
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 107 (2007) 88–96
Quaternion color texture segmentation

Lilong Shi, Brian Funt *

School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6

Received 4 May 2006; accepted 21 November 2006
Available online 26 January 2007

Communicated by Rastislav Lukac
Abstract

The quaternion representation of color is shown here to be effective in the context of segmenting color images into regions of similar
color texture. The advantage of using quaternion arithmetic is that a color can be represented and analyzed as a single entity. A low-
dimensional basis for the color textures found in a given image is derived via quaternion principal component analysis (QPCA) of a train-
ing set of color texture samples. A color texture sample is then projected onto this basis to obtain a concise (single quaternion) descrip-
tion of the texture. To handle the large amount of training data, QPCA is extended to incremental QPCA. The power of the proposed
quaternion color texture representation is demonstrated by its use in an unsupervised segmentation algorithm that successfully divides an
image into regions on basis of texture.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Quaternion color processing; Quaternion principal components analysis; Color texture analysis; Image segmentation; Color texture classifi-
cation
1. Introduction

Many different local image features have been proposed
for characterizing textures [1–3,8]. Since there are many
possible texture features, finding a feature vector with good
discriminating power is important. For color imagery,
Hoang et al. [8] showed that using color and texture in
combination results in better discrimination than using
the color and texture features separately.

We propose a new color texture classification method
based on the quaternion representation of a color image.
Quaternions provide a new way to process color and tex-
ture in combination. The advantage of the quaternion rep-
resentation of color, as proposed by Sangwine [4,5,7], is
that it combines a color 3-tuple (RGB or LMS) into a sin-
gle hypercomplex number. A color can then be processed
as a unit, rather than as 3 separate channels. A quaternion
has a real part and three imaginary parts and can be writ-
1077-3142/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2006.11.014

* Corresponding author.
E-mail address: funt@sfu.ca (B. Funt).
ten as q = a + b Æ i + c Æ j + d Æ k. An RGB color triple is
represented as a purely imaginary quaternion of the form
R Æ i + G Æ j + B Æ k. Both the Fourier transform [5] and
principal component analysis [6,7] have been extended to
quaternion arithmetic.

Standard principal component analysis (PCA) has been
used previously in the texture context, but our use here is
different. Previously PCA was used to reduce the dimen-
sionality of the features extracted from grayscale textures
[8,10]; whereas, in our case, quaternion principal compo-
nent analysis (QPCA) is used to reduce the dimensionality
of the raw textures directly. In particular, we use QPCA
with colors encoded as quaternions to calculate a quaterni-
on basis for color textures. The basic idea is to use QPCA
to obtain a low-dimensional representation of textures
sampled from image subwindows. QPCA computes a basis
ordered in terms of the amount of variance accounted for
in the data. The low-dimensional approximation is con-
structed by projecting the original input onto the first
few basis vectors. Two textures are compared by project-
ing each onto the first few basis vectors and then compar-
ing the resulting coefficients.

mailto:funt@sfu.ca


L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96 89
To test whether or not the QPCA representation of col-
or texture is effective, we use it to segment images into
regions of homogeneous texture and make a qualitative
comparison to the previously published results [8,11]. Qua-
ternion-based color texture segmentation proceeds in three
main stages: feature extraction, feature classification, and
region merging. Fig. 1 gives an overview. In the feature-ex-
traction stage, feature vectors are generated by applying
QPCA to training data obtained from a set of subwindows
taken from the input image. The subwindows are samples
of the image’s textures and should be large enough to char-
acterize a texture. Each w-by-w subwindow is re-represent-
ed as a vector of w2 quaternions, one quaternion per pixel.
Applying QPCA to this collection of vectors yields a qua-
ternion basis for the image’s textures. As with PCA, the
QPCA basis is ordered in terms of the fraction of the var-
iance accounted for by each basis vector. The original w2

dimensionality can be reduced by projecting each subwin-
dow onto only the first few basis vectors. We use these qua-
ternion basis vectors as a texture–feature space. It has the
advantage that because of the quaternion color representa-
tion, it characterizes both the spatial and color aspects of
the image’s textures. In the classification stage, texture fea-
tures are grouped via k-means clustering and the input
image pixels are labeled according to this clustering. Final-
ly, in the segmentation stage which incorporates spatial
information, regions of similar texture are merged to pro-
duce the final image segmentation.
2. Quaternions and quaternion filtering

