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A Comparison of Computational Color Constancy
Algorithms—Part II: Experiments With

Image Data
Kobus Barnard, Lindsay Martin, Adam Coath, and Brian Funt

Abstract—We test a number of the leading computational
color constancy algorithms using a comprehensive set of images.
These were of 33 different scenes under 11 different sources
representative of common illumination conditions. The algo-
rithms studied include two gray world methods, a version of the
Retinex method, several variants of Forsyth’s gamut-mapping
method, Cardei et al.’s neural net method, and Finlaysonet al.’s
Color by Correlation method. We discuss a number of issues
in applying color constancy ideas to image data, and study
in depth the effect of different preprocessing strategies. We
compare the performance of the algorithms on image data with
their performance on synthesized data. All data used for this
study is available online at http://www.cs.sfu.ca/~color/data, and
implementations for most of the algorithms are also available
(http://www.cs.sfu.ca/~color/code).

Experiments with synthesized data (part one of this paper)
suggested that the methods which emphasize the use of the input
data statistics, specifically Color by Correlation and the neural
net algorithm, are potentially the most effective at estimating
the chromaticity of the scene illuminant. Unfortunately, we were
unable to realize comparable performance on real images. Here
exploiting pixel intensity proved to be more beneficial than
exploiting the details of image chromaticity statistics, and the
three-dimensional (3-D) gamut-mapping algorithms gave the best
performance.

Index Terms—Algorithm, color by correlation, color constancy,
comparison, computational, gamut constraint, neural network.

I. INTRODUCTION

T HE IMAGE recorded by a camera depends on three fac-
tors: the physical content of the scene, the illumination in-

cident on the scene, and the characteristics of the camera. This
leads to a problem for many applications where the main interest
is in the physical content of the scene. Consider, for example, a
computer vision application which identifies objects by color. If
the colors of the objects in a database are specified for tungsten
illumination (reddish), then object recognition can fail when the
system is used under the very blue illumination of blue sky. This
is because the change in the illumination affects object colors far
beyond the tolerance required for reasonable object recognition.
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Thus the illumination must be controlled, determined, or other-
wise taken into account.

The wide applicability of separating a captured signal into
parts which are due to the world, and parts which are due to
the illumination, has lead to much interest in computational
methods for doing so. In this paper we test a variety of
promising approaches to this problem, using a large set of
carefully calibrated images (all data is available online [1], as
are implementations for most of the algorithms [2]). Applying
the algorithms to images of actual scenes taken with a physical
camera leads to the issues of camera characterization, image
preprocessing, and the suitability of illuminant and reflectance
sets used for algorithm calibration (training) to the images
that will be encountered by the camera. Currently there is no
satisfactory characterization of the images that an arbitrary
vision system will encounter. Therefore an important part of
this work is to explore the effects of reasonable mismatches
between the assumptions made for algorithm calibration and
reality. Our main vehicle for this is a comparison of results on
image data with those on synthesized data from a companion
paper [3].

II. A SSUMPTIONS ANDCONTEXT

We do not test any algorithms which specifically require
specularities to be present. However, as shown in part one,
algorithms developed in the context of matte reflection vary
substantially in their performance change due to specularities,
and thus images with specularities is of interest. Furthermore
it is difficult to take a comprehensive set of images without
some specular reflectances. Therefore the images in our data
set have varying amounts of dielectric specularities.

We assume that the illumination is constant across the scene.
In synthetic experiments this is easy to enforce, but with image
data it is a significant potential confound. Even when a single
light source is used, this assumption is only grossly correct in
the case of the illumination intensity. Sources of spatial vari-
ance in illumination intensity include geometric effects such
as shading, illumination effects such as spatially extended light
sources, and optical effects such as vignetting [4, p. 26] and a
fall-off proportional to the fourth power of the cosine of the off
axis angle [4, p. 208]. The optical effects could be calibrated for
with sufficient effort, but such a calibration would be a function
of camera settings such as focus and zoom, and doing so would
not solve the bulk of the problems; therefore these issues have
been ignored for this study.
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Fig. 1. Chromaticity distributions of the illuminant sets. The 11 illuminants used for creating test images are shown in (a). In (b), we plot the chromaticities of a
set composed of additional sources and a number illuminations measured in and around our university campus. The training set constructed from these sources is
shown in (c). For comparison (d) shows the illuminant set used for testing with synthesized data.

