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Abstract: In this article we introduce a new method for
estimating camera sensitivity functions from spectral power
input and camera response data. We also show how the
procedure can be extended to deal with camera nonlineari-
ties. Linearization is an important part of camera charac-
terization, and we argue that it is best to jointly fit the
linearization and the sensor response functions. We com-
pare our method with a number of others, both on synthetic
data and for the characterization of a real camera. All data
used in this study is available online at www.cs.sfu.ca/
�colour/data. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27,

152–163, 2002; Published online in Wiley InterScience (www.interscience.
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INTRODUCTION

The image recorded by a camera depends on three factors:
the physical content of the scene, the illumination incident
on the scene, and the characteristics of the camera. Because
the camera is an integral part of the resulting image, re-
search into image understanding normally requires a camera
model. The most common use of camera characterization is
to predict camera responses given an input energy spectral
distribution. This has applications in the development and
practical realization of color-related image-processing algo-
rithms, such as computational color constancy algorithms.

In this article we begin by introducing the standard cam-
era model used in color-oriented computer vision.1,2 Next

we discuss previous methods for fitting the parameters of
that model (camera sensor response as a function of wave-
length) and introduce a new method for obtaining these
parameters. We then show how this method can be extended
so that a proposed camera linearization function can be fit
simultaneously with the camera sensor response functions.
This extension takes advantage of the linearization informa-
tion contained in the data required to estimate camera sen-
sitivity. Furthermore, it is beneficial to allow the errors that
result from the inadequacy of the linearization fit to be
traded against errors that are a product of the inaccuracies in
the sensor function fit. Finally, we provide results for both
synthetic and real camera characterization experiments. All
data used in this study are available online.3

THE CAMERA MODEL

The goal of this work is to develop a model that predicts
image pixel values from input spectral power distributions.
In this section we discuss the general form of the model. For
the moment we assume that all camera controls such as
aperture are fixed. Let �(k) be the value for the kth channel
of a specific image pixel and let L(�) be the spectral power
distribution of the signal imaged at that pixel. Then we
model image formation by1,2:

��k� � F�k����k�� � � L��� R�k����d� (1)

where R(k) is a sensor sensitivity function for the kth chan-
nel, F(k) is a wavelength independent linearization function,
and �(k) is the linearized camera response. The key assump-
tion is that all nonlinear behavior is independent of wave-
length, given the sensor. This model has been verified as
being adequate for computer vision over a wide variety of
systems.2,4–8 This model is also assumed for the human
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visual system and forms the basis for the CIE colorimetry
standard (here F(k) is the identity function).

As we move around the image plane, the signal is atten-
uated because of geometric effects, notably vignetting,1 and
a fall-off proportional to the fourth power of the cosine of
the off-axis angle.1 These effects can be absorbed into either
R(k) or F(k). We defer these considerations by using only the
central portion of the image in our experiments.

Similarly, global effects on the overall magnitude of the
responses, such as camera lens aperture, and focal length,
can also be absorbed into either R(k) or F(k). In fact, for
much of the work in color, absolute light flux is somewhat
arbitrary, being under aperture control, and is usually ad-
justed by the user or the camera system to give a reasonable
image. Partly for this reason, work in color often uses a
chromaticity space that factors out luminance. The most
common such space is (r, g) defined by (R/(R � G � B),
G/(R � G � B)). In chromaticity space geometric atten-
uation effects can be ignored. On the other hand, if absolute
luminance is important, then these effects have to be taken
into account.

Successful use of the above model requires consideration
of the function F(k). F(k) reverses added gamma correction,
compensates for any camera offset, and corrects for other
more subtle nonlinearities. Even if R(k) is not required for an
application, F(k) can be important. For example, reliably
mapping into a chromaticity space such as (r, g) requires
either an estimate of F(k) or confidence that it is the identity
function and thus can be ignored. This can be the case with
a camera designed for scientific use, but inexpensive con-
sumer cameras usually do not give the operator the option to
disable nonlinear behavior.

For the practical application of the above model, contin-
uous functions of the wavelength, �, are replaced by sam-
plings of those functions. For example, our data were col-
lected with a PhotoResearch PR-650 spectroradiometer,
which measures data from 380 nm to 780 nm in 4-nm steps.
The function L(�) then becomes the vector L, R(k) (�)
becomes the vector R(k), and Eq. (1) becomes:

��k� � F�k����k�� � L � R�k� (2)

Using this notation, camera characterization can be defined
as finding F(k) and R(k).