A model of color texture needs to take into account not
only the spatial interaction within each of the three color
QPCA

projection

Training set 

Eigenbasis

Training
features

Texture samples 

filtering

Texture description at eac

Fig. 1. Overview of the quaternion texture segmentation process. QPCA is ap
filtered by the resulting basis vectors producing a texture map. A classifier de
according to the texture map, and then regions of similar texture are merged.
channels, but also the interaction between different color
channels. Panjwani and Healey [11] modeled these spatial
and inter-channel interactions explicitly using a Gaussian
Markov Random Field Model in which for each pixel the
expected value for each channel is derived from a probabi-
listically weighted linear combination of the RGB triplets
at neighbouring pixels. The quaternion representation of
RGB color texture also represents spatial intra-channel
and inter-channel relationships, and allows for both linear
and non-linear interactions.

When multiplying two quaternions, each of their com-
ponents interacts with all other components, and the effect
spreads over all components. Given two quaternions
aq = a0 + a1 Æ i + a2 Æ j + a3 Æ k and xq = x0 + x1 Æ i + x2

Æ j + x3 Æ k with real parts denoted as R[aq] and R[xq] and
the three imaginary parts denoted as I[aq] and I[xq]. The
product of aq and xq is

yq ¼ aq � xq

¼

a0

a1

a2

a3

2
6664

3
7775�

x0

x1

x2

x3

2
6664

3
7775 ¼

a0x0 � a1x1 � a2x2 � a3x3

a1x0 þ a0x1 � a3x2 þ a2x3

a2x0 þ a3x1 þ a0x2 � a1x3

a3x0 � a2x1 þ a1x2 þ a0x3

2
6664

3
7775;

ð1Þ

where · denotes quaternion multiplication. If a0 = 0 and
x0 = 0, so that aq and xq are pure quaternions, then the
product yq = aq · xq can be decomposed as

R½yq� ¼ a1x1 þ a2x2 þ a3x3 ¼ �dotðI ½aq�; I ½xq�Þ ð2Þ
I ½yq� ¼ crossðI ½aq�; I ½xq�Þ: ð3Þ

When the imaginary components of aq and xq represent
two RGB triples, then the multiplications involved when
QPCA computes the correlation matrix incorporate
Segmented Image

k-means

 set

h pixel 

Classifier

Texture map 

plied to texture samples from image subwindows. The input image is then
rived from a k-means clustering of the training set data labels each pixel
See text for further details.



90 L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96
interactions between the different color channels. For
instance, the cross product of two quaternion colors creates
a color perpendicular to both.

Quaternion-valued filters have been introduced and used
for color-edge detection and smoothing by Sangwine [4]. In
addition, quaternion Fourier coefficients [5] can be viewed
as sine/cosine quaternion filter responses to quaternion
vectors. Quaternion filters are usually designed such that
each entry is a full quaternion number, but the input data
are pure quaternions. In this paper, the input image is fil-
tered to produce and output a texture–feature map. The
texture filters are obtained by QPCA, and then applied to
the image by convolution.

In order to study the filter responses of full quaternion
filters over a pure quaternion data space, consider the
result of multiplying a full quaternion with a pure quater-
nion. When x0 = 0, xq is a pure quaternion, and the multi-
plication yq of aq and xq is:

R½yq� ¼ a1x1 þ a2x2 þ a3x3 ¼ �dotðI ½aq�; I ½xq�Þ ð4Þ
I ½yq� ¼ R½aq�I ½xq� þ crossðI ½aq�; I ½xq�Þ ð5Þ

Suppose F is a full quaternion filter, and Q is a pure qua-
ternion color image, then the filter response obtained by
convolving F with Q is:

ConvðF ;QÞ ¼ �conv1ðF ;QÞ þ conv2ðF ;QÞ
þ conv3ðF ;QÞ; ð6Þ

conv1ðF ;QÞ ¼ ðF r � Qr þ F g � Qg þ F b � Qb; 0; 0; 0Þ ð7Þ
conv2ðF ;QÞ ¼ ð0; F l � Qr; F l � Qg; F l � QbÞ ð8Þ
conv3ðF ;QÞ ¼ ð0; F r;g;b � Qr;g;bÞ; ð9Þ

The operator � denotes the normal convolution of two
real vectors. The subscripts l, r, g, b indicate the real and
three imaginary parts. The operator ¯ denotes a special
Conv1(F,I)