In the case of illuminant chromaticity, the assumption of spa-
tial uniformity is generally more valid. However, inter-reflection
can still cause major deviations. Furthermore, in natural images
there are often multiple sources of illumination. For example,
in outdoor images the sun and the sky often illuminate different
parts of a scene with varying strengths. Color constancy under
such conditions is beyond the scope of this paper (the interested
reader is referred to [5]–[10]).

Color constancy algorithms also generally make assumptions
about the diversity, and sometimes the detailed statistics, of the
surfaces and the illuminants that may be encountered. Typically
the surfaces and illuminants are supplied as collections of sur-
face reflectances and illuminant energy spectra, and the assump-
tions an algorithm makes about them are manifest in calibration
(training) data sets. For surface reflectances we used a set of
1995 spectra compiled from several sources (see part one for de-
tails [3]). This set was chosen to be a superset of the reflectance
sets used by others for color constancy research. The range of
color largely encompasses that found in our image database.

The illuminant spectra for algorithm calibration were chosen
to roughly uniformly cover the chromaticities of common
illumination conditions. All illuminant spectra were normalized
so that our cameras response to perfect white would have a max-
imum response among the three channels of 255. The 11 sources
used to capture the image data were also selected to roughly

cover the range of common illuminant conditions (see [3] for
details). The chromaticities of the illuminant sets are shown in
Fig. 1. Where relevant we use the Sylvania 50MR16Q (one of
the 11 sources) as the standard (canonical) illuminant, as this
is the illuminant for which the camera is best balanced. Specifi-
cally, under this illuminant, the camera response to perfect white
is roughly the same across the three channels.

III. CAMERA CHARACTERIZATION

We characterized our Sony DXC-930 CCD camera as de-
scribed in [11], and used these sensors for generating camera
responses for algorithm calibration. In experiments with syn-
thesized data, where the same camera model is used both for
training/calibration and data generation, the degree to which the
model properly characterizes an actual camera is not critical.
By contrast, when the algorithms are applied to data taken with
a physical camera, characterization issues are important. It is
possible to construct color constancy algorithms using only
measured data, and doing so avoids characterization errors.
However, it is more efficient to obtain camera independent
quantities (such as reflectance functions and illuminant spectra)
and update the camera model, rather than collect data for each
camera (but see [12] for a compromise).
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We model the ideal (linearized) camera response for channel
, , for a surface with reflectance spectra under an

illuminant with spectra by

(1)

where is a sensor sensitivity function for theth channel,
is a wavelength independent linearization function, and

is a the linearized camera response. In practice, the func-
tions of wavelength are replaced by vectors. In our case we
use 101 samples from 380 nm to 780 nm in steps of 4 nm
which is the sampling provided by our PhotoResearch PR-650
spectrometer.

Most color constancy algorithms assume that the image pixels
are proportional to the input spectral power which is equiva-
lent to assuming either that is the identity function, or that
is known and has been applied. Since is very often not
the identity, when we apply color constancy to data from a real
camera we must determine it as part of the camera characteriza-
tion step. This can be done as an initial phase of characterization
[13], [14] or as an integral part where and are deter-
mined jointly [11]. The camera sensors (Fig. 2), as well as the
data used to estimate them, are available online [1].

IV. DIAGONAL COLOR CONSTANCY

We assume the diagonal model of illumination change
which maps the image taken under one illuminant, to the
image taken under another illuminant, by simply scaling each
channel independently. For concreteness, consider a scene with
a white patch. Suppose that the camera response to the white
patch under the unknown illuminant is ,
and that the response under a known, canonical, illuminant is

. Then the response of the white patch can
be mapped from the unknown case to the canonical case simply
by scaling the th channel by . To the extent that this
same scaling works for the other, nonwhite patches, we say that
the diagonal model holds. The efficacy of the diagonal model
is largely a function of the vision system sensors, specifically
whether or not they are narrow band, and whether or not they
overlap1 [15]–[18]. In the case of the camera used for the
present work, the diagonal model is a good approximation. If
the diagonal model leads to large errors, performance may be
improved by using sensor sharpening [19], [20].

V. ALGORITHMS

Table I summarizes the algorithms chosen for study. A more
comprehensive introduction is provided in part one of this paper
[3]. Here, we briefly outline the algorithms and provide some
details specific to their use in this study. Implementations for
most of these algorithms are available online [2].

A. Gray World and Illumination Estimation by the Maximum
of Each Channel

The gray world method assumes that the average of the
observed image is a good estimate of the camera

1The world (surfaces and illuminants) encountered by the camera also affects
the diagonal model error.

