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A Comparison of Computational Color Constancy
Algorithms—~Part Il: Experiments With
Image Data

Kobus Barnard, Lindsay Martin, Adam Coath, and Brian Funt

Abstract—\We test a number of the leading computational Thus the illumination must be controlled, determined, or other-
color constancy algorithms using a comprehensive set of images.wise taken into account.
e o o, oemsion. i e e The wide appicabity of sepatating a captured signal o
rithms studied include two gray world methods, a version of the part_s Wh!Ch are due to the world, ar_1d parts .WhICh are d_ue o
Retinex method, several variants of Forsyth’s gamut-mapping the illumination, has lead to much interest in computational
method, Cardei et al’s neural net method, and Finlaysonet al’s methods for doing so. In this paper we test a variety of
Color by Correlation method. We discuss a number of issues promising approaches to this problem, using a large set of
in applying color constancy ideas to image data, and study carefully calibrated images (all data is available online [1], as
in depth the effect of different preprocessing strategies. We 0 jmpnlementations for most of the algorithms [2]). Applying
compare the performance of the algorithms on image data with . - ; ;
their performance on synthesized data. All data used for this the algorithms to Images of actual scenes taken W'th a ph¥3|cal
study is available online at http://www.cs.sfu.ca/~color/data, and camera leads to the issues of camera characterization, image
implementations for most of the algorithms are also available preprocessing, and the suitability of illuminant and reflectance
(http://www.cs.sfu.ca/~color/code). sets used for algorithm calibration (training) to the images

Experiments with synthesized data (part one of this paper) that will be encountered by the camera. Currently there is no

suggested that the methods which emphasize the use of the input__.. N : .
data statistics, specifically Color by Correlation and the neural satisfactory characterization of the images that an arbitrary

net algorithm, are potentially the most effective at estimating ViSion system will encounter. Therefore an important part of
the chromaticity of the scene illuminant. Unfortunately, we were this work is to explore the effects of reasonable mismatches

unable to realize comparable performance on real images. Here between the assumptions made for algorithm calibration and
exploiting pixel intensity proved to be more beneficial than reality. Our main vehicle for this is a comparison of results on

exploiting the details of image chromaticity statistics, and the image data with those on synthesized data from a companion
three-dimensional (3-D) gamut-mapping algorithms gave the best

performance. paper [3].

Index Terms—Algorithm, color by correlation, color constancy,
comparison, computational, gamut constraint, neural network. Il. ASSUMPTIONS ANDCONTEXT

We do not test any algorithms which specifically require
. INTRODUCTION specularities to be present. However, as shown in part one,

HE IMAGE recorded by a camera depends on three faglgorithms developed in the context of matte reflection vary
tors: the physical content of the scene, the illumination isubstantially in their performance change due to specularities,
cident on the scene, and the characteristics of the camera. Bl thus images with specularities is of interest. Furthermore
leads to a problem for many applications where the main interdists difficult to take a comprehensive set of images without
is in the physical content of the scene. Consider, for examples@me specular reflectances. Therefore the images in our data
computer vision application which identifies objects by color. i$et have varying amounts of dielectric specularities.
the colors of the objects in a database are specified for tungstekiVe assume that the illumination is constant across the scene.
illumination (reddish), then object recognition can fail when thia synthetic experiments this is easy to enforce, but with image
system is used under the very blue illumination of blue sky. Thifata it is a significant potential confound. Even when a single
is because the change in the illumination affects object colors faght source is used, this assumption is only grossly correct in
beyond the tolerance required for reasonable object recognitithe case of the illumination intensity. Sources of spatial vari-
ance in illumination intensity include geometric effects such
Manuscript received December 17, 2000; revised May 1, 2002. ThisworkwA$ Shading, illumination effects such as spatially extended light
supported by the National Research Council of Canada (NSERC) and Hewlspurces, and optical effects such as vignetting [4, p. 26] and a
Packard Laboratories. The associate editor coordinating the review of this mggH._ o ff proportional to the fourth power of the cosine of the off
uscript and approving it for publication was Dr. Mark S. Drew. . . .
wfxis angle [4, p. 208]. The optical effects could be calibrated for
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Fig. 1. Chromaticity distributions of the illuminant sets. The 11 illuminants used for creating test images are shown in (a). In (b), we plot thieitesomha
set composed of additional sources and a number illuminations measured in and around our university campus. The training set constructedfmoestisese s
shown in (c). For comparison (d) shows the illuminant set used for testing with synthesized data.

In the case of illuminant chromaticity, the assumption of spaever the range of common illuminant conditions (see [3] for
tial uniformity is generally more valid. However, inter-reflectiordetails). The chromaticities of the illuminant sets are shown in
can still cause major deviations. Furthermore, in natural imagesgy. 1. Where relevant we use the Sylvania 50MR16Q (one of
there are often multiple sources of illumination. For exampléhe 11 sources) as the standard (canonical) illuminant, as this
in outdoor images the sun and the sky often illuminate differeistthe illuminant for which the camera is best balanced. Specifi-
parts of a scene with varying strengths. Color constancy unaaily, under this illuminant, the camera response to perfect white
such conditions is beyond the scope of this paper (the interesigdoughly the same across the three channels.
reader is referred to [5]-[10]).

