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Abstract. We present an algorithm which uses information from both
surface reflectance and illumination variation to solve for colour
constancy. Most colour constancy algorithms assume that the
illumination across a scene is constant, but this is very often not valid for
real images. The method presented in this work identifies and removes the
illumination variation, and in addition uses the variation to constrain the
solution. The constraint is applied conjunctively to constraints found from
surface reflectances. Thus the algorithm can provide good colour constancy
when there is sufficient variation in surface reflectances, or sufficient
illumination variation, or a combination of both. We present the results of
running the algorithm on several real scenes, and the results are very
encouraging.

1 Introduction

Many  colour constancy algorithms have been developed, but all are subject to quite
restrictive assumptions and few have been tested on real images.  Of the existing
algorithms we believe that the one by Finlayson [8] is currently the most general and
most thoroughly tested. Nonetheless, it is restricted to scenes in which the
illumination is constant or at least locally constant. This assumption is more often
violated than one might at first suspect given that the incident illumination from any
fixed direction does generally vary slowly as function of position. The problem is
that the surface orientation even of smooth surfaces can vary quite rapidly with
position so that light at nearby surface locations may be received from very different
regions of the illumination field.  Since these different regions of the illumination
field often posses substantially different spectral power distributions—such as is the
case in a room in which where there is light from a light bulb mixed with daylight
from a window—nearby points on the surface in fact can receive very different
incident illumination.

This paper addresses the problem of colour constancy in scenes where the
spectral power distribution of the incident illumination is allowed to vary with scene
location.  Finlayson et. al. [7], D’Zmura et. al. [18], and Tsukada et. al. [16] have
shown that a difference in illumination, once it has been identified, provides
additional constraints that can be exploited to obtain colour constancy, but they do
not provide an automatic method of determining when such a difference exists.  We



present a new algorithm that first uncovers the illumination variation in an image
and then uses the additional constraint it provides to obtain better colour constancy.
The algorithm presupposes a diagonal model for illumination changes, and that the
illumination varies spatially slowly. However it is quite robust to moderate
violations of these assumptions.

The colour constancy problem is the retrieval of an illumination-independent
description of a scene’s surface colours. This is essentially equivalent to modeling the
illumination incident on the scene, since if the illumination is known the surface
colours can be calculated. Following Forsyth [9] we interpret colour constancy as
taking images of scenes under unknown illumination and determining the camera
response to the same scene under a known, canonical light. In a general context this
problem has proven difficult to solve, so to make progress, restrictive assumptions
are made.  In particular, it is common to assume that the scene is flat [9, 13, 14],
that the illumination is constant throughout [2, 3, 9, 10, 15], and that all reflectances
are matte. Finlayson [8] has shown that if we focus on solving only for surface
chromaticity and forego estimating surface lightness then the restriction to flat matte
surfaces can be relaxed.  However, the assumption that the  chromaticity of the
illumination does not change is more troublesome.

The Retinex algorithm [1, 11, 13, 14] partially addresses the issue of varying
illumination.  At least in principle—it does not in fact work in practice—Retinex
eliminates the variation in illumination and computes surface lightnesses for each of
the three colour channels independently.  Since eliminating the illumination and
recovering the illumination are equivalent problems [4], if Retinex worked it could be
used to recover the incident illumination.  Retinex operates on the principle that
within a single colour channel small changes in image intensity arise from changes
in illumination while large changes indicate changes in surface colour. The small
changes are thresholded away and the big changes are preserved so that the surface
lightness can be reconstructed, essentially by integration. Unfortunately any error in
classifying the intensity changes can lead to serious errors in the recovered result.  In
essence the Retinex algorithm uses a primitive, gradient-based-edge-detection strategy
to identify the reflectance edges, so given the long history of edge-detection research,
it should not be surprising that it does not perform well.

To overcome the weaknesses of Retinex’s edge detection method, we
incorporate knowledge about the set of plausible illuminants and from this set derive
information about the kinds of chromaticity change that a change in illumination can
induce within a region of uniform reflectance. This constraint is more global than
local edge detection and using both types of constraint together yields good results.
Once the illumination variation is uncovered it is combined with the other
constraints arising from the set of colours found in the image as will be discussed
below.

2 The  Colour Constancy Algorithm

Our colour constancy algorithm has two main components:  one to extract the
illumination field and another to combine the constraints provided by the a priori
knowledge of the surface and illumination gamuts with those obtained from the
observed surfaces and the extracted illumination field.  The constraint part of the
algorithm will be described first.