Fig. 2. Camera sensor response functions.

response to “gray.” Ideally “gray” is defined by the expected
average over the application domain. This is not generally
available, and in this work we consider two algorithms based
on alternatives. The first (GW) uses a 50% uniform reflectance
for gray, and the second (DB-GW) uses the average of the
reflectance spectra in the reflectance dataset defined above. For
GW the average scene is converted to an illuminant
estimate by scaling it by a factor of two. For DB-GW we
apply the diagonal model and scale the result by the ratio of
the camera response to white under the canonical illuminant,
to the camera response to gray, again under the canonical
illuminant.

The limiting case of one Retinex algorithm,
SCALE-BY-MAX, simply estimates the illuminant
by the maximum response in each channel [7], [21]–[23].

B. Gamut Mapping Methods

We present the results of a number of algorithms based
on Forsyth’s gamut-mapping approach [18], [24]–[28]. Here
we consider the set of all possible due to surfaces
in the world under the known, “canonical” illuminant. This
set is convex and is represented by its convex hull. The set
of all possible under the unknown illuminant is
similarly represented by its convex hull. Under the diagonal
assumption of illumination change, these two hulls are a
unique diagonal mapping (a simple three-dimensional (3-D)
stretch) of each other. Because the observed set is normally
a proper subset, the mapping to the canonical is not unique,
and Forsyth [24] provides a method for effectively computing
the set of possible diagonal maps which is convex set in the
space of mapping coefficients (see [3], [24], [28] for details).
Finlayson’s Color in Perspective algorithm adds two additional
ideas [26]. First, the gamut-mapping method can be used in
the chromaticity space . Second, the diagonal
maps can be further constrained by restricting them to ones
corresponding to expected illuminants.
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TABLE I
KEY TO THE ALGORITHM LABELS USED IN THIS PAPER. ALL ALGORITHMS ARE DISCUSSED INDETAIL IN [3].

ADDITIONAL REFERENCES AREPROVIDED IN COLUMN THREE

To summarize, we investigate three methods of forming the
solution set. These are Forsyth’s original method, designated
by CRULE (for “coefficient-rule,” the name of the original al-
gorithm), the Color in Perspective method with the illumination
constraint, designated by CIP, and the illumination constraint
set applied to CRULE designated by ECRULE (for “extended-
CRULE”). These solution sets are paired with three methods of
selecting a solution from them. MV denotes the original max-
imum volume heuristic which is simply the diagonal transform
with maximal determinant; AVE specifies that the constraint set
is averaged, using a convex approximation to the illumination
constraint if necessary; and ICA specifies that the constraint
set is numerically integrated to deal with the fact that it is non-
convex (“illumination constrained average”).

The canonical gamut, the canonical illuminant ,
and the illuminant set are all derived from the calibration sets
mentioned above, and described further in part one [3].

C. Color by Correlation

Recently, Finlaysonet al. introduced Color by Correlation
[29]–[31] as an improvement on the Color in Perspective
method. The basic idea of Color by Correlation is to precom-
pute a correlation matrix which describes the extent to which
proposed illuminants are compatible with the occurrence of
image chromaticities. Each row in the matrix corresponds to a
different training illuminant. The matrix columns correspond to
possible chromaticity ranges resulting from a discretization of

space, ordered in any convenient manner. Two versions
of Color by Correlation are described in [29]. The first version
of this algorithm (C-by-C-01) is essentially an alternative
implementation of Color in Perspective.

In the second version of Color by Correlation, the correlation
matrix is set up to compute the probability that the observed
chromaticities are due to each of the training illuminants. The

best illuminant can then be chosen by one various methods.
Here we consider the maximum likelihood (C-by-C-MAP),
mean likelihood (C-by-C-MMSE), and the local area mean
(C-by-C-MAP), introduced in [32]. The MAP estimate is simply
the illuminant which has the maximum posterior probability.
To compute the MMSE estimate of the chromaticity estimate
we take the average weighted by the posterior distri-
bution. The MLM estimator is computed by convolving the
posterior distribution with a Gaussian mask, and then finding
the maximum. We report results for a sigma of 8 (see part
one [3] for further discussion).

D. Neural Net Methods

The results labeled NEURAL-NET are from a neural network
trained to estimate the color of the illuminant [33]–[35]. The
neural net is a multilayer Perceptron with two hidden layers. As
is common, the general structure is pyramidal. The input to each
neuron is a binary value representing the presence or absence
of a scene chromaticity falling in the corresponding bin.
The output signal from the two output neurons are an estimate of
the chromaticity of the scene illuminant. The network is
trained to compute this estimate by being presented with many
synthesized images, generated from the training sets described
above, together with the chromaticity of the illuminant used to
generate each image. Extensive details are provided in [34] and
[35].