Color constancy algorithms also generally make assumptions
about the diversity, and sometimes the detailed statistics, of the IIl. CAMERA CHARACTERIZATION
surfaces and the illuminants that may be encountered. Typically
the surfaces and illuminants are supplied as collections of surWe characterized our Sony DXC-930 CCD camera as de-
face reflectances and illuminant energy spectra, and the assugfgibed in [11], and used these sensors for generating camera
tions an algorithm makes about them are manifest in calibratitgsponses for algorithm calibration. In experiments with syn-
(training) data sets. For surface reflectances we used a sethgfsized data, where the same camera model is used both for
1995 spectra compiled from several sources (see part one fortgi@ining/calibration and data generation, the degree to which the
tails [3]). This set was chosen to be a superset of the reflectameedel properly characterizes an actual camera is not critical.
sets used by others for color constancy research. The rang8wfcontrast, when the algorithms are applied to data taken with
color largely encompasses that found in our image databasea physical camera, characterization issues are important. It is

The illuminant spectra for algorithm calibration were chosepossible to construct color constancy algorithms using only
to roughly uniformly cover thér, g) chromaticities of common measured data, and doing so avoids characterization errors.
illumination conditions. All illuminant spectra were normalizedHowever, it is more efficient to obtain camera independent
so that our cameras response to perfect white would have a mgantities (such as reflectance functions and illuminant spectra)
imum response among the three channels of 255. The 11 souamas update the camera model, rather than collect data for each
used to capture the image data were also selected to rougtdynera (but see [12] for a compromise).
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Camera Sensor Responses

att

We model the ideal (linearized) camera response for channe

k, p®), for a surface with reflectance spectf4\) under an é 25000 (Sony DXC-930 CCD camera)
illuminant with spectra&(\) by £
j=|
< ,-‘
p®) = Fk) (U“‘)) - / LOVR® (1) dx W E 20000 &% | ————— Red sensor response
& ; — - — - = Green sensor response
whereR™®) is a sensor sensitivity function for thgh channel, ie """"" Blue sensor response
15000 :

F(®) is a wavelength independent linearization function, and &
p*) is a the linearized camera response. In practice, the func%:a.
tions of wavelength are replaced by vectors. In our case we
use 101 samples from 380 nm to 780 nm in steps of 4 NnmZ 1000
which is the sampling provided by our PhotoResearch PR-65(§

spectrometer. i
Most color constancy algorithms assume that the image pixel:_‘; 5000

‘+-L_L_L T 1 | T 11T | T 11T | 1T 11T |

are proportional to the input spectral power which is equiva- & Y

lent to assuming either that(*) is the identity function, or that . H

is known and has been applied. SinE& is very often not ﬁi | | ) '-‘ | Ll |

) ) 5; 0 L Lt Ll L L Ll Lo lal [ 1| [ |

the identity, when we apply _Color constancy to data from a re_a[E 400 440 480 520 560 600 640 680

camera we must determine it as part of the camera characterize

. . L . Wavelength (nm)

tion step. This can be done as an initial phase of characterization

[13], [14] or as an integral part whefg*) and F'*) are deter- Fig. 2. Camera sensor response functions.

mined jointly [11]. The camera sensors (Fig. 2), as well as the

data used to estimate them, are available online [1]. response to “gray.” Ideally “gray” is defined by the expected

average over the application domain. This is not generally

IV." DIAGONAL COLOR CONSTANCY available, and in this work we consider two algorithms based

We assume the diagonal model of illumination changeh alternatives. The first (GW) uses a 50% uniform reflectance
which maps the image taken under one illuminant, to tHer gray, and the second (DB-GW) uses the average of the
image taken under another illuminant, by simply scaling ea¢gflectance spectra in the reflectance dataset defined above. For
channel independently. For concreteness, consider a scene M the average sceri&, &, B) is converted to an illuminant
a white patch. Suppose that the camera response to the whfiémate by scaling it by a factor of two. For DB-GW we
patch under the unknown illuminant j&" = (p¥, o5, p¥), apply the diagonal model and scale the result by the ratio of
and that the response under a known, canonical, illuminanth$ camera response to white under the canonical illuminant,
o = (0S, o5, pS). Then the response of the white patch caf® the camera response to gray, again under the canonical

be mapped from the unknown case to the canonical case simiiyminant.
The limiting case of one Retinex algorithm,

by scaling theith channel bypS' /Y. To the extent that this _ ) Retin
same scaling works for the other, nonwhite patches, we say tB&ALE-BY-MAX, simply estimates the illuminarz, G, B)

the diagonal model holds. The efficacy of the diagonal modey the maximum response in each channel [7], [21]-[23].
is largely a function of the vision system sensors, specificall

whether or not they are narrow band, and whether or not they Gamut Mapping Methods
overlag [15]-[18]. In the case of the camera used for the We present the results of a number of algorithms based

present work, the diagonal model is a good approximation.dh Forsyth’s gamut-mapping approach [18], [24]-[28]. Here
the diagonal model leads to large errors, performance maywe consider the set of all possibl&, G, B) due to surfaces

improved by using sensor sharpening [19], [20]. in the world under the known, “canonical” illuminant. This
set is convex and is represented by its convex hull. The set