MOTIVATION

We became interested in color camera characterization as
part of our research into computational color constancy.9

Practically all algorithms for color constancy assume that
the image pixels are proportional to the input spectral
power. This is equivalent to assuming either that F(k) is the
identity function or that it is known and has been applied to
the data. In other words, color constancy algorithms require
�(k) as input, as opposed to the more readily available �(k).

Determining the function R(k) is also important for com-
putational color constancy. Most algorithms, including the
ones we currently think are the most promising, require an

estimate of camera responses to the real world with its many
different surfaces and illumination conditions. Although it
is conceivable to obtain camera responses for a large num-
ber of surfaces under a given illuminant, it is impractical to
obtain this data for each camera. Furthermore, some algo-
rithms require this data for each possible illumination, in-
cluding combinations of several sources. It is thus far more
effective to first obtain reflectance functions and illuminant
spectra and then to use a camera model to predict the wide
range of camera responses required by these algorithms.

PREVIOUS WORK

Because F(k) is assumed to be independent of wavelength,
it can be determined by stimulating the camera with varying
intensities of a single light source obtained with neutral
density filters or by simply moving the source. An appro-
priate function can then be fitted to the data, or as an
alternative a smoothed version of the data can be used to
generate a lookup table. Vora et al.2 used this method to
verify that their Kodak DCS-200 digital camera was linear
over most of its operating range, and also to develop a
linearization curve for their Kodak DCS-420 digital camera.
They then determined R(k) for those cameras by stimulating
them with very narrow-band illumination produced by a
monochrometer.8 This method is conceptually very simple
and can be very accurate. However, the equipment required
to produce sufficiently intense narrow-band illumination at
uniformly spaced wavelengths is expensive and not readily
available. Hence, various researchers have investigated
methods for characterization that do not use such equip-
ment.

The general approach of these methods is to first measure
F(k) and then to measure a number of input spectra and the
corresponding camera responses. Let r(k) be a vector whose
elements are the linearized camera responses �(k), and let L
be a matrix whose rows are the corresponding sampled
spectra. Then Eq. (2) becomes:

r�k� � LR�k� (3)

Eq. (3) can be solved by multiplying both sides by the
pseudo-inverse of L. However, this does not work very well
because L is invariably rank deficient. L is rank deficient
because we are trying to determine R(k) using easily obtain-
able input spectra, and these tend to be of relatively low
dimensionality. If L were of full rank, then we would have
a method analogous to the monochrometer method. The
number of independent spectra needed for methods based
on matrix inversion is, of course, a function of the number
of samples for which we wish to solve. Wyszecki10 reported
results using matrix inversion on a similar problem where
the rank of L and the number of samples were explicitly
matched. In the more general case, where L is rank defi-
cient, results based on matrix inversion (or pseudo-inver-
sion) are very sensitive to noise because it is mainly the
noise that is being fitted, and the resulting sensor responses
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tend to have numerous large spikes and an abundance of
nonnegligible negative values [Fig. 3(a)].

Sharma and Trussell4,7 improved the prospects for a rea-
sonable solution by introducing various constraints on R(k).
First, instead of solving Eq. (3) exactly, they constrained the
maximum allowable error as well as the RMS error. In
addition, they constrained a discrete approximation of the
second derivative to promote a smooth solution. Finally,
they constrained the response functions to be positive. They
then observed that the constraint sets were all convex, and
so they computed a resulting constraint set using the method
of projection onto convex sets.

Hubel et al.11 also recognized that some form of smooth-
ness was necessary for a good solution, and they investi-
gated the Wiener estimation method, as described by Pratt
and Mancill,12 as a method for finding a smooth fit. They
found that generally the method produced good results.
They noted, however, that the method produced negative
lobes in the response functions and briefly mentioned using
the projection-onto-convex-sets method to remedy this
problem.

Sharma and Trussell’s contribution was the starting point
for some of our own work on this problem.6 Rather than
constrain the absolute RMS error, we chose instead to
minimize the relative RMS error. We then rewrote Sharma
and Trussell’s other constraints so that the entire problem
became a least-squares fit with linear constraints, for which
there are standard numerical methods readily available.
Once we had a fit for our camera sensors, we noted that they
were essentially unimodal and that once the sensors dropped
to a small value they remained small. On these grounds we
also constrained the sensors to be 0 outside a certain range
on subsequent runs. In this particular case this forced the
sensors response functions to be unimodal. This last step
needs to be applied with care, as it is possible that the
sensors are in fact nonzero beyond the points where the
main peaks drop to 0.