Conv2(F,I)

Conv3(F,I)

Fig. 2. Diagrammatic overview of a full quaternion filer applied to a pure quate
layers of the image correspondingly and separately. The negated sum of the
quaternion result. In Conv2, the real layer of the filter convolves separately with
‘‘convolve’’ with the RGB channels of the image. Each multiplication during th
pixel of the image—and results in their cross product, which is also a pure qua
RGB (the imaginary part) of the final quaternion output.
convolution with the cross product as multiplication of
each pixel pair. The resulting convolution of quaternion
vector F and quaternion vector Q is also a quaternion vec-
tor, which contains four layers: the l layer is somewhat
related to intensity; the r layer corresponds to the red chan-
nel; the g layer corresponds to the green channel; and the b
layer corresponds to the blue channel. Eq. (7) shows how
the l layer is computed in conv1. In Eqs. (8) and (9), the
r,g and b layers are computed at once. The combination
of conv1, conv2 and conv3 in Eq. (6) yields the final convo-
lution result. The entire convolution process can be decom-
posed as illustrated in Fig. 2.
3. Quaternion texture segmentation method

In this section, we detail the algorithm for segmenting an
image into regions of homogenous color texture. The first
stage is to extract an orthogonal basis for the color textures
in an image. This basis is calculated by sampling square
windows from the image and expressing the contents of
each such window as a vector of quaternions and arranging
these vectors as the columns of a matrix. QPCA applied to
this matrix yields an orthogonal basis for the contents of the
windows ordered in terms of the variance accounted for by
each basis vector. Similar to the standard PCA, the dimen-
sionality of the feature space can then be reduced by select-
ing only the first few bases that account for the majority of
the variance. These basis vectors are vectors of quaternions.
The contents of any image window can then be approximat-
ed concisely by projecting them onto the selected basis. The
projection can then be used as the extracted color texture
feature of the window. When we consider the entire set of
subwindows and the projection of each one onto the quater-
Conv(F, I) 

rnion image. In Conv1, the RGB layers of the filter convolve with the RGB
resulting three filter responses becomes the real component of the final
each of the R, G and B channels. In Conv3, the RGB channels of the filter

e convolution is of two RGB 3-tuples—one from the filter, the other from a
ternion. The sum of the result of Conv3 with the result of Conv2 yields the



Fig. 3. Texture segmentation results: (a) synthetic input image from Hoang [8] having brown regions on the top left and bottom left, a blue region in the
top right, a pale green region in the bottom right and a grayish circular region in the center; (b) segmentation result for (a) showing that the QPCA method
successfully separates the top left and top right regions, which differ in color but have similar (although rotated) grayscale structure, and simultaneously
separates the top-left and bottom-left regions, which differ in grayscale structure but have similar color. The shadow in the lower right region is identified.
The result in (b) is similar to that in [8] (page 272, Fig. 3 (d)) without shadow invariance. Parameters used were: image size 192 · 192, window size 13 · 13,
abutting non-overlapping windows, initial number of k-means clusters 15, similarity threshold 8.5, Gaussian smoothing r = 2. A qualitatively similar
result was obtained for overlapping windows. Reprinted from Signal Processing, Vol (85), M. Hoang, J. Geusebroek, A. Smeulders, Color texture
measurement and segmentation, 265–275.

�
E

ls
ev

ie
r

co
m

p
an

y
20

05

Fig. 4. Comparison of quaternion texture segmentation (a) to Markov random field segmentation [11]. (b) Some discrepancies may arise as because the
result in (a) is based on a scan of the published input figure, rather than the original data file.

L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96 91
nion basis, we can view the process as a filtering step in
which the image is filtered by the basis.

For image texture segmentation, we are concerned with
representing the textures that occur in the given image, not
textures in general. Therefore, in the first step the training
set of texture samples is drawn from image by using sub-
windows of size w · w, where w depends on the image res-
olution. It is chosen to be large enough to cover a
representative texture element and small enough so that it
will not generally cover multiple texture elements. In order
to reduce the computational cost, we do not use subwin-
dows centered on each and every pixel. Instead, we tried
a sampling from subwindows centered on random pixels,
from overlapping windows and from non-overlapping win-
dows. To further reduce the storage and computational
costs, we also developed an Incremental QPCA method
as described below that approximates QPCA, but com-
putes the result incrementally.