V. ALGORITHMS of all possible(R, G, B) under the unknown illuminant is
Table | summarizes the algorithms chosen for study. A mo émllarlyt_reprefsgll?teq b{:. Its cEnvex hltjrl]l Un(:er tr;]elf:hagonal
comprehensive introduction is provided in part one of this pap%§_sump(j|pn 0 II umination ¢ _angle, th esed_wo TS lar3e Da
[3]. Here, we briefly outline the algorithms and provide somgn'qtuﬁ |?gonar1] rrgﬁpplrég (a S|m{)he k:ee— |rcrj1enst|c_)na (3- I)I
details specific to their use in this study. Implementations fa rsrgp()arosuebicet c;heerrﬁasgiizsfo thee ?:aﬁ)r;/iialsiz r:(S)tnl?r:in(;Sey
f th Igorith ilabl line [2]. ' . . U
most of these algorithms are available online [2] and Forsyth [24] provides a method for effectively computing
A. Gray World and lllumination Estimation by the Maximum the set of poss_lble dlag_opal maps which is convex set in the
of Each Channel space of mapping coefficients (see [3], [24], [28] for detalils).
Finlayson’s Color in Perspective algorithm adds two additional
The gray world method assumes that the average of tpRag [26]. First, the gamut-mapping method can be used in
observed imag¢R, G, B) is a good estimate of the camergyg chromaticity spacéR/B, G/B). Second, the diagonal
1The world (surfaces and illuminants) encountered by the camera also affd®@PS can be further constrained by restricting them to ones

the diagonal model error. corresponding to expected illuminants.
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TABLE |
KEY TO THE ALGORITHM LABELS USED IN THIS PAPER ALL ALGORITHMS ARE DISCUSSED INDETAIL IN [3].
ADDITIONAL REFERENCES AREPROVIDED IN COLUMN THREE

Label Description References
NOTHING Output image is input image (illuminant is canonical illuminant)
AVE-ILLUM Tlluminant RGB is set to an average over common illuminant RGB's
GW Gray World: Illuminant RGB is twice average of image RGB
DB-GW Data Base Gray World: Illuminant RGB is ratio of average image RGB to RGB
of average of the reflectance database.
SCALE-BY-MAX [ Iluminant R is the maximum of image R, and similarly for G and B
CIP-MV Color in Perspective (gamut mapping in 2D) using the maximum volume [26]
heuristic to choose the solution
CIP-AVE Color in Perspective using average of solution set [25]
CIP-ICA Color in Perspective with solution averaging in three dimensions [27]
NEURAL-NET Neural net trained to estimate illuminant (r,g) [33, 34]
C-by-C-01 Color by Correlation without Bayesian statistics [29]
C-by-C-MAP Color by Correlation with MAP (maximum a posteriori estimate) [30]
C-by-C-MLM Color by Correlation with MLM (maximum local mass estimate) [30, 32]
C-by-C-MMSE Color by Correlation with MAP (minimum mean square error estimate ) [30]
CRULE-MV Gamut mapping using maximum volume heuristic to choose solution [24]
CRULE-AVE Gamut mapping using average of diagonal maps to choose solution [25]
ECRULE-MV Gamut mapping in 3D with illumination constraint and maximum volume [25]
heuristic
ECRULE-AVE Gamut mapping in 3D with illumination constraint and averaging the convex [25]
hull of the solution set to choose the solution
ECRULE-ICA Gamut mapping in 3D with illumination constraint and using the center of mass [28]
of the non-convex solution set to choose the solution

To summarize, we investigate three methods of forming thest illuminant can then be chosen by one various methods.
solution set. These are Forsyth’s original method, designatddre we consider the maximum likelihood (C-by-C-MAP),
by CRULE (for “coefficient-rule,” the name of the original al-mean likelihood (C-by-C-MMSE), and the local area mean
gorithm), the Color in Perspective method with the illuminatiofC-by-C-MAP), introduced in [32]. The MAP estimate is simply
constraint, designated by CIP, and the illumination constraitite illuminant which has the maximum posterior probability.
set applied to CRULE designated by ECRULE (for “extendedo compute the MMSE estimate of the chromaticity estimate
CRULE"). These solution sets are paired with three methodswé take the averagér, g) weighted by the posterior distri-
selecting a solution from them. MV denotes the original madution. The MLM estimator is computed by convolving the
imum volume heuristic which is simply the diagonal transforrposterior distribution with a Gaussian mask, and then finding
with maximal determinant; AVE specifies that the constraint séte maximum. We report results for a sigma of 8 (see part
is averaged, using a convex approximation to the illuminati@mme [3] for further discussion).
constraint if necessary; and ICA specifies that the constraint
set is numerically integrated to deal with the fact that it is nomd. Neural Net Methods
convex (“illumination constrained average”).

The canonical gamut, the canonical illumindit, G, B),
and the illuminant set are all derived from the calibration s
mentioned above, and described further in part one [3].

The results labeled NEURAL-NET are from a neural network
eErsained to estimate the color of the illuminant [33]-[35]. The
neural net is a multilayer Perceptron with two hidden layers. As
is common, the general structure is pyramidal. The input to each
neuron is a binary value representing the presence or absence
of a scene chromaticity falling in the correspondingg) bin.
Recently, Finlaysoret al. introduced Color by Correlation The output signal from the two output neurons are an estimate of
[29]-[31] as an improvement on the Color in Perspectiv@e (-, g) chromaticity of the scene illuminant. The network is
method. The basic idea of Color by Correlation is to preconrained to compute this estimate by being presented with many
pute a correlation matrix which describes the extent to whigynthesized images, generated from the training sets described
proposed illuminants are compatible with the occurrence ghove, together with the chromaticity of the illuminant used to

image chromaticities. Each row in the matrix corresponds tog@nerate each image. Extensive details are provided in [34] and
different training illuminant. The matrix columns correspond tg5].