Recently, Finlayson et al. used a similar approach.13 They
constrained smoothness by restricting the sensors to be
linear combinations of the first 9–15 Fourier basis func-
tions. They also introduced a modality constraint expressed
by peak location and reported results constraining the sen-
sors to be unimodal and bimodal. They determined the best
fit for each proposed modality by stepping through all
possible peak locations. This method also requires care, as
the modality is often unknown. This method makes sense
when used in conjunction with Fourier smoothing, as that
method can introduce spurious peaks. As part of this work
we have implemented the modality constraint and Fourier-
based smoothing.

THE CHARACTERIZATION APPROACH

Our proposed characterization method is described in two
stages. First, we will explain the basic method, which esti-
mates the response vector for each channel R(k) on the
assumption that the linearization function, F(k), has been
found and applied. Second, we incorporate the estimation of

F(k) into the fitting procedure. This has the advantage that
the error in the two fits can be traded off against each other,
and data collected to find R(k) can be exploited to estimate
F(k) more accurately.

In our initial work6 we minimized the relative RMS error
in Eq. (3) subject to positivity constraints, smoothness con-
straints, and a constraint on the maximum allowable error
(and/or relative error). We have since found that it is better
to replace the constraint on smoothness with a regulariza-
tion term added to the objective function. Thus, we were
able to minimize the relative error and the nonsmoothness
measure together. This allows fitting the error to be traded
against nonsmoothness and vice versa. With the hard con-
straint used previously, there is no recourse in the case in
which making the sensor response slightly less smooth at a
particular location could substantially reduce the error. Sim-
ilarly, there is no recourse when a small increase in error
beyond the hard limit could substantially increase the
smoothness. These observations also apply to the Fourier
smoothing approach.

We minimized the relative RMS error for two reasons.
First, as discussed in more detail below, the variance of the
pixels values increases with their magnitude. And, second,
we have found that minimizing relative error better reduces
the error in chromaticity, which is difficult to minimize
directly but is often of most interest. However, for some
applications it may make more sense to minimize absolute
error or even to use a weighted combination of both. We
have also found that it is not generally necessary to use
Sharma and Trussell’s constraint on maximum allowable
error to get good results, but, again, limiting either the
absolute error or the relative error may be called for in some
cases and is easily added to the method as detailed below.

FIG. 1. The variance of red channel measurements versus
their values.
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To investigate the nature of the error in our pixel values,
we made 100 consecutive measurements of the Macbeth
ColorChecker� illuminated at 10 intensities. A pixel was
chosen for each of the 24 patches, and the mean and the
variance was computed for each of the 240 pixel/intensity
combinations over the 100 measurements. The means were
linearized by the method described later in this article. The
results for the red channel are plotted in Figure 1.

We considered the variance to be the sum of the intensity-
dependent and the intensity-independent parts. We further
assumed that the intensity-dependent variance to be a result
of photoelectron shot noise and thus to be proportional to
the mean.14 Thus, we expect that the observed variance
would be linear with the intensity, with an offset character-
izing the noise from other sources. This is more or less
consistent with the graph in Figure 1, but the spread of
values indicates that this model is perhaps overly simplified.

For the case where F(k) has already been found and
applied to the data, beginning with the formulation that
minimizes absolute error, the details are as follows. Let N
be the number of spectral samples used. First, the N-2 was
formed by the N second derivative matrix S:

S � �
� 1 2 � 1

� 1 2 � 1
� � �
� � �

� 1 2 � 1
� 1 2 � 1

� (4)

and then we solved

� L

�S
�R�k� � �r�k�

0
� (5)

in the least-squares sense, subject to linear constraints. This
is equivalent to minimizing the objective function

�
i

�Li � R�k� � �i
�k��2 � ��

i

�Si � R�k��2 (6)

where the first term expresses the error and the second term
expresses nonsmoothness and thus provides the regulariza-
tion. Coefficient � specifies the relative weight attributed to
the two terms. If � is 0 and there are no constraints, then this
becomes the pseudo inverse method. A serviceable value for
� is easily found by trial and error. To ensure positivity, we
used the constraint

R�k� � 0 (7)

To specify that the sensor response is 0 outside the range
[min, max], we can add the constraint:

Ri
�k� � 0 for i 	 min, i 
 max (8)

To specify that the absolute error is no more than a specified
positive value, �, we can add the constraint:

�i
�k� � � � Li � R�k� � �i

�k� � � (9)

This condition was not used for any of the results in this

article, but it may be interest and can be used to more
closely emulate the method of Sharma and Trussell.4,7

To minimize the relative error we need to replace Eq. (6)
by:

�
i

�Li � R�k� � �i
�k�

�i
�k� �2

� ��
i

�Si � R�k��2 � �
i

�Li � R�k�

�i
�k� � 1�2

� ��
i

�Si � R�k��2 (10)

One way to express this is to use a modified version of L,
Lrel, which is simply the rows of L divided by the corre-
sponding sensor response. Formally, Lref is given by:

Lrel � �diag�r�k����1 � L (11)

We then replace Eq. (5) with:

�Lrel

�S
�R�k� � �1

0
� (12)

Similar to the constraint of Eq. (9), if we require a constraint
limiting the relative error to less than a positive amount, �,
we can use:

1 � � � LrelR
�k� � 1 � � (13)

where the inequalities are applied to each component of the
vector LrelR

(k). As with Eq. (9), this constraint was not used
for any results reported in this article.

Note that minimizing the relative error may need to be
modified slightly to deal with a very small �(k). Such data is
likely to be inaccurate for a variety of reasons. Thus, we
need to either ignore small values or give the corresponding
data row less weight in the fitting process. Eq. (12) can be
interpreted as a weighted version of Eq. (5), with the
weighting inversely proportional to �(k). Thus, it is natural
and easy to put an upper bound on this weighting to safe-
guard against a small �(k) when excluding them outright is
not desired. These considerations are not relevant for the
experiments with real data reported below, as there was no
data with small values of �(k) because of the relatively large
response of our camera to no light [specifically (11.05,
13.06, 12.36)].

Following Finlayson et al.,13 we can constrain the sensors
to be unimodal given a specification of the peak location
imax
(k) with the following constraints:

Ri�1
�k� � Ri

�k� for i � imax
�k� and Ri

�k� � Ri�1
�k�

for i � imax
�k� (14)

The procedure for multiple peaks is similar. Of course,
because the peak locations are not known, this method
requires trying all possible peak locations and choosing the
peak locations that produce the least error.

Finlayson et al.13 also proposed ensuring smoothness by
restricting the sensor response functions to being linear
combinations of Fourier basis functions. To implement this
approach, we formed a matrix B whose rows are the first D
Fourier basis functions, with one period coinciding with the
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wavelength range used. Then the sensor functions can be
expressed as:

R�k� � Ba�k� (15)

where all the a(k) are the Fourier coefficients. Finlayson et
al. substituted Eq. (15) into all relevant equations and then
used a(k) as the unknowns in their quadratic programming
problem. This has a small advantage in reducing the size of
the problem, and we used this method for the results on
synthesized data. Unfortunately, using the Fourier basis
constraint in this form is problematic when used in conjunc-
tion with the linearization fitting described shortly. Thus, to
provide results with the linearization fitting, we used a
different form of the constraint. Using the orthogonality of
the rows of B

a�k� � BTR�k� (16)

then

R�k� � BBTR�k� (17)

and

�BBT � 1�R�k� � 0 (18)

For the experiments on real data, we used Eq. (18) as
equality constraints on the least-squares minimization prob-
lem. Alternatively, it is also possible to use Eq. (18) in place
of the regularization rows of Eqs. (5) or (12). If Eq. (18) is
used in this manner, then the adherence to the Fourier
smoothing constraint increases with increasing values of �.

The methods developed so far assume that the function
F(k) has been found and applied as a preliminary step.
However, the body of data collected to find R(k) also con-
tains information about F(k), and because this data set needs
to be comprehensive, it makes sense to use it for the final
determination of F(k). Therefore, we propose fitting R(k)

and F(k) together. This has the advantage that fitting errors
from F(k) and R(k) can be traded against each other. We first
made a rough estimate of F(k), which we used to propose a
parameterized expression for it. We then fit the parameters
for F(k) and R(k) simultaneously. Next, we provide a spe-
cific example of such a strategy.

The Sony DXC-930 camera that we used for our exper-
iments is quite linear for most of its range, provided it is
used with gamma disabled. However, in all three channels it
has a substantial response to no light (camera black) as well
as a slight nonlinearity for small pixel values. Because of
this nonlinearity, a line fitted to the linear part does not
intersect the response axis at the camera black, and simply
linearizing the camera by subtracting the camera black leads
to errors in chromaticity. Therefore, the nonlinearity must
be taken into account, even if it is not explicitly estimated.
Figure 2 shows the slight nonlinearity for the red channel.
The other two channels are similar.