VI. I MAGE DATA SET

We took pictures of 30 scenes under the 11 sources mentioned
above, for a total of 330 images. Some of the images had to be
culled due to problems, leaving 321 for our experiments. The
scenes under one illuminant are shown in Fig. 3, and in Fig. 4
we plot some image statistics and the analogous statistics for
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Fig. 3. The 30 scenes used in this study. Each scene was imaged under 11 illuminants.
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(a) (b)

(c) (d)

Fig. 4. Distribution of the (a) means and (b) standard deviations of the chromaticities of scenes as imaged under the canonical illuminant and preprocessed with
the generic method used for the results in Table I. The means and standard deviations for the 1000 synthesized scenes with eight surfaces used for comparison are
shown in (c) and (d).

synthetic data. The images had varying amounts of speculari-
ties, but we avoided images with colored metals or fluorescent
surfaces.

The experimental routine was as follows. First, a new scene
was constructed. We then placed a reference white standard in
the center of the scene, perpendicular to the direction of the
illuminant. The position of the illuminant was set so that the
number of clipped pixels was small. This meant that if the scene
had bright specularities, then the image was purposely underex-
posed. We then took a picture of the scene with the reference
white in the center. Finally, we removed the reference white,
and took 50 successive pictures which were averaged to obtain
the final input image. We then repeated the process for the re-
maining ten illuminants, and then we moved onto the next scene.

The images with the reference white were used to provide
the “answer.” We extracted the central 30 by 30 pixel window
of each of these images, and used the average over
these windows as the estimate of the illuminant for the corre-
sponding input images. Both the input images and the illumi-
nant estimate were mapped into a more linear space
as determined by the camera characterization process [11]. In
addition, a spatially varying color cast due to the camera optics
was removed, as well as some fixed pattern noise. Additional
details of the image capture and subsequent corrections can be
found in [28] in [36].

After the processing described above, the images were nearly
linear with scene radiance, and significantly cleaner than single
shot images taken with the same camera. Averaging reduces
independent Gaussian noise by the square root of the number
of samples, so the expected improvement here is a factor
of about seven. We note that averaging does not help with
some sources of noise such as lens flare. We found that the
images could be scaled by a factor of ten without incurring
too much noise—visually comparable to a normally exposed
image—which is consistent with the expected improvement.
Thus the images could be scaled and clipped to emulate capture
with an automatic aperture, as well as capture with a higher
dynamic range device. The bit depth of the images is roughly
9–10, as compared to 6–7 for our single frame images where
the noise level is of the order of 2.5. After linearization and
other adjustments, the range of the image gray levels was
roughly 0 to 240.

The of the white standard provided a good
estimate of the chromaticity of the illuminant, but the error in
the illuminant magnitude for any given picture could be quite
high—easily 10%, because of the difficulties in keeping the
white reflectance standard perpendicular to the light source.
Furthermore, three of the sources were distended, and here we
simply attempted to find the orientation which maximized the
brightness of the reflectance standard.
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Some algorithms are sensitive to small values in one or more
channels, and therefore we excluded any pixel whose, , or

, was 2 or less, after the linearization and other corrections
discussed above had been applied. We also excluded any pixel
with , , or over 240 after linearization (corresponds
to roughly 250 before linearization), as these pixels may be
clipped. We used a slightly lower value than the actual clipping
level because the frame averaging process and/or noise may
hide clipping. Since we avoided clipping as much as possible
during the capture process, this exclusion applied to only a
few pixels.

VII. PREPROCESSING FORCOMPUTATIONAL

COLOR CONSTANCY

All the algorithms discussed above are developed in terms
of one input per identifiable image surface. This is a
little different than a real image, which is a collection of multiple
samples per surface, including samples which straddle surface
boundaries. Many algorithms are indifferent to the statistics of
the sampling; only the presence or absence of a color is relevant.
Thus it is common to simply use the image pixels themselves as
input. However, initial experiments indicated that it is better to
first spatially average the images, with a block size of 55
being roughly optimal for our camera. Nonetheless, blindly av-
eraging the image in this way reduces the information available
to the algorithms, and such a step should be less important when
frame averaging is used. Interestingly, we found that this was not
case.