possible chromaticity ranges resulting from a discretization of
(r, g) space, ordered in any convenient manner. Two versions
of Color by Correlation are described in [29]. The first version
of this algorithm (C-by-C-01) is essentially an alternative We took pictures of 30 scenes under the 11 sources mentioned
implementation of Color in Perspective. above, for a total of 330 images. Some of the images had to be
In the second version of Color by Correlation, the correlatiatulled due to problems, leaving 321 for our experiments. The
matrix is set up to compute the probability that the observedenes under one illuminant are shown in Fig. 3, and in Fig. 4
chromaticities are due to each of the training illuminants. Thee plot some image statistics and the analogous statistics for

C. Color by Correlation

VI. IMAGE DATA SET
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Fig. 3. The 30 scenes used in this study. Each scene was imaged under 11 illuminants.
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Distribution of the chromaticity means of Distribution of the chromaticity standard deviations
images taken with the canonical illuminant of the images taken with the canonical illuminant
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Fig. 4. Distribution of the (a) means and (b) standard deviations of the chromaticities of scenes as imaged under the canonical illuminantessegrejtfoc
the generic method used for the results in Table I. The means and standard deviations for the 1000 synthesized scenes with eight surfaces ussshfareompa
shown in (c) and (d).

synthetic data. The images had varying amounts of speculariAfter the processing described above, the images were nearly
ties, but we avoided images with colored metals or fluorescdimtear with scene radiance, and significantly cleaner than single
surfaces. shot images taken with the same camera. Averaging reduces
The experimental routine was as follows. First, a new sceimglependent Gaussian noise by the square root of the number
was constructed. We then placed a reference white standardfinsamples, so the expected improvement here is a factor
the center of the scene, perpendicular to the direction of the about seven. We note that averaging does not help with
illuminant. The position of the illuminant was set so that theome sources of noise such as lens flare. We found that the
number of clipped pixels was small. This meant that if the sceimeages could be scaled by a factor of ten without incurring
had bright specularities, then the image was purposely undertoe much noise—visually comparable to a normally exposed
posed. We then took a picture of the scene with the refererineage—which is consistent with the expected improvement.
white in the center. Finally, we removed the reference whit€hus the images could be scaled and clipped to emulate capture
and took 50 successive pictures which were averaged to obtaith an automatic aperture, as well as capture with a higher
the final input image. We then repeated the process for the dynamic range device. The bit depth of the images is roughly
maining ten illuminants, and then we moved onto the next sce®e-10, as compared to 6—7 for our single frame images where
The images with the reference white were used to provitlee noise level is of the order of 2.5. After linearization and
the “answer.” We extracted the central 30 by 30 pixel windowther adjustments, the range of the image gray levels was
of each of these images, and used the avef&ge~, B) over roughly 0 to 240.
these windows as the estimate of the illuminant for the corre-The (R, G, B) of the white standard provided a good
sponding input images. Both the input images and the illuméstimate of the chromaticity of the illuminant, but the error in
nant(R, G, B) estimate were mapped into a more linear spatkee illuminant magnitude for any given picture could be quite
as determined by the camera characterization process [11]high—easily 10%, because of the difficulties in keeping the
addition, a spatially varying color cast due to the camera optiashite reflectance standard perpendicular to the light source.
was removed, as well as some fixed pattern noise. Additiorfalirthermore, three of the sources were distended, and here we
details of the image capture and subsequent corrections carsineply attempted to find the orientation which maximized the
found in [28] in [36]. brightness of the reflectance standard.
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Some algorithms are sensitive to small values in one or mdBecond, we ensured that the pixel brightness, quantified by
channels, and therefore we excluded any pixel whes€', or R-+G+ B, of all pixels in a region were within a certain relative
B, was 2 or less, after the linearization and other correctiottderance of each other. Thus adjacent pixels (horizontally
discussed above had been applied. We also excluded any porelvertically connected) were added to regions, beginning
with R, GG, or B over 240 after linearization (correspondsvith unassigned pixels as region seeds, provided that these
to roughly 250 before linearization), as these pixels may kenstraints were met. In addition, we insisted that the region
clipped. We used a slightly lower value than the actual clippingas larger than a certain number of pixels. Thus there were
level because the frame averaging process and/or noise e segmentation parameters. We used four different values
hide clipping. Since we avoided clipping as much as possikd¢ the chromaticity tolerance (0.0025, 0.005, 0.01, 0.02), four
during the capture process, this exclusion applied to onlyf@ the relative brightness range (10%, 20%, 30%, and 40%),

few pixels. and three for the minimum number of pixels (5, 10, 20).
The (R, G, B) averages of each region was then used as
VII. PREPROCESSING FORCOMPUTATIONAL input to the algorithms. A second preprocessing strategy was

COLOR CONSTANCY to average the pixels in image blocks with lengths of sides

. . ) (1, 2, 3, 5, and 7). A third strategy was to then put block
All the algorithms discussed above are developed in terms

: . L ) o eraged result into bins 6k, G, B) space (100 divisions
of one input(R, G, B) per identifiable image surface. This is

; . , o : > “per channel), and use the average oftRe (G, B) in each of
little different than a realimage, which is a collection of multiplgy o pins thereby removing duplicate colors from the input. A

samples. per surface, ingluding sa'mplles which straddlg s.urf%% preprocessing approach was to use(tie, B) vertices
boundaries. Many algorithms are indifferent to the statistics gf yne convex hull of the data instead of the data itself. This
the sampling; only the presence or absence of a coloris relev?smmotivated by the knowledge that for the gamut-mapping