The fit shown in Figure 2 was found using a simple linear
fit [see Eq. (20) below] with pixel values greater than 30.
This shows that linearization information is available in the
data set to be used to find R(k). To proceed with our strategy

of explicitly fitting the nonlinearity, we need to parameter-
ize it. The particular form of the parameterization is some-
what arbitrary and will vary substantially from case to case.
With a little experimentation we found that the nonlinearity
of our camera could be approximated by:

F�k�� x� � x � a0
�k� � a1

�k�e�Ck� x�bk� (19)

where bk is the camera black for channel k and Ck is a
constant that must be found by trial and error but was found
to be quite stable. If we use the simpler form:

F�k�� x� � x � a0
�k� (20)

then we would simply be fitting a camera offset simulta-
neously with R(k). This would be a reasonable approach for
our camera if we did not wish to use smaller pixel values. In
general, the parameters of the approximation function must
generate a reasonable collection of response functions that
roughly fit the nonlinearity so that the overall fitting proce-
dure can find a good estimate of F(k)( x). In addition, the
parameters that are fitted must be linear coefficients. For
example, we can only directly fit for a0

(k) and a1
(k); Ck must

be found by trial and error.
To find the parameters for the approximation of F(k)( x)

simultaneously with R(k) when fitting for absolute error, we
replace Eq. (5) with:

� L 1 e�Ck�r�k��bk�

�S 0 0 � � � R�k�

a0
�k�

a1
�k�

� � � r�k�

0 � (21)

where the arithmetic in the upper right block of the matrix
is done elementwise as needed. Similarly, in the case of
fitting for relative error, we replace Eq. (12) with:

� Lrel

1

r�k�

e�Ck�r�k��bk�

r�k�

�S 0 0
� � � R�k�

a0
�k�

a1
�k�

� � � 1
0 � (22)

where, again, the arithmetic in the upper right block of the

FIG. 2. The nonlinearity of the red channel response for the
Sony DXC-930 camera used for the sensor fitting experi-
ments. The fit shown is a simple linear fit on pixel values
greater than 30. The other two channels have similar curves.

156 COLOR research and application



matrix is done elementwise as needed. Note that the re-
sponse vectors r(k) now correspond to the observed camera
responses, �(k), in Eq. (2), in contrast to the earlier formu-
lation, where r(k) corresponded to the linearized camera
responses, �(k).

In all cases the entire fitting procedure is a least-squares
minimization problem with linear constraints, or equiva-
lently, it can be viewed as a quadratic programming prob-
lem. Such problems can be solved with standard numerical
techniques for which software is readily available. We used
the freely available SLATEC Fortran library routine DLSEI.
The routine DBOCLS in that library may also be used. A
third option is the Matlab routine “qp.”

EXPERIMENTS WITH SYNTHETIC DATA

Experiments with synthetic data are useful because the
sensor functions sought are known. For these experiments
we used a linear camera model with sensors similar to the
real camera sensors determined in the next section. Given
the sensors and the set of 598 input spectra used in the real
calibration experiment, we synthesized responses using Eq.
(3). To all responses we added 5% relative Gaussian noise.
Under these conditions it should be easy to obtain a relative
fitting error of roughly 5%. However, some methods, such
as the pseudo-inverse method, are expected to overfit the
characteristics of the specific input data set. Thus, a more

interesting error measure is the difference between the ac-
tual sensors and the computed ones. Because the actual
sensors are relatively smooth and nonnegative, we expect
methods that promote these characteristics to do better.

The results are shown in Table I, and the sensors obtained
using a selection of the methods plotted together with the
actual sensors are shown in Figure 3. As predicted, the
lowest fitting error was obtained using the pseudo-inverse,
as it is the least constrained method, but the resulting sensor
response functions are very poor. The results show that
adding constraints for positivity and the regularization equa-
tions for smoothness do not overly increase the fitting error
but significantly reduce the error in the sensor response
functions. The best match of the sensor response functions
was obtained by in addition using the range constraints. But
it note that human input was used in deciding which the
limits to use and that this method will be of less use when
the nature of the sensors is more in question.

Fourier smoothing proved to be less effective that the
simple regularization approach proposed in this work. The
results shown in Table I indicate there is no choice in the
number of basis functions that produce results comparable
to our approach. Fourier smoothing puts constraints on the
sensor functions, which are not necessary for simple
smoothness, and many good candidates for the sensor re-
sponse functions cannot be considered. In contrast, the
approach proposed in this work allows the degree of

TABLE I. Results of fitting experiments on generated data. The first error measure is the relative error (RMS) over
the three sensor functions for the separate channels. This error was minimized by the fitting process, and
therefore the addition of constraints always leads to an increase in error. the error measure in the second column
is an estimate of how well the fitting process estimated the actual sensor response functions used to generate
the data. The maximum value of this error measure is 1, which is very nearly reached with the pseudo-inverse
method.