The RGB pixel values from each window are represented
as quaternions and formed into a column vector of quater-
nions vq of size w2. The training set of textures is then
represented as a matrix Tq with columns vq. QPCA decom-
poses Tq into singular values and their corresponding qua-
ternion eigenvectors Uq. Taking only the first d of the w2

eigenvectors reduces the dimensionality of the texture mod-
el. This of course reduces the accuracy with which the
training set can be represented, but the expectation is that
only features that are irrelevant to texture discrimination



Fig. 5. Segmentation results. Parameters: image size � 200 · 200 (original images are resized so that the total number of pixels is approximately 40,000),
window size 13 · 13, abutting windows, initial number of k-means clusters 15, similarity threshold 8.5, Gaussian smoothing r = 2.

92 L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96
will be lost. Surprisingly, we found experimentally that the
best choice was d = 1, meaning that the method relies on
the first basis vector of Uq only. Therefore, a window’s qua-
ternion vector vq of size w2 is reduced to size 1, so its texture
is describe by a single quaternion. The resulting quaternion
needs no longer be a purely imaginary quaternion and gen-
erally does include a non-zero real part, so effectively tex-
ture is being represented by a 4-tuple.

The second stage of the quaternion color texture analy-
sis is texture clustering based on the features from each
sub-window. With d = 1, the whole training set Tq is repre-
sented by T 1

q ¼ U 1
q � T q, where Ud

q represents the first d

eigenvectors. Texture classification begins by k-means clus-
tering of the textures in the training set according to their
associated reduced feature vectors T 1

q. In other words, the
quaternion feature vectors (the columns of T 1

qÞ are input
to the k-means algorithm. The output of the k-means clus-
tering is k centroids describing the mean features of the tex-
ture clusters. The parameter k is chosen to be larger than
the number of regions expected in the final region segmen-
tation. For example, k = 15 is a good choice. Subsequent
region merging will eliminate any extra clusters.

The next step is to classify each image pixel in terms of
the texture of w · w window centered on it. The window’s
contents are represented as a vector of quaternions and
then projected onto the basis U 1

q producing feature vector
v1
q (a single quaternion). The pixel feature vectors are then

smoothed spatially by Gaussian smoothing with standard
deviation r. The pixel’s texture is assigned a label based
on the training set cluster to which it is closest in terms
of its Euclidean distance to the cluster’s centroid.

The final stage in the texture segmentation process is
region merging. The merging proceeds iteratively and is
based on combining statistically similar regions. At each
iteration, the two most similar clusters are merged accord-
ing to a region-similarity measure. The similarity of two
regions Ri,Rj with mean feature vectors li and lj and
covariance matrices Ui and Uj is defined by Nguyen et al.
[9] as:

Si;j ¼ ðli � ljÞ
T ½Ui þ Uj��1ðli � ljÞ ð10Þ

The smaller Si,j, the more similar the clusters. At each
iteration, the two regions with the smallest Si,j are merged
until no Si,j is less than a specified threshold. Finally, due to
the fact that the sample window may cover more than one
region, a post-processing step is needed to eliminate spuri-
ous segmentations at region boundaries. If a small neigh-
bourhood region around a pixel includes three or more
different texture labels then the pixel in the middle is
assigned to the nearest of the other two regions. Fig. 1 sum-
marizes the entire segmentation process.



Fig. 6. The effect of subwindow size on the segmentation results. Parameters: image size � 200 · 200, abutting windows, initial number of k-means clusters
15, Gaussian smoothing r = 2. The window size 7 · 7 for the left column and 13 · 13 for the right column. The segmentations based on smaller
subwindows tend to capture more localized texture features.

L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96 93
4. Incremental quaternion principle component analysis

The implementation of QPCA is based on QSVD (qua-
ternion singular value decomposition), which can be con-
sidered a generalization of real or complex number
singular value decomposition and inherits similar proper-
ties. Applications of QSVD to color image compression
have been proposed by Sangwine [7] and Pei [6]. The eigen-
values and eigenvectors of a quaternion matrix are also dis-
cussed by them. Two important observations are that only
the right eigenvalues are defined, and that each quaternion
matrix has an equivalent complex matrix. From this latter
point it follows that existing complex SVD algorithms can
be applied to the equivalent complex matrix to obtain the
eigenvectors and singular values of the corresponding qua-
ternion matrix.