Thus itis common to simply use the image pixels themselves 43 ,ithms; the hull boundary points are the ones that matter. Of

input. However, initial experiments indicated that it is better t%urse using the convex hulls has no effect on gamut-mapping
first spatially average the images, with a block size ot 5 ’

algorithms, but preliminary results with the neural net and Color

being roughly optimal for our camera. Nonetheless, blindly 8y’ o rrelation were promising. Therefore we also tested using
eraging the image in this way reduces the information avallaq s in conjunction with block averaging (five-pixel blocks)

to the algorithms, and such a step should be less important wigly 1y selected segmentation methods. Thus a total of 65
frame averaging is used. Interestingly, we found that this was '?meprocessing methods were tested

case.
We believe that the reason for this anomaly is as follows:
using each pixel as a datum makes the implicit assumption that VIIl. EXPERIMENTS
the (R, G, B) of pixels straddling two surfaces is a convex
combination of the(R, G, B)s of the pixels to either side. In Table Il we present the results using a generic prepro-
Careful examination of images reveals that, for our camera, tleisssing method that works relatively well with most algorithms,
assumption does not hold, possibly due to chromatic aberratiaut is optimal for none of them. Specifically, the images were
or misregistration of the CCD elements (our camera has thrgggmented subject to the constraint that they) vector dis-
CCD arrays—the incoming signal goes through beam splittéegice of any two pixels in the region was not more than 0.005,
and filters on its way to the CCD arrays). Specifically, we founthat the value of? + G + B did not vary by more than 10%,
that the(R, G, B)s of a nonnegligible number of boundaryand that the region had at least five pixels. Once segmented, the
pixels were not the convex combination of surrounding pixelayerage of R, G, B) over each of the regions was used as the
and thus should be considered erroneous data. Furthermarput to the algorithms. Table Il also includes results using input
cameras with mosaic’ed sensors, which are more common thaadified to emulate our camera when the automatic aperture
three CCD cameras, are also susceptible to similar anomaligs.active. The image data was artificially scaled and clipped so
This problem, together with the above observation that thieat the maximun{ R, GG, B) of the reference white would be
algorithms are expressed in terms of surfaces, leads to 8@, and all pixels with®?, G, or B over 255 were discarded.
consideration of image segmentation as a form of preprocessiligTable Il we provide the results of our preprocessing experi-
and we investigated this idea in detail in our experiments. Weents. Here we show the range of results obtained using the 65
were able to find segmentation parameters which improved mps¢processing methods described above.
algorithms, although the effect was quite algorithm dependent,In Fig. 5, we compare the results on the image data, using
and in fact, more volatile than we expected. We present restlie best preprocessing method for each algorithm, with results
using these, somewhat arbitrarily chosen, general purpasesynthesized scenes with eight surfaces (from [3]). Absolute
parameters. However, since it is reasonable for a proponentors found with generated and captured data are not generally
of a given algorithm to optimize the preprocessing for thaomparable, but to study the changes in relative performance we
algorithm, we also present results where the optimal amoiugntified eight synthetic surfaces as been roughly as difficult as
all preprocessing methods was chosen on an algorithm-logr images. Specifically, in Fig. 5, the average error across the
algorithm basis. algorithms is roughly the same on images as on eight synthetic
To segment the images we used region-growing, subjectdiorfaces. We use “comparable difficulty” as the calibration point
two constraints. First, we ensured that all chromaticities inta reduce possible confounds due to “problem difficulty” in our
region were within a certain absolute tolerance of each otheamparisons across generated and captured data results.
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TABLE I
ALGORITHM PERFORMANCE FOR321 REAL IMAGES USING A GENERIC PRE-PROCESSINGMETHOD (SEE TEXT). UNCERTAINTY IS ROUGHLY 4%. THE
TwO RIGHTMOST COLUMNS ARE THE CHROMATICITY RESULTS OBTAINED ON IMAGES SCALED AND CLIPPED TO EMULATE THE
DATA FROM OUR CAMERA WHEN THE AUTOMATIC APERTURE ISUSED

Extended dynamic range Standard dynamic range
emulated by clipping the input
data

Algorithm Nluminant | Illuminant | Illuminant | [luminant | Hluminant Hluminant
estimate estimate rg | estimate estimate estirnate estimate rg
angular error RGB error | R+G+B angular error | error
error error

NOTHING 17.9 0.125 * * 17.9 0.125

AVE-ILLUM 12.9 0.094 * * 12.9 0.094

GW 13.8 0.109 154 248 13.9 0.109

DB-GW 11.7 0.094 115 175 11.8 0.094

SCALE-BY-MAX 8.9 0.060 93 143 9.1 0.062

CIP-MV 23.4 0.174 * * 22.1 0.165

CIP-AVE 16.1 0.113 * * 15.1 0.108

CIP-ICA 10.6 0.077 * * 10.4 0.076

NEURAL-NET 9.5 0.070 * * 9.5 0.070

SP-NEURAL-NET 9.1 0.068 * * 9.1 0.068

C-by-C-01 10.9 0.081 * * 10.5 0.078

C-by-C-MAP 9.9 0.072 * * 9.9 0.072

C-by-C-MLM 9.9 0.072 * * 9.9 0.072

C-by-C-MMSE 9.9 0.072 * * 9.9 0.072

CRULE-MV 5.6 0.045 90 138 6.6 0.049

CRULE-AVE 7.1 0.053 278 428 8.3 0.063

ECRULE-MV 5.6 0.042 91 139 6.3 0.047

ECRULE-AVE 6.9 0.050 233 367 7.8 0.057

ECRULE-ICA 7.0 0.051 232 364 8.0 0.058

0.1+
Error with image data
R Error with synthetic data (8 surfaces)
4  Error with synthetic data with specularities (8 surfaces)
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Fig. 5. Algorithm performance for 321 real images using the best preprocessing method for each algorithm compared with synthetic results fablg compar
difficult number of surfaces (8).