Fitting method

Average of relative
error over the 3
sensor-response

functions (%)

RMS difference between fitted sensor
curve and target, normalized by

maximum of the fit and target norms,
averaged over the 3 sensors

Pseudoinverse 4.158 0.9997
Pseudoinverse with positivity 4.756 0.8157
Pseudoinverse with positivity and modality 4.793 0.2412
Fitting with positivity and smoothing 4.812 0.0495
Fitting with positivity, smoothing, and range 4.820 0.0424
Fitting with positivity, smoothing, and modality 4.815 0.0520
11 Fourier basis functions with positivity 8.445 0.1826
13 Fourier basis functions with positivity 5.788 0.1303
15 Fourier basis functions with positivity 5.160 0.1172
18 Fourier basis functions with positivity 5.021 0.1056
21 Fourier basis functions with positivity 4.876 0.0712
25 Fourier basis functions with positivity 4.821 0.0923
31 Fourier basis functions with positivity 4.807 0.0921
39 Fourier basis functions with positivity 4.796 0.2357
11 Fourier basis functions with positivity and modality 25.558 0.3967
13 Fourier basis functions with positivity and modality 17.063 0.2835
15 Fourier basis functions with positivity and modality 10.137 0.1938
18 Fourier basis functions with positivity and modality 5.973 0.1514
21 Fourier basis functions with positivity and modality 5.193 0.1413
25 Fourier basis functions with positivity and modality 5.000 0.0911
31 Fourier basis functions with positivity and modality 4.868 0.1019
39 Fourier basis functions with positivity and modality 4.814 0.0982
50 Fourier basis functions with positivity and modality 4.804 0.1030
75 Fourier basis functions with positivity and modality 4.798 0.1367
100 Fourier basis functions with positivity and modality 4.793 0.2280
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smoothness to be traded against the fitting error, which
yields more flexible fitting.

EXPERIMENTS WITH REAL DATA

We investigated camera characterization for a Sony DXC-
930 3-chip CCD camera. To obtain a comprehensive set of
calibration data, we automated the collection of input en-

ergy spectra and the corresponding camera responses. Our
target was a Macbeth ColorChecker�, which has 24 differ-
ent colored patches that we illuminated with a number of
illuminant/filter combinations. The black patch of the chart
was not used because it did not reflect enough light with the
darker illuminants for reliable spectroradiometer measure-
ments. The main criterion for the apparatus was to ensure
that the camera and the spectroradiometer measured the

FIG. 3. The results of various fitting methods on synthetic data. The data were generated from idealized sensors based on
the actual sensors of our Sony DXC-930 camera; 5% relative Gaussian noise was added. The results of various fitting
methods that promote smooth results by constraining the solution as a linear combination of a specified number of Fourier
basis functions.
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same signal. We also required that the camera data was
always measuring the center of the image. Therefore, we
mounted the color checker horizontally on an XY table that
moved it under computer control. The camera and the
spectroradiometer were mounted on the same tripod, with
their common height controlled with the tripod head-height
adjustment mechanism. Rather than aim them simulta-
neously at the target, we decided instead to set the optical
axes to be parallel. This meant that the tripod head had to be
raised and lowered between capturing camera data and
spectroradiometer data. Thus, we captured an entire chart’s

worth of camera data before capturing an entire chart’s
worth of spectra. Twenty-six illuminant/filter combinations
were used in conjunction with the 23 patches, providing 598
measurements (available on-line3). For all fitting experi-
ments we excluded response values exceeding 240.

We took additional steps to obtain clean data. As indi-
cated above, it is important that the camera and the spec-
troradiometer are exposed to the same signal. To minimize
the effect of misalignment, we made the illumination as
uniform as possible. To reduce the effect of flare, the target
was imaged through a hole in a black piece of cardboard,

FIG. 3. (Continued)
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exposing the region of interest but as little else as was
practical. We extracted a 30-by-30 window from the image
that corresponded as closely as possible to the area used by
the spectroradiometer. The 8-bit RGB values of the pixels in
this window were averaged. Finally, the camera measure-
ments were averaged over 50 frames to further reduce the
effect of photon shot noise, and the spectroradiometer mea-
surements were averaged over 20 capture cycles.