2 . 1 Surface and Illumination Constraints

In order to represent the constraints efficiently, we make the approximation that the
effect of the illumination can be modeled by a diagonal matrix [5, 6]. Specifically, if
[r,  g,  b] is the camera response of a surface under one illumination, then
[r,  g,  b]D = [rD11 ,  gD22 ,  bD33 ], where D  is a diagonal matrix, is the camera
response to the same surface under a second illumination. In other words, each camera
channel is scaled independently. The accuracy of the diagonal approximation depends
on the camera sensors, which for the camera used in the experiments is within 10%
(magnitude of [r,  g,  b] difference) of the general linear model. For sensors for which
the diagonal model is too inaccurate, it is usually possible to improve it by
spectrally sharpening the sensors [5].

Following Finlayson [8], we work in the chromaticity space [r/b, g/b].  This
space  preserves the diagonal model in the sense that if illumination was exactly
modeled by a diagonal transform applied to [r, g, b], then it will also be exactly
modeled by a diagonal transform (now 2D) applied to [r/b, g/b].  If either the
illumination is spatially constant or pre-processing has removed all illumination
variation, then transforming the input image to what it would have looked like under
the canonical illuminant requires simply transforming it by a single diagonal matrix.
The goal of the colour constancy algorithm is to calculate this matrix.

The algorithm’s basic approach is to constrain the set of possible diagonal
maps by adding more and more information so that only a small set of possible maps
remains. The first constraints are the those due to Forsyth [9].  He observed that the
set of camera responses that could be obtained from all combinations of a large set of
surfaces viewed under a fixed illuminant is a convex set which does not fill all of the
[r, g, b] colour space. This set is referred to as that illuminant’s gamut, and in the
case of the  canonical illuminant is called the canonical gamut.  For a typical scene
under unknown illumination, the camera responses will lie in a subset of the
unknown illuminant’s full gamut.  Since all possible surfaces are assumed to be
represented within the canonical gamut, whatever the unknown illuminant is, it is
constrained by the fact that it is a diagonal map projecting the scene’s observed
response set into the canonical gamut.   There will be many possible diagonal maps
satisfying this constraint because the scene’s set is a subset of the full gamut and so
it can ‘fit’ inside the larger gamut many different ways.  Forsyth shows that the
resulting constraint set of diagonal maps is convex. As shown in [8], all the required
relationships hold in the [r/b, g/b] chromaticity space.

The second source of constraint arises from considering the set of common
illuminants as has been formulated by Finlayson [8]. After applying Forsyth’s
surface constraints, the resulting set of diagonal maps typically includes many that
correspond to quite atypical illuminants. The illumination constraint excludes all the
illuminants that are not contained in the set of typical illuminants. Finlayson
restricted the illumination to the convex hull of the chromaticities of the 6 daylight
phases provided by Judd et al [12], the CIE standard illuminants A, B, C [17], a
2000K Planckian radiator, and uniform white. We have improved upon this sampling
of illuminants by using 100 measurements of illumination around the university
campus, including both indoor and outdoor illumination. Some inter-reflected light
was included such as that from concrete buildings and light filtering through trees,
but illumination that was obviously unusual was excluded. The set of chromaticities
of the measured illuminants is larger in area than the original set, but it does not



contain it entirely, as the 2000K Planckian radiator is more red than what is
common.

It should be noted that the set of typical illuminants provides a constraint on
mappings from the canonical to the unknown, which is the reverse of that for
surfaces discussed above in which the restriction was on mappings from the unknown
illuminant to the canonical illuminant.  To make use of the constraint it must be
inverted which means that the restriction on the set of illuminants becomes a non-
convex set in the mapping space used for surface constraints.  This potentially
presents a problem since the sets must be intersected in order to combine constraints
and in three-dimensions it is much faster to compute intersections of convex sets
than non-convex ones. While in the two-dimensional case the set intersections can be
directly computed, in practice the inverse of the measured illumination non-convex
gamut was found to be close enough to its convex hull that for convenience the hull
could be used anyway.