We believe that the reason for this anomaly is as follows:
using each pixel as a datum makes the implicit assumption that
the of pixels straddling two surfaces is a convex
combination of the s of the pixels to either side.
Careful examination of images reveals that, for our camera, this
assumption does not hold, possibly due to chromatic aberration
or misregistration of the CCD elements (our camera has three
CCD arrays—the incoming signal goes through beam splitters
and filters on its way to the CCD arrays). Specifically, we found
that the s of a nonnegligible number of boundary
pixels were not the convex combination of surrounding pixels,
and thus should be considered erroneous data. Furthermore,
cameras with mosaic’ed sensors, which are more common than
three CCD cameras, are also susceptible to similar anomalies.

This problem, together with the above observation that the
algorithms are expressed in terms of surfaces, leads to the
consideration of image segmentation as a form of preprocessing,
and we investigated this idea in detail in our experiments. We
were able to find segmentation parameters which improved most
algorithms, although the effect was quite algorithm dependent,
and in fact, more volatile than we expected. We present results
using these, somewhat arbitrarily chosen, general purpose
parameters. However, since it is reasonable for a proponent
of a given algorithm to optimize the preprocessing for that
algorithm, we also present results where the optimal among
all preprocessing methods was chosen on an algorithm-by-
algorithm basis.

To segment the images we used region-growing, subject to
two constraints. First, we ensured that all chromaticities in a
region were within a certain absolute tolerance of each other.

Second, we ensured that the pixel brightness, quantified by
, of all pixels in a region were within a certain relative

tolerance of each other. Thus adjacent pixels (horizontally
or vertically connected) were added to regions, beginning
with unassigned pixels as region seeds, provided that these
constraints were met. In addition, we insisted that the region
was larger than a certain number of pixels. Thus there were
three segmentation parameters. We used four different values
of the chromaticity tolerance (0.0025, 0.005, 0.01, 0.02), four
for the relative brightness range (10%, 20%, 30%, and 40%),
and three for the minimum number of pixels (5, 10, 20).
The averages of each region was then used as
input to the algorithms. A second preprocessing strategy was
to average the pixels in image blocks with lengths of sides
(1, 2, 3, 5, and 7). A third strategy was to then put block
averaged result into bins in space (100 divisions
per channel), and use the average of the in each of
the bins, thereby removing duplicate colors from the input. A
final preprocessing approach was to use the vertices
of the convex hull of the data instead of the data itself. This
is motivated by the knowledge that for the gamut-mapping
algorithms, the hull boundary points are the ones that matter. Of
course, using the convex hulls has no effect on gamut-mapping
algorithms, but preliminary results with the neural net and Color
by Correlation were promising. Therefore we also tested using
this in conjunction with block averaging (five-pixel blocks)
and two selected segmentation methods. Thus a total of 65
preprocessing methods were tested.

VIII. E XPERIMENTS

In Table II we present the results using a generic prepro-
cessing method that works relatively well with most algorithms,
but is optimal for none of them. Specifically, the images were
segmented subject to the constraint that the vector dis-
tance of any two pixels in the region was not more than 0.005,
that the value of did not vary by more than 10%,
and that the region had at least five pixels. Once segmented, the
average of over each of the regions was used as the
input to the algorithms. Table II also includes results using input
modified to emulate our camera when the automatic aperture
is active. The image data was artificially scaled and clipped so
that the maximum of the reference white would be
300, and all pixels with , , or over 255 were discarded.
In Table III we provide the results of our preprocessing experi-
ments. Here we show the range of results obtained using the 65
preprocessing methods described above.

In Fig. 5, we compare the results on the image data, using
the best preprocessing method for each algorithm, with results
on synthesized scenes with eight surfaces (from [3]). Absolute
errors found with generated and captured data are not generally
comparable, but to study the changes in relative performance we
identified eight synthetic surfaces as been roughly as difficult as
our images. Specifically, in Fig. 5, the average error across the
algorithms is roughly the same on images as on eight synthetic
surfaces. We use “comparable difficulty” as the calibration point
to reduce possible confounds due to “problem difficulty” in our
comparisons across generated and captured data results.
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TABLE II
ALGORITHM PERFORMANCE FOR321 REAL IMAGES USING A GENERIC PRE-PROCESSINGMETHOD (SEE TEXT). UNCERTAINTY IS ROUGHLY 4%. THE

TWO RIGHTMOST COLUMNS ARE THE CHROMATICITY RESULTS OBTAINED ON IMAGES SCALED AND CLIPPED TO EMULATE THE

DATA FROM OUR CAMERA WHEN THE AUTOMATIC APERTURE ISUSED

Fig. 5. Algorithm performance for 321 real images using the best preprocessing method for each algorithm compared with synthetic results for a comparably
difficult number of surfaces (8).

