinoboUnce 1 1  is always a unit vector; its true magnitude is not found. 

The mutual illumination image bl (z)donebounce should approx- 
imately equal the mutual illumination effects of a single bounce 
since the idea was to capture infinite-bounce effects within a one- 
bounce model and second and higher bounces are known to be 
relatively small. If the one-bounce assumption holds, the interreflec- 
tion factor bl (z) should equal-up to a single, overall normalization 
constant-the configuration factor (i.e., the proportion of the light 
leaving the other surface that arrives at E [3, 91). 

Fig. 3(b) compares bl  to the theoretical configuration factor for the 
simulated scene's geometry. The results are normalized relative to 

Results are good for side B,  but not for side A, although bl still 
gives the correct shape for the configuration factor there. 

The difference between side A and side B is that for side B 
the mutual illumination effect becomes negligible far from the edge, 
whereas this is not the case for side A. Since the lower bound estimate 
of the no-bounce color identifies the pixel with the least amount of 
one-bounce color as identical to the no-bounce color, the results are 
most satisfactory when there is indeed a spot with very little mutual 
illumination. Had we used the actual vectors in calculating 
bl , results for both sides would have been excellent. 

If there is one point where there is very little incident mutual illu- 
mination, then there probably will be a region of neighboring points 
having little or no mutual illumination, because mutual illumination 
effects tend to vary slowly spatially. This observation points to a 
verification procedure that can be used to establish whether or not 
the algorithm has been applied to an image on which it can succeed. 
Namely, the algorithm's results are reliable when a significant number 
of pixels in the original image have the same color as the derived 
no-bounce color. 

In the next section, we apply the algorithm to a real laboratory 
image. 

the actual one-bounce color by dividing by the known ((panebounce II 

IV. REAL IMAGE TEST 

A. Experimental Setup 

We used colored Pantone papers to make the convex surfaces. To 
the eye, these papers appear relatively free of specular highlights. 

Fig. 5(a) shows an approximately planar strip of pale blue paper 
(Pantone #290) making an angle of N 45' with another strip (#360) 
colored grass green. The blue strip was nearly vertical and the green 
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Fig. 3. (a) Shading factors b, recovered by the algorithm are shown for the 
planar edge of Fig. 1, with the width of surface B equal to twice the width 
ofsurface A and y = 45". (b) Interreflection factors bl recovered by the 
algorithm for the planar edge (-). For comparison is the theoretical factor < for a single bounce (- -). 

strip was inclined, with the camera placed directly above the scene. 
In the image, the blue strip is at the top and the green strip is at the 
bottom. We placed black cardboard behind the scene. 

Mutual illumination induces a color shift that is surprisingly hard 
to discern by eye, although it is clearly evident in the numerical image 
data. Since the color image is not that informative, Fig. 5 presents a 
black and white photograph of the color image. 

A tungsten light at a distance of - 1 m and at an angle of - 45" to 
the horizontal illuminated the scene. Color images were taken using a 
CCD Camera with infrared cutoff and color separation filters (Kodak 
Wratten filters #25, #58 and #47B). The camera responds linearly 
with intensity, but with unequal sensitivity across the spectrum. For 
the method described in this paper, sensitivity calibration is not 
required. 

B. Results of Color Space Analysis 

We first segmented the image into three regions: background, 
blue strip, green strip. SVD analysis of the green strip produces 
eigenvalues A = (3835.2, 43.0, 16.2). For the blue strip, A = 
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Fig. 4(a). Histogram of ratio a z / a l  for the green strip's color space plane. 
(b) Histogram of rms differences between measured green strip pixels and the 
calculated one-bounce color. (c) Histogram of ratio a z / a l  for the blue strip's 
color space plane. (d) Histogram of rms differences between measured blue 
strip measurements and the calculated one-bounce color. 

(5482.9, 72.7, 19.9). Clearly, the data does not fit a plane as well 
for this real image as it did for the simulated image. Factors that 
may be contributing to the third dimension are noise, stray light, and 
small amounts of specularity. 

The intersection of the two planes defines the green-to-blue (or 
equivalently blue-to-green), one-bounce color, 9 = (0.573, 
0.653, 0.496). Since the green Pantone paper is more saturated than 
the blue, this color appears a bit more green than blue. 

Fig. 4(a) histograms the ratio u2/u1 for pixels from the green strip. 
The maximum value for the ratio is 0.154 and it is not an outlier. This 
ratio defines no-bounce green of ,Jnobounce - - (0.673,0.633,0.383). 