Varying illumination provides the third source of constraint. Our use of it here
generalizes the algorithm presented in [7]. In that work the map taking the
chromaticity of a single surface colour under an unknown illuminant to its
chromaticity under the canonical illuminant is constrained to lie on a line.
Effectively this amounts to assuming all the candidate illuminants are approximately
Plankian radiators and their chromaticities lie roughly on the Plankian locus.  The
chromaticity of the same surface viewed under a second illuminant defines a second
line. If the difference in the illuminations’ chromaticities is non-trivial, the two lines
will intersect, thereby constraining the surface’s chromaticity to a unique value.

We extend the idea of using the variation in illumination in two ways. First
we use the entire illumination gamut instead of simply the Plankian radiators.
Second we exploit the illumination variation across the entire image, as opposed to
just that between two points on one surface patch. Thus the illumination over the
entire image is both used, and solved for. The details follow.

For the moment assume that we already have the relative illumination field for
the image. The relative illumination field for each pixel P is defined by the diagonal
transform required to map the illumination at some chosen base pixel B to the
illumination at P.  The relative illumination field describes all the pixels only with
respect to one another, so given it, the remaining problem is to solve for the
illumination at B and hence establish the illumination everywhere in absolute terms.

The approach is motivated by the following argument. Suppose that the left
side of the image is illuminated by a blue light. This means that the relative
illumination field at a pixel on the left side transforms illuminants so that they are
more blue. However, the illumination at the center of the image cannot be so blue
that making it even more blue produces an illumination that falls outside the set of
possible illuminants. Thus the illumination at the center is constrained by the jump
towards blue. All entries in the field contribute this sort of constraint. This will now
be made more formal.

First we verify the intuitive claim that the constraint provided by one of the
values D in the relative illumination field is the set of possible illuminants scaled by

D−1 . Consider the illumination gamut, I  which is a convex set:

  
I = X  X = λ iX i where  λ i = 1
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We have the constraint that we can map the illumination by the diagonal map D and
still be in this set:

XD ∈ I (2)
This means that:

XD = λ iX i
i

∑   for some λ i   with  λ i = 1
i

∑ ,  λ i ≥ 0 (3)

And

X = λ i X i D−1( )
i

∑   for some λ i   with  λ i = 1
i

∑ ,  λ i ≥ 0 (4)

So we define a new constraint set V as:

V = X  X = λ i X i D−1( )  where  λ i = 1,  λ i ≥ 0
i

∑
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(5)

It is clear that for all X ∈V , XD ∈ I . Furthermore, the argument is reversible. That
is, if Y = XD ∈ I , X ∈V  . It should be noted that the above also shows that we can

identify the convex constraint set with the mapped hull points X i D−1.

Next we note that the convex hull of these constraints is just as powerful as
the entire set. The motivation for using the hull is that it saves a significant amount
of processing time. We are free to use the hull regardless, but it is comforting to
know that doing so does not weaken the algorithm.

Despite the details, the additional constraint is very simple in that it says that
we have to be able to scale the illuminant by a certain amount and still satisfy the
illumination constraint. This constraint is realized by simply scaling the set of
illuminants by the inverse. As a simple example, consider the one-dimensional line
segment [0,1]. If we have a condition on these points that when they are scaled by a
factor of two the result must still be in that segment, then the set of points in our

constrained set must be [0, 1

2
]. In other words, the set was scaled by the inverse of

the scale factor.

2 . 2 Combining the Constraints

Given the above formulation of the various constraints  they can be easily combined
into a forceful colour constancy algorithm.  First the relative illumination field is
used to remove the illumination variation from the image leaving an image which is
of the scene  with chromaticities as they would have appear if it had been illuminated
throughout by the illumination at the base point.  Starting from this intermediate
result a constraint on the possible illumination maps is derived for each of the surface
chromaticities.  The illumination constraint provided by the set of plausible
illuminants is fixed by the initial measurement of the various illuminants around the
campus. Each hull point of the set of the relative illumination field furnishes yet
another constraint; namely, the illumination constraint multiplied by the appropriate
diagonal transform. The illumination constraint and the transforms due to the relative
illumination field are intersected, and the result is inverted. As mentioned above, this
inverted set was approximated well by its convex hull. The inverted set is then
intersected with the intersection of all the surface constraints.



The final step of the algorithm is to chose a solution from the set of possible
solutions. In [8, 9] the solution chosen maximizes the volume of the mapped set,
which is equivalent to maximizing the product of the components of the mapping. In
this work, however, we use the centroid of the solution set, which is more natural.
This choice can be shown to minimize the expected error if all solutions are equally
likely and error is measured by the distance from the choice to the actual solution.
Furthermore, in both synthesized and real images, the centroid was found to give
better results.