The algorithm for QSVD is as follows [7]:

1. Given a zero-centered quaternion-valued matrix Xq.
2. Calculate the equivalent complex matrix Xc based on Xq.
3. Apply complex SVD on Xc to get the complex basis Uc

and singular values Sc.
4. Calculate the quaternion basis Uq and singular values Sq

of Xq based on Uc and Sc.

SVD for large data sets can be computationally expen-
sive, or even infeasible, and hence so is the quaternion
SVD. For that reason, we extend SVD to an incremental
QSVD (IQSVD) algorithm that is analogous to the ISVD
algorithm for real numbers [12,13]. Given a new data point
to add to an existing data set, IQSVD incrementally
updates its existing QSVD model of the data set. Suppose
a data set of N training samples xi 2 Qn(i = 1, . . . ,N) in
quaternion space has been used to derive a quaternion
eigenspace model X ¼ ð�x;U ;K;NÞ composed of eigenvec-
tors and eigenvalues, where �x is the mean of input quater-
nion data vectors, U is a n · r quaternion matrix whose
column vectors correspond to the quaternion eigenvectors,
and K is a k · k matrix the diagonal elements of which cor-
respond to the eigenvalues, and k is the dimensionality of
the subspace. If then another training sample y is added
to the data set, both the mean vector and covariance matrix
change, and the eigenvectors and eigenvalues, therefore,
should also be recalculated. Updating the mean input qua-
ternion vector �x is straightforward:

�x0 ¼ 1

N þ 1
ðN�xþ yÞ ð11Þ

Updating the quaternion eigenvectors and eigenvalues is
more complicated. First, we need to compute the residual
vector h that tells how accurately the existing eigenmodel
approximates y:

h ¼ ðy � �xÞ � U � g; where g ¼ U T ðy � �xÞ ð12Þ



Fig. 7. The effect of the similarity measure on the segmentation results. Parameters: image size � 200 · 200, window size 13 · 13, abutting windows, initial
number of k-means clusters 15, Gaussian smoothing r = 2. The similarity threshold is higher for the two images on the right column, the similarity
threshold is lower for the two images on the left column.

94 L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96
For real and complex numbers, it has been shown that
the eigenvectors and eigenvalues can be updated based on
the solution of an intermediate problem which is to form
a matrix D that substitutes for the original the data set
[12]. First solve D for R

D ¼ N
N þ 1

K 0

0T 0

� �
þ N

ðN þ 1Þ2
ggT cg

cgT c2

� �
¼ RK0RT

ð13Þ

where c ¼ ĥT ðy � �xÞ, R is an (r + 1) · (r + 1) matrix whose
column vectors correspond to the eigenvectors obtained
from D, K 0 is the new eigenvalue matrix, and 0 is a r-dimen-
sional zero vector. Using the solution R, the new n · (r + 1)
eigenvector matrix U 0 can be computed as follows [12]:

U 0 ¼ ½U ; ĥ�R ð14Þ

where ĥ ¼ h=khk ifkhk > 0
0 otherwise

�

The matrix R rotates the combination of the old eigen-
vectors and the residue of the new data point to span a
new subspace in which each eigenvector is still orthogonal.
In the quaternion case, the derivation and proof are exactly
the same. The only difference is that we replace all real
operations with quaternion operations.

An algorithm for incremental QPCA (IQPCA) based on
the QSVD method above is as follows:

1. Given a quaternion-valued matrix Xq.
2. Compute mean and zero-center Xq.
3. Calculate quaternion basis Uq and singular values Sq of

Xq by QPCA.
4. For a new input quaternion vector vq.

(a) Update the mean.
(b) Solve the intermediate problem with matrix Dq.
(c) Calculate the new basis Uq and new singular values Sq.
(d) Delete the eigenvector associated with the smallest

singular value to maintain an eigenbasis of dimension r.
This makes no allowance for a change in the number of
basis vectors; however, it is easy to add a threshold e above
which the number of basis vectors is expanded to achieve a
specific level of accuracy. In the texture case, only the very
first few eigenvectors are used in any case, so r can be set



Fig. 8. The quaternion texture basis of one image: (a) shows the segmentation; (b–c) show the positive (upper row) and negative (lower row) components
of the real and imaginary parts of the first 4 QPCA basis vectors obtained from 13 · 13 subwindows. The real part of a quaternion basis vector is
represented as gray scale image, and the imaginary parts as RGB color image. Using the same encoding, (f–i) show the first four texture feature maps. The
majority of the energy is in the first component.