The most significant deviation of the results with real images
from those with synthesized data is that the algorithms which
consider the detailed statistics of the input (Color by Correlation
and the neural network) lose ground to the gamut-mapping
algorithms in their ability to estimate the chromaticity of

the illuminant. For example, on the image data, with optimal
preprocessing, the chromaticity error for C-by-C-MMSE
was 80% that of CIP-ICA, down from 44% in the eight-surface
synthetic case. Furthermore, the gamut-mapping
algorithms performed the best on the image data, compared



BARNARD et al.: PART II: EXPERIMENTS WITH IMAGE DATA 993

TABLE III
ALGORITHM CHROMATICITY PERFORMANCE FOR321 REAL IMAGES USING THEBESTPRE-PROCESSINGMETHOD FORTHAT ALGORITHM. HENCEEACH RESULT IN

THIS TABLE IS OBTAINED USING A (POTENTIALLY ) DIFFERENTPRE-PROCESSINGMETHOD. THE SEGMENTATION PARAMETERS ARE(MIN-SEGMENT-SIZE,
MAX-RG-VARIATION, MAX RELATIVE R +G+B VARIATION). WE USEAVE(N ) TO INDICATE THAT N BY N BLOCKS WEREAVERAGED

with being somewhat worse than both the neural network
and Color by Correlation methods in the eight-surface matte
synthetic case. We will discuss this discrepancy in more detail
below.

Our experiments with preprocessing show a significant effect
on algorithm performance. The difference between the average
method and the best method was usually greater than 10%,
and in some cases, such as the two gray world algorithms,
it was of the order of 30%. Furthermore, since this effect
is quite algorithm dependent, a careful comparison of color
constancy algorithms must take this into account. Our current
strategy for doing this is to provide comparisons based on the
optimal preprocessing chosen on an algorithm by algorithm
basis as we do in Table III and Fig. 5.

Finally, we note that the simulated clipping we applied to this
data did not have a major effect on the results. This is because
overall, our image database did not include an over abundance
of extreme specularities, and only about one third of the im-
ages had significant specularities. The effects that we did find
are generally consistent with the results with synthesized data,
except that SCALE-BY-MAX was degraded slightly less due to
specularities compared to the 3-D gamut-mapping algorithms.
However, overall, the impact of the clipping results on our con-
clusions is small, as it induces little change in the rank ordering
of the algorithms. Thus our conclusions hold for moderately
specular images, even if a significant number of those specu-
larities are clipped. We remind the reader that this conclusion is
based on excluding the clipped pixels, rather than optimistically
using them, which is detrimental to several algorithms.

IX. DISCUSSION

The main discrepancy between our results on synthesized data
and our results on image data is the drop in performance of Color

by Correlation and the neural net method relative to the 3-D
gamut-mapping methods. There are two principal differences
which can explain performance variation between these two
algorithm groups. First, the 3-D gamut-mapping methods can
exploit pixel intensity information such as that inherent in
specularities. Since the particular neural net and Color by
Correlation approaches investigated here use chromaticity input,
they cannot use this information. The second relevant difference
is that the neural net and Color by Correlation can exploit the
structure of the scene and illumination statistics; by contrast,
gamut mapping uses simple statistics (average or maximum
volume heuristic) to choose a solution from the constraint set.
In our synthetic test domain, the advantage afforded by using
the details of the statistics of the world more than made up
for the disadvantage of not being able to use pixel intensity.
On our image data, the reverse was true. In the following
we will consider the extent to which this change is due to
an increase in the relevance of pixel intensity, compared a
decrease in the effectiveness of utilizing the detailed structure
of image statistics.

We first consider specularities. When significant speculari-
ties were modeled in the synthetic data, 3-D gamut mapping
performance approached that of the best algorithms in that do-
main (C-by-C-MMSE). Thus specularities can explain some of
the difference. Not all difference can be explained because the
specularities in the image dataset were not as extreme as the
simulated ones. Furthermore, when we clipped the image data
to emulate an automatic aperture, the 3-D gamut mapping algo-
rithms still performed much better than C-by-C-MMSE.