The colour constancy algorithm that incorporates all the different constraints
was tested first on generated data. One thousand sets containing 1, 2, 4, 8, and 16
surfaces were randomly generated and used in conjunction with 1 of 5 illuminants,
with 0 through 4 of the remaining lights playing the role of additional illuminants
arising as a result of varying illumination.  Table 1 gives the results which are
exactly as wished. As either the number of surfaces or the number of extra lights
increases, the answer consistently improves. Thus it was verified that varying
illumination is a powerful constraint, and furthermore, it can be effectively integrated
with the other constraints.

3 Finding the Relative Illumination Field

We now detail an algorithm for finding the relative illumination field
describing the variation in the incident illumination. This algorithm can be divided
into two parts. The first is a new technique for image segmentation appropriate for
scenes with varying illumination. The second part uses the segmentation to
determine the illumination map robustly.

Unless the illumination is known to be constant, it is essential that a
segmentation method be able to accommodate varying illumination. In general, the
segmentation problem is quite difficult, especially with varying illumination, as in
this case an area of all one reflectance can exhibit a wide range of colour. Fortunately
for our purposes, it is not critical if an occasional region is mistakenly divided into
two pieces, nor if two regions which have almost the same colour are  incorrectly
merged. This is because the goal at this point is simply to identify the illumination,
not the surfaces. Nonetheless, the better the segmentation, the more reliable and
accurate the possible colour constancy.

One approach to segmentation is that used by Retinex theory [13, 14].  In
Retinex small changes in pixel values at neighboring locations are assumed to be due
to changes in the illumination and large changes to changes in surface reflectance.
This idea can be used to segment an image into regions of constant surface reflectance
properties by growing regions by including pixels only if they are less than some
small threshold different from their neighbours. The threshold must be large enough
to allow for both noise and the illumination changes and yet not admit small changes
in surface reflectance—a balance which is of course impossible to establish.

We use this method as part of our algorithm, but alone, it is not sufficient.
The problem is that two dissimilar regions will eventually mistakenly merge if there
exists a sequence of small jumps connecting them. This can occur if the edge is
gradual or because of noise. In essence, a threshold large enough to allow for noise
(and varying illumination) allows for enough drift in the pixel values to include an
entirely dissimilar region.  Local information alone is insufficient, so we resolve the
problem by adding a more global condition involving illumination constraints.



Number of Surfaces

1 2 4 8 16
BF 0.073 0.073 0.073 0.073 0.073
BDT 0.116 0.116 0.116 0.116 0.116
GW 1.62 1.01 0.69 0.513 0.428
RET 1.62 1.10 0.72 0.478 0.354
S 12.4 4.4 1.65 0.585 0.285
SI 2.275 1.68 0.99 0.480 0.271
SIV1 1.65 1.26 0.79 0.420 0.256
SIV2 1.154 0.896 0.620 0.351 0.242
SIV3 0.800 0.656 0.488 0.311 0.231
SIV4 0.384 0.36 0.317 0.274 0.228

Solution Method Key

BF Error of best possible solution using full linear map
BDT Error of best possible solution using a diagonal map
GW Naive Grey World Algorithm (scale each channel by average)
RET Naive Retinex Algorithm (scale each channel by maximum)
S Surface constraints alone
SI Surface and illumination constraints
SIV Surface and illumination constraints with view under one extra illuminant
SIV2 Surface and illumination constraints with view under 2 extra illuminants
SIV3 Surface and illumination constraints with view under 3 extra illuminants
SIV4 Surface and illumination constraints with view under 4 extra illuminants

Table 1. Results of color constancy experiments for  1000 sets of 1, 2, 4, 8, and
16 surfaces under all combinations of test lights and extra lights for varying
illumination. The canonical illuminant was a Philips CW fluorescent light. The
values shown are the average magnitude of the chromaticity vector difference between
the estimate and the desired answer, averaged over all results.
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The new global segmentation condition is based on the idea that in order for
two pixels—no matter how far apart they are spatially—to be considered part of the
same region, a plausible illumination change between them must exist.  The set of
plausible illuminant changes can be derived in advance from the initial set plausible
illuminants. This condition binding pixels within a single region based on plausible
illumination changes is called patch coherence. The patch coherence condition differs
from the Retinex condition in two important ways. First, the cumulative drift in
pixel values along a path is limited, as opposed to growing linearly with the pixel
distance. Second, the allowable drift is constrained more in certain directions due to
the nature of the set of common illuminants. For example, green illuminants are
rare, which means that the set of common illuminants is narrow in the green
direction, and thus overall, the drift towards or away from green is more restricted
than that towards or away from blue.