L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96 95
larger than needed and the extra vectors discarded at the
very end.

5. Experiments

The quaternion texture segmentation method was tested
on input images of approximately 36,864 (192 by 192) pix-
els. Larger images are resized to these approximate dimen-
sions while preserving their aspect ratio. The subwindow
size was 13 by 13 with a 6 pixel overlap horizontally and
vertically. As a result, the total number of subwindows
for an image of size 192 by 192 equals 676. Since the total
number of feature vectors is 676, the size of each subwin-
dow texture sample is 169, and each pixel is represented
by a 4-dimensional quaternion number, the total dimen-
sion of the input is 169 · 36864 · 4. Memory requirements
make this impractical for the QSVD algorithm and com-
pletely unmanageable if the input image size or the number
of subwindows is increased. When the memory require-
ments become too large, we use IQPCA instead of QPCA
but prefer QPCA when feasible.

After the quaternion eigenbasis is calculated, the ques-
tion is then how many basis vectors to use as texture fea-
ture descriptors. Preliminary experiments showed that in
practice it was best to use just the first QPCA basis vector.
For the subsequent clustering and segmentation stages, the
first basis vector appears to represent just the right amount
of detail about the textures. As a result, a subwindow’s tex-
ture is represented by a single quaternion obtained as the
dot product of the subwindow with the first basis vector.

Examples of the new quaternion texture segmentation
method are illustrated in Figs. 3–8. In Fig. 3, the original
input image from Hoang et al. [8] contains five color tex-
tures of varied color and pattern. The left hand quadrants
have similar color and texture, although the texture is at a
different orientation, while the upper quadrants have exact-
ly the same pattern but different color. The central circular
region has a different color and texture. Our new method
successfully segments the five regions as shown in
Fig. 3b. The results can be compared to Hoang’s [8]. Not
shown in Fig. 3 is what happens as we lower the similarity
threshold so more regions merge: First, the left hand quad-
rants, which are similar in color and texture, merge; Sec-
ond, the shadow area in the lower-right quadrant
disappears. With the quaternion representation, it is also
possible to change the relative importance assigned to color
versus grayscale texture. When the segmentation is based
on intensity alone, the upper quadrants always merge. On



96 L. Shi, B. Funt / Computer Vision and Image Understanding 107 (2007) 88–96
the other hand, segmentation based on color alone always
merges the left quadrants.

Fig. 4 compares the quaternion segmentation to the
Markov random field segmentation [11]. The comparison
is hampered by the fact that the input image is based on
a scan of the published version of the original input image
rather than the original data file, which is no longer avail-
able. Further results on real images are shown in Fig. 5.
Figs. 6 and 7 show how the results vary when a smaller sub-
window size is used and when the threshold for region
merging is varied. Fig. 8 displays the first four QPCA basis
vectors and the four corresponding feature images
obtained by projecting the original textures onto each of
these basis vectors. The real component of a quaternion
vector is represented as a gray-scaled image, while the i,
j, and k components of a quaternion vector are represented
as an RGB color image. The ‘+’ and ‘�‘ signs labeling the
rows indicate that the image shows only the positive or
negative pixels. Pixels not corresponding to the sign are
zeroed and appear as black. As can be seen in Fig. 8(b),
the first basis vector is much smoother than the others.
The basis vectors in Fig. 8(d) and 8(e) are more representa-
tive of color edges. As a consequence, the image represent-
ing the quaternion texture map (Fig. 8f) contains
significant color and texture information because the first
basis vectors is the one accounting for the greatest
variance.