For comparison, the actual green measured under the same illumi- 
nation but at a location where there was no mutual illumination from 
the blue strip was Gnobounce = (0.662,0.636,0.397). This measured 
no-interreflection color differs by 1.05" from that produced by the 
algorithm. 

To assess the algorithm's results without knowing the actual 
reflectances of the two colored strips, we can reconstruct an image 
based on the one-bounce analysis and compare it to the actual image, 
where the reconstructed image is obtained from b l ( z )  and b , ( z )  via 
equation (6). For the green strip, the errors E between actual data 
and reconstructed one-bounce model values have median value of 
only 0.27%. For the blue strip, this value is 0.25%. Clearly, the 
one-bounce model performs well. 

To further assess the results, we apply the verification procedure 
described above. In particular, the test finds that many pixels in the 
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( 4  ( 4  
Fig. 5(a). Image of a blue strip and a green strip. Since the color shift due 
to mutual illumination is not easily discernible in any case, the image is only 
shown in black and white. (b) Black and white version of nobounce image 
representing the the original image with interreflections removed. The shading 
is as it would have been in the absence of mutual illumination. (c) Image 
of onehounce color (i.e., the interreflection factors). (d) Image of nobounce 
colors, shown in black and white, masked with 1 or 0 depending on whether 
the true color is close to the calculated nobounce color. 

original image are close in color to the derived f l n o b o u n c e ,  which 
indicates that there is a high likelihood that some location in the image 
had an insignificant amount of mutual illumination impinging on it 
and therefore that flnobounce is correct. Fig. 4(b) shows a histogram 
of differences € between the derived no-bounce color on the green 
side and the RGB values of the original image. Many pixels fall 
close to the calculated green. The average difference from the no- 
bounce color is 3.4% and the percentage of pixels within 3% of the 
no-bounce color is 39.196. 

For the blue strip, Fig. 4(c) shows the distribution of a z / a l .  The 
maximum value of the ratio is 0.232. Composing a no-bounce color 
from this ratio we find flonebounce = (0.735,0.576,0.357). Fig. 
4(d) shows the distribution of € from this color for the blue strip. 
The average difference from the no-bounce color is 3.5%) and the 
percentage of pixels within 3%) of the no-bounce color is 35.4%). 
The actual blue measured at a location without mutual illumination, 
but under the same direct illumination from the light bulb, was 
f l n o b o u n c e  = (0.724,0.5834,0.367); the vector produced by the 
algorithm was 1.0” away from this color, 

C. Output Images 
The algorithm decomposes the original image into two component 

images. Fig. 5(b) shows the original scene with mutual illumination 
removed (i.e., bc(z ) f lnobounce  ). Fig. 5(c) shows the image of the 
mutual illumination component (i.e., bl (s); O n e b o u n c e ) .  Since this 
effect is small, the image has been multiplied by the factor 3 for 
display. As should be expected, the image of mutual illumination is 
brightest near the edge, where the interreflection effect is strongest. 

Fig. 5(d) shows which parts of the original image are similar in 
color to the calculated no-bounce color by masking the no-bounce 
color with a 1 when the percentage difference € between the measured 
pixel values and the no-bounce color is below a threshold of 3%). 
In the resulting image, there are connected regions close to the 
calculated color, so we can have confidence in the algorithm’s results. 
These regions are away from the edge, where the effect of mutual 
illumination diminishes. 

V. CONCLUSION 
Under a one-bounce model of interreflection, the RGB vectors for a 

region of uniform color lie in a plane. Intersection of two such planes 
from two interreflecting regions yields the color of the interreflected 
light. This one-bounce color provides one of the two axes on which 
the original data can be projected. By projecting the data onto this 
axis, an image of the mutual illumination field is produced. Quarter- 
circle analysis constrains the second axis-the no-bounce color-to 
a band, but in fact, only one limit of the band turns out to be useful. 
Projection of the original image onto the axis defined by this limit 
results in a no-interreflection image (i.e., an image of each surface 
as if the other surface had not been present). 

The method generalizes to interreflections caused by self-reflection. 
For example, an image of the concave surface inside a cup will have a 
second illumination component due to the mutual illumination from 
the cup to itself, and the color of the interreflected light will not 
in general be the same as the cup i t ~ e l f . ~  In situations generating 
three components (e.g., a main reflection component, self-reflection 
and interreflection; or main reflection, interreflection and specularity) 
the full Lawton-Sylvestre-Kawata method-which is not restricted 
to finding planar subspaces-in principle should apply, but we have 
not tested it. 