The most significant deviation of the results with real imagdke illuminant. For example, on the image data, with optimal
from those with synthesized data is that the algorithms whigheprocessing, the, ¢) chromaticity error for C-by-C-MMSE
consider the detailed statistics of the input (Color by Correlatiamas 80% that of CIP-ICA, down from 44% in the eight-surface
and the neural network) lose ground to the gamut-mappisgnthetic case. Furthermore, ti&, G, B) gamut-mapping
algorithms in their ability to estimate the chromaticity oflgorithms performed the best on the image data, compared
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TABLE Il
ALGORITHM CHROMATICITY PERFORMANCE FOR321 REAL IMAGES USING THE BEST PRE-PROCESSINGMETHOD FORTHAT ALGORITHM. HENCE EACH RESULT IN
THIS TABLE IS OBTAINED USING A (POTENTIALLY ) DIFFERENT PRE-PROCESSINGMETHOD. THE SEGMENTATION PARAMETERS ARE (MIN-SEGMENT-SIZE,
MAX-RG-VARIATION, MAX RELATIVE R + G + B VARIATION). WE USEAVE(N) TO INDICATE THAT N BY N BLOCKS WERE AVERAGED

Algorithm Minimum Iluminant | Average |Maximum | Pre-processing method for

illuminant | estimate rg | illuminant | illuminant minimum error

estimate rg | error with estimate | estimate rg

error generic rg error error

method

NOTHING 0.125 0.125 0.125 0.125 All are equal
AVE-ILLUM 0.094 0.094 0.094 0.094 All are equal
GW 0.072 0.109 0.103 0.137 Binarized RGB
DB-GW 0.053 0.094 0.086 0.123 Binarized RGB
SCALE-BY-MAX 0.053 0.060 0.063 0.079 Segmentation (5, 0.020, 0.3)
CIP-MV 0.149 0.174 0.185 0.200 Raw data
CIP-AVE 0.105 0.113 0.123 0.134 Raw data
CIP-ICA 0.076 0.077 0.080 0.085 Segmentation (5, 0.005, 0.3)
NEURAL-NET 0.060 0.070 0.068 0.081 Segmentation (20, 0.005, 0.4)
SP-NEURAL-NET 0.061 0.068 0.067 0.083 Segmentation (5, 0.020, 0.4)
C-by-C-01 0.072 0.081 0.078 0.088 Segmentation (20, 0.010, 0.4)
C-by-C-MAP 0.063 0.072 0.071 0.084 Segmentation (20, 0.005, 0.4)
C-by-C-MLM 0.062 0.072 0.070 0.083 Segmentation (20, 0.005, 0.4)
C-by-C-MMSE 0.061 0.072 0.070 0.082 Segmentation (20, 0.005, 0.4)
CRULE-MV 0.043 0.045 0.049 0.066 Segmentation (10, 0.005, 0.2)
CRULE-AVE 0.046 0.053 0.054 0.085 Segmentation (20, 0.010, 0.3)
ECRULE-MV 0.040 0.042 0.045 0.066 Segmentation (10, 0.005, 0.2)
ECRULE-AVE 0.046 0.050 0.051 0.079 Segmentation (20, 0.020, 0.4)
ECRULE-ICA 0.047 0.051 0.051 0.077 Segmentation (20, 0.020, 0.4)

with being somewhat worse than both the neural netwoby Correlation and the neural net method relative to the 3-D
and Color by Correlation methods in the eight-surface matj@amut-mapping methods. There are two principal differences
synthetic case. We will discuss this discrepancy in more detaihich can explain performance variation between these two
below. algorithm groups. First, the 3-D gamut-mapping methods can
Our experiments with preprocessing show a significant effeexploit pixel intensity information such as that inherent in
on algorithm performance. The difference between the averagpecularities. Since the particular neural net and Color by
method and the best method was usually greater than 10%rrelation approaches investigated here use chromaticity input,
and in some cases, such as the two gray world algorithntisey cannot use this information. The second relevant difference
it was of the order of 30%. Furthermore, since this effe@ that the neural net and Color by Correlation can exploit the
is quite algorithm dependent, a careful comparison of coletructure of the scene and illumination statistics; by contrast,
constancy algorithms must take this into account. Our curreggdmut mapping uses simple statistics (average or maximum
strategy for doing this is to provide comparisons based on thélume heuristic) to choose a solution from the constraint set.
optimal preprocessing chosen on an algorithm by algorithm our synthetic test domain, the advantage afforded by using
basis as we do in Table Ill and Fig. 5. the details of the statistics of the world more than made up
Finally, we note that the simulated clipping we applied to thipr the disadvantage of not being able to use pixel intensity.
data did not have a major effect on the results. This is becawsg our image data, the reverse was true. In the following
overall, our image database did not include an over abundange will consider the extent to which this change is due to
of extreme specularities, and only about one third of the inan increase in the relevance of pixel intensity, compared a
ages had significant specularities. The effects that we did figécrease in the effectiveness of utilizing the detailed structure
are generally consistent with the results with synthesized dag®,image statistics.
exceptthat SCALE-BY-MAX was degraded slightly less due to \ye first consider specularities. When significant speculari-
specularities compared to the 3-D gamut-mapping algorithmgs were modeled in the synthetic data, 3-D gamut mapping
However, overall, the impact of the clipping results on our conserformance approached that of the best algorithms in that do-
clusions is small, as it induces little change in the rank orderipgain (C-by-C-MMSE). Thus specularities can explain some of
of the algorithms. Thus our conclusions hold for moderatelye gifference. Not all difference can be explained because the
specular images, even if a significant number of those spegiecuylarities in the image dataset were not as extreme as the
larities are clipped. We remind the reader that this conclusiondsy, 1ated ones. Furthermore, when we clipped the image data
based on excluding the clipped pixels, rather than optimistically e muylate an automatic aperture, the 3-D gamut mapping algo-
using them, which is detrimental to several algorithms. rithms still performed much better than C-by-C-MMSE.
This suggests that part of the difference is due to a mismatch
in the statistics used for training compared to the statistics of
The main discrepancy between our results on synthesized daia image dataset. Such a difference must be in the detailed
and our results on image data is the drop in performance of Costructure of the statistics because gross features of the statis-