This suggests that part of the difference is due to a mismatch
in the statistics used for training compared to the statistics of
our image dataset. Such a difference must be in the detailed
structure of the statistics because gross features of the statis-
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tics, such as the ranges of surfaces and reflectances, help both
Color by Correlation and gamut mapping (Color by Correla-
tion is a generalization of gamut mapping). Both algorithms
choose solutions from the same constraint set. If the illumi-
nant chromaticity is tightly constrained by gamut mapping, then
Color by Correlation will also do well. Infeasible illuminants in
the gamut mapping paradigm are zero probability solutions in
the Color by Correlation framework. In fact, gamut mapping is
roughly analogous to Color by Correlation with uniform statis-
tics. For example, CIP-01 can be interpreted as an implementa-
tion of two-dimensional (2-D) gamut mapping. Since the 3-D
algorithms do better, it is plausible that uniform statistics in

space are part of the reason.
To further explore this notion, we re-ran one of the real image

experiments with correlation matrices computed using our re-
flectance data set augmented so that it yielded more uniformly
distributed . We found that Color by Correlation did
improve, but only by a small amount. Nonetheless, we observe
that since C-by-C-MMSE did better than C-by-C-01 in all cases,
both our reflectance data set, and the augmented one [uniform
in ], are more appropriate for our image data set than
the uniform statistics implied by C-by-C-01.

To further clarify the nature of the discrepancy we under-
took a second post-hoc experiment designed to provide the
algorithms with the statistics of the image test set, and thereby
remove the mismatch in training and testing statistics.2 To do
this, we calibrated both Color by Correlation and the gamut
mapping algorithms using the image data. This strategy also
reduces possible confounds due to inaccuracies in camera
characterization. The data was extracted using the generic
preprocessing method (as used for the results in Table II).
The illuminant set was now limited to exactly the 11 sources,
and the calibration data was no longer generated. Instead, the
canonical gamuts were constructed from the of all
images under the canonical illuminant, and each row of the
correlation matrices was constructed from the of
all the images under the corresponding illuminant. The results
are shown in Table IV along with the corresponding spectral
trained results from Table II.

As expected, calibration on image data decreased the error for
all relevant algorithms. What was not expected was that Color
by Correlation did not gain relative to gamut mapping. The error
for the Color by Correlation algorithms was roughly 77% of that
using spectral data compared with 70–83% for the 3-D gamut
mapping variants. Color by Correlation performance did not
even match that of gamut mapping calibrated with spectral data.
Thus for this image data set, the exploiting of pixel brightness
information is clearly more fruitful than exploiting image chro-
maticity statistics. It is key that in this final experiment there is
no mismatch between the training and testing statistics. We also
note that there is in fact some benefit to modeling the statistics of
this data as demonstrated by the lower error of C-by-C-MMSE
as compared to CIP-ICA. Thus the image data statistics are more
favorable than uniform for Color by Correlation.

We are left with the significant open question of what is an
appropriate characterization of the statistics for a practical ap-

2We thank one of the anonymous reviewers for suggesting this experiment.

TABLE IV
CHROMATICITY PERFORMANCE OFSELECTED ALGORITHMS ON IMAGE DATA

WHEN CALIBRATED USING SPECTRAL DATA (MIDDLE COLUMN) AND IMAGE

DATA (RIGHTMOST COLUMN). THE RESULTS ARE FOR321 REAL IMAGES

USING THE GENERIC PREPROCESSINGMETHOD

plication such as outdoor photography, and the extent to which
the structure of those statistics can be exploited. The work here
suggests that if the vehicle for doing so is a chromaticity based
algorithm, the gain due to exploiting the detailed structure of
image statistics will have to be relatively large to offset the ad-
vantage afforded by using the pixel intensities. A better strategy
may be integrate the use of the detailed structure of image sta-
tistics into an algorithm which does not throw out intensity in-
formation. Several strategies for doing so have been recently
proposed [37]–[39].

The use of pixel brightness information by the 3-D
gamut-mapping algorithms bears further comment. In [27],
Finlayson and Hordley show that, under reasonable assump-
tions,3 the perspective gamut-mapping algorithms are as
powerful as the 3-D ones in their ability to constrain illuminant
chromaticity. In other words, all illuminants implied by the
Color in Perspective constraint set are also present in the
ECRULE constraint sets. Therefore, differences between the
gamut-mapping algorithms are due to other considerations. For
real data we cannot ignore robustness with respect to noise, but
even with synthetic data we found a significant difference be-
tween the perspective and the 3-D gamut-mapping algorithms.
Thus, the main difference between gamut-mapping algorithms
is their ability to estimate the solution from the constraint set,
and this is where the 3-D ones seem to be better suited.