The total computation time required to segment a 192-
by-192 image using a 13-by-13 subwindow for every pixel
is 100 s using Matlab on a P4 1.6G CPU with 2G memory.
It requires 5 s to compute the quaternion eigen-bases of the
training set using IQSVD. The remaining time is spent on
projecting each texture subwindow (one per pixel) onto
the quaternion basis vector (13 s), classifying (18 s), and
merging (64 s). The computation time for quaternion tex-
ture segmentation might be reduced by using smaller train-
ing sets, since when the training set is small, it takes less
time to compute the eigen-basis and to construct the classi-
fier; however, there may be a trade-off in terms of accuracy.
The filtering step can be sped up when the texture subwin-
dow size is large by performing the convolution in Fourier
space using the quaternion Fourier transform [5].
6. Conclusion

Quaternions were used here to represent color in the
context of the automatic analysis of color texture. Color
texture features are determined by quaternion principal
components analysis of the data from many sub-windows
of an image. The use of quaternions means that overall
the proposed method is much less complicated than for
example that proposed in [8]. Given a quaternion operation
tool package, our method is straightforward to implement.
In addition, the number of user-controlled parameters in
our algorithm is fewer. The overall accuracy of the meth-
ods, however, is comparable. The quaternion representa-
tion of RGB color texture nicely encodes spatial intra-
channel and inter-channel relationships.

An incremental QPCA algorithm is introduced so that
larger training sets can be processed. Quaternion texture
analysis provides a simple and effective way of combining
the color and spatial texture features. The texture feature
maps show that the most significant features are contained
in the first quaternion eigenbasis. Experiments show that
these features can be used to cluster textures and then seg-
ment images into regions of homogenous texture. This
demonstrates once again that the quaternion representa-
tion of color, which treats color channels as single unit
instead of as separate components, truly is effective.

Acknowledgment

This work supported by the Natural Sciences and Engi-
neering Research Council of Canada.

References

[1] S.E. Grigorescu, N. Petkov, P. Kruizinga, Comparison of texture
features based on Gabor filters, IEEE Trans. Image Process. (11), No.
10, October 2002, 1160–1167.

[2] S. Arivazhagan, L. Ganesan, Texture segmentation using wavelet
transform, Pattern Recogn. Lett. (24), No. 16, December 2003, 3197–
3203.

[3] Z. Lu, W. Xie, J. Pei, J. Huang, Dynamic texture recognition by
spatiotemporal multiresolution histogram, Proc. IEEE Workshop on
Motion and Video Computing (WACV/MOTION’05) (2005) 241–
246.

[4] C.J. Evans, T.A. Ell, S.J. Sangwine, Hypercomplex color-sensitive
smoothing filters, IEEE Int. Conf. Image Process. (ICIP), 2000, I,
541–544.

[5] S.J. Sangwine, T.A. Ell, Hypercomplex Fourier transforms of Color
images, in: IEEE Internat. Conf. on Image Processing (ICIP 2001),
Thessaloniki, Greece, 2001, I, pp. 137–140.

[6] S.C. Pei, J.H. Chang, J.J. Ding, Quaternion matrix singular value
decomposition and its applications for color image processing, in:
IEEE Internat. Conf. on Image Processing (ICIP) 2003, I, pp. 805–
808.

[7] N. Le Bihan, S.J. Sangwine, Quaternion principal component analysis
of color images, IEEE Int. Conf. Image Process. (ICIP) (2003) 809–812.

[8] M.A. Hoang, J.M. Geusebroek, A.W.M. Smeulders, Color texture
measurement and segmentation, Signal Process. 85 (2005) 265–275.

[9] H.T. Nguyen, M. Worring, A. Dev, Detection of moving objects in
video using a robust motion similarity measure, IEEE Trans. Image
Proc. 9 (2000) 137–141.

[10] D. Alleysson, S. Süsstrunk, Spatio-chromatic PCA of a mosaiced
color image, in: Proc. IS&T Second European Conference on Color in
Graphics, Image, and Vision (CGIV 2004), April 2004, pp. 311–314.

[11] D. Panjwani, G. Healey, Markov random field models for unsuper-
vised segmentation of textured color images, IEEE Trans. Pattern
Anal. Mach. Intell. 17 (1995) 939–954.

[12] P.M. Hall, A.D. Marshall, R.R. Martin, Incremental eigenanalysis
for classification, in: Proc. British Machine Vision Conference, PH
Lewis and MS Nixon, Eds., 1998, pp. 286–295.

[13] B.S. Manjunath, S.Chandrasekaran, Y.F. Wang, An eigenspace
update algorithm for image analysis, in: Proceedings of International
Symposium on Computer Vision—ISCV, Coral Gables, FL, USA,
November 1995, pp. 551–556.


	Quaternion color texture segmentation
	Introduction
	Quaternions and quaternion filtering
	Quaternion texture segmentation method
	Incremental quaternion principle component analysis
	Experiments
	Conclusion
	Acknowledgment
	References