It was found to be useful to retain the Retinex condition as well as the patch
coherence method described above for two reasons. First, the Retinex condition is



faster to compute, and thus can be use to reject pixels that do not need to be tested
further for inclusion. Second, if a comprehensive set of possible illuminants is used,
then an occasional surface boundary change will also be a possible illumination
change. Since the Retinex method by itself works much of the time, these
exceptional cases in which a surface change mimics an illumination change generally
will be covered by the Retinex condition.

In detail our segmentation algorithm begins with an arbitrary initial starting
point in a region and assumes that the illumination at that point is constrained to be
in the  set of plausible illuminants. It is important to update the constraints on the
illumination at the starting point each time a new point is added to the region. Each
newly included point further constrains the possible illuminations at the starting
point. Updating the constraints is similar to using the relative illumination field to
solve for colour constancy as described above. The element-wise ratio of the
chromaticities of the new point to that of the initial point induces a constraint set V
defined by (5). Specifically, the illumination gamut is transformed by the inverse of
the ratio interpreted as a diagonal transform. This convex set is intersected with the
current constraint set. If the intersection is null, then the new point is excluded and
the constraint set is left unchanged. If it is not null, then the intersection becomes
the updated constraint set and the new point is added to the region.

Similar to the situation when solving for colour constancy, it is sufficient to
perform the intersection only when the new transform to be applied to the
illumination gamut is outside the convex hull of the preceding transforms. Although
calculations are relative to the initial point, this procedure ensures that all points in
the region can be assigned illuminants from the set of plausible illuminants which
are consistent with the illumination jumps between them. Furthermore, the inclusion
of any of the rejected points would violate this condition.

Given our segmentation we reduce the problem of finding the relative
illumination field to that of finding the illumination at the center of each region
relative to that at the center of the base region. Since the center of a region, as defined
by the center of mass, need not be inside the region, the implementation uses a point
in the region close to the center of mass, preferably a few pixels from the boundary.
The illumination at a point relative to that of the region center is simply the ratio of
its response to the response of the center point. This follows directly from the
assumption that the pixels are from the same surface, given that we accept a diagonal
model for illumination change. Thus the map at an arbitrary point is simply the map
at the center, adjusted by this relative jump.

To determine the maps at the center points we make the assumption that
illumination does not change significantly at the region boundaries. Thus every jump
across a boundary gives a condition on the relative maps of the centers of the two
adjacent regions. More specifically, consider two regions A and B, with centers CA
and CB, and boundary points BA and BB close to each other. Denote responses by R
subscripted by the point label and denote the diagonal map relative to the grand
central point as D, also subscripted by the point label. Each channel or chromaticity
component is dealt with independently, so the quantities in the equations are scalars.
The assumption that the illumination does not change significantly at the boundary
is simply:

  DBA
= DBB (6)



Since we are assuming a diagonal model of illumination change, and CA is on the
same surface as BA, and similarly for the center and boundary of surface B, we have:

DBA
= DCA

RBA
RCA







      and      DBB
= DCB

RBB
RCB





 (7)

Combining (10) and (11) yields:

DCA

RBA
RCA







= DCB

RBB
RCB





 (8)

Taking logarithms of both sides of (12), and rearranging terms gives:
ln(DCA

) − ln(DCB
) = ln(RBB

) − ln(RBA
) + ln(RCA

) − ln(RCB
) (9)

This final equation is at the heart of the method. Here we have a condition on the
component of the map for two of the regions. Other boundary point pairs produce
additional equations. In order to have a robust method, one would like long
boundaries to have more weight in the process than short ones, since the latter may
due to a small region consisting entirely of noise. But this is exactly what we will
get if we enter one equation for each boundary pair and solve the resulting system of
equations in the least squares sense. Furthermore, some boundary pairs can be
identified as being more reliable and these are weighted even more by scaling the
equation by a number greater than one (typically five). In addition, some boundary
pairs should contribute less, and their equations are scaled by a number less than
unity.