In [3] we discuss how the presence of specularities can help
3-D gamut-mapping (and other) algorithms, and provided re-
sults with synthesized specularities with specific properties. A
more general view of specularities is that they simply change
the statistics of the input, and this change is most significant
when pixel intensity is included. A second observation is that
the 3-D gamut mapping algorithms also do well on synthetic
data when there are no specularities, especially in comparison
to their 2-D counter-parts. Therefore, we see specularities as es-
pecially good input for the 3-D gamut mapping algorithms, and
their ability to exploit the range of full information
as the key to their good performance on our image data set.

3The assumption is that in the 3-D case, the origin is included in the canonical
gamut. We agree that this is a reasonable assumption because surfaces may be
arbitrarily dark due to shading.
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We first analyze this ability to exploit pixel intensity begin-
ning with solution selection by averaging. In 3-D constraint
space, illuminants within a specific chromaticity range corre-
spond to cones. Now consider an illuminant chromaticity in a
small range near the edge of the chromaticity constraint set (see
Fig. 6). In the perspective case, this small range is similar to
any other of the same size. In the 3-D case, however, the corre-
sponding cone has less volume than ones closer to the middle
of the constraint set due to the typical shape of the constraint
set. In general, the volume is a function of the shape of the 3-D
constraint set, and solution selection by the two methods are not
equivalent. Thus, to the extent that the shape encodes useful in-
formation, the perspective method is at a disadvantage.

With the maximum volume heuristic the difference between
the two algorithms is even more extreme. There does not seem
to be a workable analogy to this heuristic for perspective space
(the naive one leads to biased algorithms). Thus again, the full
color version of the gamut mapping algorithms can easily have
an advantage over the perspective version for choosing the so-
lution, even when the final goal is only chromaticity estimation.
This is supported empirically, as well as theoretically in the case
of bright specularities.

In summary, the performance of the algorithms on our image
data, relative to that on our synthesized data, was due to a
combination of the proposed factors. Some of the difference
was explained by the mismatch of the calibration statistics and
the image statistics; more difference was due to the statistics
being less exploitable by Color by Correlation in the case of
image data; and the most difference was explained by the pixel
intensities being more exploitable by the 3-D gamut mapping
algorithms in the image data case.

X. CONCLUSIONS

An important line of investigation reported on here is the
comparison of the results on synthetic data with those on images.
We found that the performance of the algorithms which take
advantage of the details of the statistics of the world was worse
then expected, based on our experiments with synthetic data.
With synthetic data, Color by Correlation and the neural net
performed very well. Unfortunately, we were not able to realize
this promised performance with our image data set. Instead,
exploiting pixel intensity proved to be a larger advantage
than exploiting detailed image chromaticity statistics. Thus
it is unclear in general when exploiting image chromaticity
statistics will work well enough to offset the performance drop
due to ignoring pixel intensity. In our synthetic test domain,
this was the case; with our image data, it was not.

Exploiting detailed image statistics requires a good match
between the statistics used for calibration and the statistics
the vision system encounters in the world. Ensuring a good
match requires better characterization of image statistics than
currently available. Even if the statistics are known, they may
not necessarily be exploitable for significant gain, as was the
case with our image data set. Thus the potential for improvement
in a given application domain remains very much an open
question.

Fig. 6. Illustration of the basic shape of a simple constraint set in mapping
space due to observed(R; G; B) for the 3-D gamut mapping methods. The
illumination constraint is not shown. The figure shows that there is structure
beyond that accessible by the cones implied by the perspective simplification.
For example, the volume of the two cones shown is different, even though they
have the same area once projected to perspective space.

A second important finding is that 3-D gamut mapping yields
better chromaticity estimates than 2-D gamut mapping. Since
3-D methods have more information (e.g., pixel intensity), they
should perform at least as well, but it was unclear whether a
worthwhile performance gain should be expected. We found that
in every experiment, including all experiments with synthesized
data, that the gain was significant.

A third finding is that using the detailed image statistics
does help when they are known. This was the case in the
experiments with synthesized data as well as in the second
post-hoc experiment (Table IV). Thus our work leads directly
to the suggestion of combining the strengths of 3-D methods
with those which utilize detailed image statistics. We see this,
together with improved understanding of image statistics, as the
most promising direction for improving computational color
constancy performance.
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