The color space method is quick (well under a second), simple, and 
includes a reliability check. Results from tests on real and synthesized 
images show that it works well. Any shape-from-shading method 
can be applied directly to the no-interreflection image. The mutual 
illumination image approximates an image of configuration factors 
encoding other potentially useful geometrical information about the 
scene. 
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Vector Quantization Technique for 
Nonparametric Classifier Design 

Qiaobing Xie, Charles A. Laszlo, and Rabab K. Ward 

Abstract-An effective data reduction technique based on vector quan- 
tization is introduced for nonparametric classifier design. ” b o  uew 
nonparametric classifiers are developed, and their performance is evalu- 
ated using various examples. The new methods maintain a classification 
accuracy that is competitive with that of classical methods but, at the 
same time, yields very high data reduction rates. 

Index Terms- Condensing algorithms, data reduction, C-nearest- 
neighbor (C“) classifier, nonparametric classification, Panen kernel 
classifier, vector quantization. 

I. INTRODUCTION 
Nonparametric classification has been of great importance in 

statistical pattern recognition [l], [2]. When dealing with problems 
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of nonnormal distributions, nonparametric classifiers frequently show 
much higher classification accuracy than that achieved by the pop- 
ularly used parametric classification approaches, such as the linear 
classifier and the quadratic classifier. In addition, it has been found 
that the nonparametric algorithms sometimes outperform their para- 
metric counterparts even when the data are from normal populations 
[3], [4]. In practice, however, the application of the nonparametric 
classifiers often suffers from various difficulties, especially as the 
size of the problem increases. 

The common disadvantages of classical nonparametric approaches 
(kernel estimator, kNN classifier, etc.) are their computational com- 
plexity and the requirement for a very large amount of computer 
storage to retain the design sets. Unfortunately, large design sets are 
always desirable because nonparametric methods require adequate 
statistical information. Thus, on-line application of nonparametric 
classifiers is rare since these are usually too complex and slow 
in operation. Their uses are often limited to situations where the 
computation time is not a crucial factor, such as in the estimation of 
the Bayes error and data structure analysis [l]. 

A solution to the above problems is to reduce the size of the design 
set while insisting that the classifiers built on the reduced design set 
should perform as well, or nearly as well, as the classifiers built 
on the original design set. This idea has been explored for various 
purposes over a period of time and resulted in the development of 
many algorithms of kNN classifier design using reduced sample sets. 
Particularly noteworthy are the condensed NN (CNN) [5] ,  the reduced 
NN (RNN) [6], and the edited NN (ENN) [7]. In these algorithms, 
iterative processes are used to test the effect on the classification 
performance as each individual point is moved in and out of the 
design set, and only the “good” points are retained. For very large 
design sets, these methods are often tedious and difficult to implement 
since a new classifier is in fact built and evaluated every time a point 
is moved in or out of the design set. The most serious disadvantage is 
that the final reduction rate is usually low and not under the control of 
the algorithms, e.g., it depends entirely on the nature of the sample 
set to be reduced. 

Recently, two nonparametric data reduction algorithms were pro- 
posed by Fukunaga et al. for the Parzen‘s kernel classifier and the 
NN classifier design, respectively [l], [8], [9]. Their algorithms find 
the optimal reduced design set from the original design set in the 
sense that the difference between the probability density function 
estimated from the reduced set and that estimated from the original set 
is minimized. Bearing some similarities to the traditional reduced data 
kNN algorithms, their algorithms iteratively move each individual 
point in and out of a tentatively chosen reduced sample set and test 
the resultant effect on the criterion function. To avoid an exhaustive 
search of all possible subsets, which is impractical, the optimization 
scheme used in Fukunaga’s algorithms can achieve a local optimum. 
The computational complexities of these algorithms are considerable. 
Moreover, the initial guess of the reduced sample set is of crucial 
importance in Fukunaga’s reduced NN algorithm. Thus far, only 
an intuitively developed initial assignment procedure for the 2: 1 
reduction rate case has been published [9]. 

11. Two NEW NONPARAMETRIC CLASSIFIERS 
USING VECTOR QUANTIZATION TECHNIQUE 

In this article, we introduce a new approach for nonparametric 
data reduction using the vector, or block, quantization technique. As 
a mathematical process, optimal vector quantization has already been 
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