In order to have a solution to the set of equations, it must be insured that all
segments connect to each other through the boundary pairs. This might be
accomplished simply by assigning a region to every point, and using each break in
either the horizontal or vertical directions to produce a boundary pair. This is usually
not an option because often some parts of the image should not be used; for example,
when an area is too dark. Therefore the likelihood of connectedness between regions
was increased in the following manner. Boundary pairs were assigned at each
horizontal and vertical change of region. If one of the regions was to be ignored, a
good region was sought in the same direction, taking as many pixels as required. The
resulting equation was weighted inversely to the distance taken to find a good region.
Thus such a boundary would contribute little to the solution, but connectivity was
not a problem for reasonable images (it is still possible to construct an image which
will lack connectivity).

Several additional steps were taken to improve robustness. First very small
regions were excluded from the computations. Second, it was found to be better to
use pixels one unit towards the insides of the respective regions, if these were
available. This way the pixels would tend to have contributions that were solely due
to a single surface, as opposed to the possibility that they straddled more than one
surface. These boundary pairs were weighted by a factor of five compared to ones
where it was necessary to use pixels exactly on the boundary.

The final step in determining the relative illumination field is to interpolate
over any excluded areas.

4 Results

The algorithm has been tested on a set of images of real scenes. In all cases the
‘unknown’ illumination consists of light from an incandescent bulb coming from



Figure 1. Some of the input images used to test
the colour constancy algorithm. The bottom image
was not used for quantitative results because people
move too much in the time required to change
illumination. The qualitative results for this image
however were good.

one direction mixed with light from a Philip’s CW fluorescent tube covered by a pale
blue filter coming from another. The  latter is similar in colour temperature to sky
light. Thus the scenes mimic a common real world situation—an office with a
window.

Unfortunately, qualitative evaluation of the results requires access to colour
reproductions which are not available here. However, the grey scale counterparts
reproduced in Figure 1 should give the reader some idea of the nature of the input
used. The first image shown is a three-dimensional “Mondrian” made by affixing
coloured construction paper to a conical waste paper bin. The bin is lying on its side
with the incandescent light shining from above and the blue light from below. The
top has blue and green papers on it, in the middle is a grey patch, and near the
bottom are red and yellow papers. This illumination causes a distinct reddish tinge at
the top and a clear bluish tinge at the bottom.

The second image is a simple two-dimensional “Mondrian” made by attaching
eight sheets of coloured construction paper to the lab wall such that substantial parts
of the wall remained visible. The third is a multi-coloured cloth ball. The cloth ball
is interesting because the cloth has more texture than the construction paper. The
fourth image shown in Figure 1 is of a person in front of a grey background with the
sky-like light on the left and the incandescent light on the right. Under this
illumination the left side of the grey background appears quite blue, and the flesh
tones on the left are noticeably incorrect. It is not possible to obtain a canonical
image for comparison because people move too much in the time it takes to set up
the new illumination conditions. However, the qualitative results are quite
promising. An additional image used for quantitative results is of a single piece of
green poster board (not shown).

The numerical results in Table 2 reflect the RMS difference (over the entire
image) between the  [r/b, g/b] chromaticities at corresponding pixels in the recovered
and canonical images. There are few colour constancy algorithms designed to deal
with scenes of the generality addressed here so it is difficult to make comparisons
with existing algorithms without violating their assumptions. As a first measure, we
compare the solution obtained by a straight least squares fit of the input image to the
canonical using a full linear model and then with a diagonal model.  Without
accounting for the illumination variation no algorithm working on the 3D Mondrian
image can do better than the 0.78 error of the full linear case. In contrast, by



Object

3D Mondrian Ball Green Card Paper on
Wall

BT 0.78 0.536 0.195 0.265
BDT 0.80 0.603 0.240 0.273
N 0.96 0.93 0.279 0.405
GW 0.88 1.37 0.312 0.349
RET 0.87 0.75 0.246 0.290
S 0.86 0.92 1.030 0.476
SI 0.87 0.73 0.540 0.472

VIR-BT 0.148 0.224 0.042 0.093
VIR-BDT 0.176 0.227 0.044 0.133
VIR-N 0.44 0.595 0.262 0.530
VIR-GW 0.68 1.36 0.275 0.306
VIR-RET 0.61 0.95 0.275 0.228
VIR-S 0.33 1.11 1.929 0.211
VIR-SI 0.39 0.38 0.269 0.163
VIR-SIV 0.26 0.45 0.073 0.151