We considered three approaches to linearization. The
most naive method is simply to subtract the camera black
from the data but otherwise assume the data is linear. The
second method makes the assumption that the camera is
linear except at the two extremes. Thus, the intercept of the
linear is made to fit a parameter of the fitting process [as in
Eq. (20)]. Because of the curvature evident in Figure 2, this
method results in the subtraction of an offset that is some-
what less than the camera black used in the first approach.
Finally, in the third method the results of parameterizing the
nonlinearity are provided, as developed above.

Each linearization method was used in conjunction with a
number of methods for fitting the camera response func-
tions. The compiled results are shown in Table II, all of
which are based on minimizing the relative error. The
regularization smoothing parameter, �, was initially set by
trial and error to a value that provided a reasonably smooth
sensor functions. We did not attempt to tune � beyond a
factor of 2, and we used the same value for all variants. For
the Fourier smoothing method we provide results for a wide
range of choices for the number of basis functions.

The results in Table II show that for our camera, fitting
for the linearity in conjunction with the sensor functions
substantially reduced the error compared to both subtraction
of camera offset and fitting for the intercept. Although we
expected some benefit, the extent of the improvement was

beyond what we expected, as our camera is actually quite
linear.

A comparison for one of the methods of a fitting based on

TABLE II. Results of fitting experiments on data captured as explained in the text. Each linear-based fitting
method was used in conjunction with three linearity fitting methods.

Linear fitting method

Relative RGB error with
linearity fitting limited to

subtraction of camera black

Relative RGB error
with fitting of camera

linearity intercept

Relative RGB
error with full
linearity fitting

Pseudoinverse 0.0262 0.0240 0.0095
Pseudoinverse with positivity 0.0427 0.0303 0.0107
Pseudoinverse with positivity and modality 0.0434 0.0309 0.0115
Fitting with positivity and smoothing 0.0448 0.0316 0.0117
Fitting with positivity, smoothing, and range 0.0448 0.0322 0.0146
Fitting with positivity, smoothing, and modality 0.0447 0.0317 0.0123
11 Fourier bases with positivity 0.1069 0.0720 0.0606
13 Fourier bases with positivity 0.0699 0.0443 0.0297
15 Fourier bases with positivity 0.0560 0.0360 0.0189
18 Fourier bases with positivity 0.0490 0.0335 0.0166
21 Fourier bases with positivity 0.0473 0.0324 0.0137
25 Fourier bases with positivity 0.0458 0.0317 0.0120
31 Fourier bases with positivity 0.0447 0.0312 0.0116
39 Fourier bases with positivity 0.0439 0.0309 0.0112
11 Fourier bases with positivity and modality 0.2626 0.2402 0.5775
13 Fourier bases with positivity and modality 0.1878 0.1586 0.4253
15 Fourier bases with positivity and modality 0.1215 0.0907 0.0806
18 Fourier bases with positivity and modality 0.0675 0.0458 0.0315
21 Fourier bases with positivity and modality 0.0497 0.0344 0.0196
25 Fourier bases with positivity and modality 0.0474 0.0333 0.0168
31 Fourier bases with positivity and modality 0.0454 0.0320 0.0138
39 Fourier bases with positivity and modality 0.0449 0.0315 0.0123

FIG. 4. RMS relative error of various fitting methods versus
sample size. The more constrained methods tend to more
robust as the number of sample points decreases, but have
higher error when the number of points is large. For exam-
ple, the unconstrained pseudo-inverse method (first curve)
has the least error when found using the full data set but
degraded rapidly with decreasing sample size. As the num-
ber of data points decreased, we became more reliant on
prior conception of the shape of the functions.
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absolute error with a fitting based on relative error is shown
in Table III. Not surprisingly, when the data were fit using
relative error, the relative error was lower and the absolute

error higher than when the data were fit using absolute error.
More significantly, fitting with relative error substantially
reduced the absolute error in (r, g) chromaticity, which is

FIG. 5. Sensor response functions found using a variety of fitting of the data collected, as described in the text. All methods were
used in conjunction with linearity fitting. These sensors correspond to the results in Figure 4, for the full sample size of 598 points.
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difficult to minimize directly and is key for many applica-
tions. Table III also includes L�a�b error for the two
objective functions.

Unlike with the synthetic case, true camera sensor func-
tions are not known. Thus, to investigate the robustness of
the fitting methods, we determined the camera model using
subsets of the data and computed how well the sensor
responses for the entire data set were predicted. We used
subsets of sizes 400, 200, 100, 50, 25, and 12, as well as the
full data set (598 data points). We averaged the results over
100 random selections of the above subset sizes. Each data
subset was augmented with the data for no light. Each fitting
method was used in conjunction with the linearization
method developed above. In this experiment we restricted
our attention to 21 basis functions for the Fourier smoothing
method. Figure 4 shows the results for each fitting method
plotted against the number of data sample points on a log
scale. Figure 5 shows the sensor response functions corre-
sponding to each of these methods when all the data were
used.