IX. DISCUSSION
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tics, such as the ranges of surfaces and reflectances, help both TABLE IV

i ; 'CHROMATICITY PERFORMANCE OFSELECTED ALGORITHMS ON IMAGE DATA
Color by Correlation and gamut mapping (CO|0r by c:orrGIaWHEN CALIBRATED USING SPECTRAL DATA (MIDDLE COLUMN) AND IMAGE

tion is a generalization of gamut mapping). Both algorithms para (RiGHTMOST CoLUMN). THE RESULTS ARE FOR321 REAL IMAGES

choose solutions from the same constraint set. If the illumi- USING THE GENERIC PREPROCESSINGVIETHOD
nant ChromatiCity_iS tightly constrained by ga_mUt_map_ping’ then Algorithm Illuminant estimate | [lluminant estimate
Color by Correlation will also do well. Infeasible illuminants in angular error angular error
the gamut mapping paradigm are zero probability solutions in (degrees) when (degrees) when
the Color by Correlation framework. In fact, gamut mapping is Eai‘féiﬁeﬁq?i Zglt;bra‘ed on image
roughly analogous to Color by Correlation with uniform statis- CIP.ICA E 106 - Y
tics. For example, CIP-01 can be interpreted as an implementa-  Cy.c-MAP 9.9 76
tion of two-dimensional (2-D) gamut mapping. Since the 3-D C-by-C-MLM 9.9 7.6
algorithms do better, it is plausible that uniform statistics in C-by-C-MMSE 9.9 7.6
(R, G, B) space are part of the reason. CRULE-MV 2.6 47
. . . CRULE-AVE 7.1 5.5

To further explore this notion, we re-ran one of the real image ECRULE-MV 56 a4
experiments with correlation matrices computed using our re- ECRULE-AVE 6.0 49
flectance data set augmented so that it yielded more uniformly =~ ECRULE-ICA 7.0 4.9

distributed(R, GG, B). We found that Color by Correlation did

improve, but only by a small amount. Nonetheless, we observe | )

that since C-by-C-MMSE did better than C-by-C-01 in all caseR!ication such as outdoor photography, and the extent to which

both our reflectance data set, and the augmented one [unifdfifi Structure of those statistics can be exploited. The work here

in (R, G, B)], are more appropriate for our image data set thajrlgggsts that if the vehicle for do_lpg soisa ch.romatlcny based

the uniform(r, ¢) statistics implied by C-by-C-01. glgorlthm, .thg gain due to explomn_g the detailed structure of
To further clarify the nature of the discrepancy we undefMa9€ statistics will have to be relatively large to offset the ad-

took a second post-hoc experiment designed to provide ¥antage afforded by using the pixel intensities. A better strategy

algorithms with the statistics of the image test set, and thereB{®y € integrate the use of the detailed structure of image sta-

remove the mismatch in training and testing statistic® do tistics into an algorithm which does not throw out intensity in-
this, we calibrated both Color by Correlation and the gammrmation. Several strategies for doing so have been recently
mapping algorithms using the image data. This strategy aRpposed [37]_[39_]' ) ) )

reduces possible confounds due to inaccuracies in cameraN€ Useé Of pixel brightness information by the 3-D
characterization. The data was extracted using the gendignut-mapping algorithms bears further comment. In [27],
preprocessing method (as used for the results in Table ﬁj!’"agson and Hordley show that, under reasonable assump-
The illuminant set was now limited to exactly the 11 sourcelONS? the perspective gamut-mapping algorithms are as
and the calibration data was no longer generated. Instead, pQwerful as the 3-D ones in their ability to constrain illuminant
canonical gamuts were constructed from (i G, B) of all chromaticity. In other words, all illuminants implied by the
images under the canonical illuminant, and each row of tfPI0r in Perspective constraint set are also present in the
correlation matrices was constructed from (e, G, B) of ECRULE constraint sets. Therefore, differences between the

all the images under the corresponding illuminant. The resuff@Mut-mapping algorithms are due to other considerations. For
are shown in Table IV along with the corresponding spectr%ﬁal data we cannot ignore robustness with respect to noise, but
trained results from Table II. even with synthetic data we found a significant difference be-

As expected, calibration on image data decreased the error§fen the perspective and the 3-D gamut-mapping algorithms.