Error between the result and the canonical using the various solution methods

BT Best possible linear map solution
BDT Best possible diagonal map
N No processing. Simply use the input image as the result.
GW Naive Grey World Algorithm (scale each channel by average)
RET Naive Retinex Algorithm (scale each channel by maximum)
S Using Surface Constraints
SI Using Surface and illumination constraints
VIR-BT Best linear map applied after varying illumination is removed
VIR-BDT Best diagonal map applied after varying illumination is removed
VIR-N No processing applied after varying illumination is removed
VIR-GW Naive Grey World Algorithm with varying illumination removed.
VIR-RET Naive Retinex Algorithm with varying illumination removed.
VIR-S Using surface constraints with varying illumination removed.
VIR-SI Using surface and illumination constraints with varying illumination

removed.
VIR-SIV Complete new algorithm using surface, illumination, and varying

illumination constraints with varying illumination removed.

Table 2. Results of color constancy algorithms applied to four images. The
canonical illuminant was  a Philips CW fluorescent light. The values shown are the
RMS (over all pixels) magnitude of the chromaticity vector difference between the
estimate and the desired answer, which is a view of the scene under the canonical
light.
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accounting for and utilizing the illumination variation our new algorithm reduces the
error to 0.26.

Table 2 also shows the chromaticity error for the case of doing nothing at all.
The grey world algorithm, which uses the average image chromaticity as an
illumination estimate, and the Retinex normalization strategy of taking the
maximum response from each colour band as an illumination estimate are tried even
though  the comparison is somewhat unfair because they both assume the
illumination to be constant.  Similar tests are run using surface constraints alone and
surface constraints with the additional constraints on the set of plausible illuminants.

To make the comparison fairer, we also include similar tests with these
algorithms but applied after the illumination variation has been discounted. In other
words, we combined the first part of our algorithm (removal of the illumination
variation) with each of the other algorithms. In this case, the other algorithms are
applied to data which does not violate the constant illumination assumption, but they
still  do not exploit the information contained in the illumination variation. The
Retinex normalization applied in this way gives an algorithm which is close, in
theory, to the original Retinex idea.

The results show first that if the varying illumination is not accounted for,
then all the colour constancy algorithms perform poorly. In all cases, the complete
new VIR-SIV algorithm did better than any algorithm which assumed the
chromaticity of the illumination to be constant. In fact, the performance is better
than that of the best diagonal and best linear fits. The complete algorithm also
performed better than the others applied to the data with the varying illumination
removed, except when compared to applying the combination of surface and
illumination constraints to the ball image. Most importantly, the algorithm performs
better than the Retinex scaling applied to the data with the variation removed. As
mentioned above, this procedure is close to the spirit of the original Retinex
algorithm, which is unique as an alternative to our algorithm, even though its testing
has been limited to scenes with more controlled illumination.

The results for the green card are included to illustrate that the varying
illumination constraint can be very useful in the case when there is a paucity of other
information. Most colour constancy algorithms require a good selection of surfaces
for reliable performance. The ability of this algorithm to go beyond that in the case
of varying illumination is encouraging.

5 Conclusion

We have presented a new algorithm for colour constancy which builds upon the
recent gamut-based algorithms of Forsyth [9] and Finlayson [7, 8].  The new
algorithm models the illumination via a diagonal transform or equivalently a
coefficient rule model. Within the diagonal model framework, the algorithm
combines the constraints provided by the observed gamut of image colours, by a
priori knowledge of the set of likely illuminants, and by the variation in illumination
across a scene. Existing algorithms that use the information inherent in illumination
variation assume that some unspecified pre-processing stage has already identified the
variation, and thus are not fully automated.

Identifying illumination variation is in itself a difficult problem. The Retinex
algorithm is the only alternative colour constancy algorithm designed for scene
conditions similar to those investigated in this paper. Nonetheless, it was restricted
to flat Mondrian scenes and is known not to work very well for a variety of reasons.



The new algorithm is more powerful than Retinex both because it incorporates a new
technique for identifying the relative illumination field and because the it actually
uses the illumination variation when solving for colour constancy. While many
improvements are still possible, tests using both synthetic and real image data for
three-dimensional scenes verify that the algorithm works well.
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