all relevant algorithms. What was not expected was that ColbfuS: the main difference between gamut-mapping algorithms

by Correlation did not gain relative to gamut mapping. The err&} their a_bility to estimate the solution from the con;traint set,
for the Color by Correlation algorithms was roughly 77% of th&tnd this is where the 3-D ones seem to be better suited.

using spectral data compared with 70-83% for the 3-D gamutIn [3] we dlscugs how the presence 9f specularities can help
mapping variants. Color by Correlation performance did ngf> 9amut-mapping (and other) algorithms, and provided re-
even match that of gamut mapping calibrated with spectral dat4!tS With synthesized specularities with specific properties. A
Thus for this image data set, the exploiting of pixel brightne£80re general view of specularities is that they simply change
information is clearly more fruitful than exploiting image chro-the stat.|st|c.s of the mp_ut, and this change is most .S|gr.1|f|cant
maticity statistics. It is key that in this final experiment there jwhen pixel intensity IS mclude_d. A second observation is th‘f"t
no mismatch between the training and testing statistics. We al8§ 3D 9amut mapping algorithms also do well on synthetic
note that there is in fact some benefit to modeling the statisticsdftt@ When there are no specularities, especially in comparison
this data as demonstrated by the lower error of C-by-C—MMStE their 2-D counter-parts. Therefore, we see specularities as es-
ially good input for the 3-D gamut mapping algorithms, and

as compared to CIP-ICA. Thus the image data statistics are mBREally € , : ,
favorable than uniform for Color by Correlation. their ability to exploit the range of fulR, G, B) information

We are left with the significant open question of what is afiS the key to their good performance on our image data set.

appropriate characterization of the statistics for a practical ap-
3The assumption is that in the 3-D case, the origin is included in the canonical
gamut. We agree that this is a reasonable assumption because surfaces may be
2We thank one of the anonymous reviewers for suggesting this experimeantitrarily dark due to shading.
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We first analyze this ability to exploit pixel intensity begin-
ning with solution selection by averaging. In 3-D constraint
space, illuminants within a specific chromaticity range corre-
spond to cones. Now consider an illuminant chromaticity in a
small range near the edge of the chromaticity constraint set (see
Fig. 6). In the perspective case, this small range is similar to
any other of the same size. In the 3-D case, however, the corre-
sponding cone has less volume than ones closer to the middle
of the constraint set due to the typical shape of the constraint
set. In general, the volume is a function of the shape of the 3-D
constraint set, and solution selection by the two methods are not
equivalent. Thus, to the extent that the shape encodes useful in-
formation, the perspective method is at a disadvantage.

With the maximum volume heuristic the difference between
the two algorithms is even more extreme. There does not seem
to be a workable analogy to this heuristic for perspective space
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(the naive one leads to biased algorithms). Thus again, the ftig- 6. lllustration of the basic shape of a simple constl_'aint set in mapping
. . . . space due to observéd®, G, B) for the 3-D gamut mapping methods. The
color version of the gamut mapping algorlthms can eaS”y ha}#)gmination constraint is not shown. The figure shows that there is structure
an advantage over the perspective version for choosing the issyond that accessible by the cones implied by the perspective simplification.
lution, even when the final goal is only chromaticity estimatiorf.or example, the volume of the two cones shown is different, even though they

.. .. . . have the same area once projected to perspective space.

This is supported empirically, as well as theoretically in the case
of bright specularities.

In summary, the performance of the algorithms on our imageA second important finding is that 3-D gamut mapping yields
data, relative to that on our synthesized data, was due tdetter chromaticity estimates than 2-D gamut mapping. Since
combination of the proposed factors. Some of the differen8eD methods have more information (e.g., pixel intensity), they
was explained by the mismatch of the calibration statistics asHould perform at least as well, but it was unclear whether a
the image statistics; more difference was due to the statistigsrthwhile performance gain should be expected. We found that
being less exploitable by Color by Correlation in the case of every experiment, including all experiments with synthesized
image data; and the most difference was explained by the pigelta, that the gain was significant.
intensities being more exploitable by the 3-D gamut mapping A third finding is that using the detailed image statistics
algorithms in the image data case. does help when they are known. This was the case in the
experiments with synthesized data as well as in the second
post-hoc experiment (Table IV). Thus our work leads directly
to the suggestion of combining the strengths of 3-D methods
with those which utilize detailed image statistics. We see this,

An important line of investigation reported on here is th&ogether with improved understanding of image statistics, as the
comparison of the results on synthetic data with those on imagemst promising direction for improving computational color

X. CONCLUSIONS

We found that the performance of the algorithms which tak®nstancy performance.

advantage of the details of the statistics of the world was worse
then expected, based on our experiments with synthetic data.
With synthetic data, Color by Correlation and the neural net
performed very well. Unfortunately, we were not able to realize
this promised performance with our image data set. Instead,
exploiting pixel intensity proved to be a larger advantage [2]
than exploiting detailed image chromaticity statistics. Thus 5
it is unclear in general when exploiting image chromaticity
statistics will work well enough to offset the performance drop
due to ignoring pixel intensity. In our synthetic test domain, 4]
this was the case; with our image data, it was not. [5]

Exploiting detailed image statistics requires a good match
between the statistics used for calibration and the statisticéG]
the vision system encounters in the world. Ensuring a good
match requires better characterization of image statistics tha’]
currently available. Even if the statistics are known, they may (8]
not necessarily be exploitable for significant gain, as was the
case with ourimage data set. Thus the potential for improvemen}
in a given application domain remains very much an open
question.
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