When the full data set was used for fitting, adding con-
straints invariably increased the error, as expected. How-
ever, as the number of points used for fitting decreased, the
more constrained methods proved to be more robust. This
was best illustrated by the pseudo-inverse method. It had the
least error when fitted using the entire data set (which is
exactly the test data set), but its performance deteriorated
very rapidly when its parameters were determined using
smaller and smaller subsets of the data. Adding positivity
led to a big improvement in robustness for all the methods
(for simplicity only the pseudo-inverse method is shown
without positivity). As the number of points in the subset
became very small, the unimodality constraint became in-
creasingly useful. Of course, a small data set could not be
used to determine with confidence that sensors are in fact
unimodal. Interestingly, the pseudo-inverse method with
positivity and unimodality produced surprisingly low error,
even though Figure 5 and the synthetic experiments suggest
that the corresponding sensors are not likely to be close to
the real sensors. This result reflects the relatively low di-
mensionality of the input spectra relative to the 101 samples
provided by the spectroradiometer. The constraint on the
range of the sensors also added robustness as evaluated by
the deterioration in performance when the sample size is
small. However, as in the case of the modality constraint,
when the amount of data is small, it is hard to be confident
in the range, and therefore it can only be used if it is already
available.

CONCLUSIONS

We have developed and tested a new method for fitting a
common camera model used in color research. By promot-
ing smoothness and using constraints on the sensor response
functions such as positivity, we obtained a result that is both
reasonable and robust. We have found that it is best to
promote smoothness by adding a regularization term to the
minimization expression rather than constraining it, as has
been done in earlier work by others and ourselves. We also
investigated fitting a small nonlinearity in the camera re-
sponse simultaneously with the sensor response functions.
This was effective because errors from the lack of fit of the
two model parts can be traded against each other for a better
overall characterization. This approach also takes advantage
of the linearization information inherent in the data required
to determine the sensitivity functions. Finally, our experi-
ments support the hypothesis that it can be preferable to
minimize the relative error, especially if chromaticity accu-
racy is more important than overall accuracy.

ACKNOWLEDGMENTS

We are grateful for the financial support of Hewlett-Packard
Corporation and the Natural Sciences and Engineering
Council of Canada. In addition, we acknowledge the efforts
of Lindsay Martin, who helped greatly with the data collec-
tion.

1. Horn BKP. Robot Vision. Cambridge (MA): MIT Press; 1986.
2. Vora PL, Farrell JE, Tietz JD, Brainard DH. Digital color cameras. 1.

Response models: technical report [Internet]. Hewlett-Packard Labo-
ratory; 1997. Contract No: HPL-97-53. Available from: http://www.
hpl.hp.com/techreports/97/HPL-97-53.html.

3. Barnard K, Martin L, Funt B, Coath A. Data for colour research
[Internet]. Available from: http://www.cs.sfu.ca/�colour/data.

4. Sharma G, Trussell HJ. Characterization of scanner sensitivity. Pro-
ceedings of the IS&T and SID’s Color Imaging Conference: Trans-
forms & Transportability of Color. Springfield (VA): The Society for
Imaging Science and Technology; 1993; p. 103–107.

5. Healey GE, Kondepudy R. Radiometric CCD camera calibration
and noise estimation. IEEE Pattern Anal Mach Intell 1994;16:267–
276.

6. Barnard K. Computational colour constancy: Taking theory into prac-
tice [MSc thesis]. Burnaby [British Columbia, Canada]: Simon Fraser
University; 1995. Available from: ftp://fas.sfu.ca/pub/cs/theses/1995/
KobusBarnardMSc.ps.gz.

7. Sharma G, Trussell HJ. Set theoretic estimation in color scanner
characterization. J Elec Imag 1996;5:479–489.

8. Vora PL, Farrell JE, Tietz JD, Brainard DH. Digital color cameras. 2.
Spectral response; Technical report [Internet]. Hewlett-Packard Lab-

TABLE III. A comparison of fitting based on relative error with fitting based on absolute error as one of the
preferred methods (positivity, smoothing, and unimodality). Linearization is fitted simultaneously with the sensor
response functions as in the third column of Table II.

Error
minimized

RMS relative
RGB error

RMS absolute
RGB error

RMS absolute error in
r � R/(R � G � B)

RMS absolute error in
g � G/(R � G � B)

RMS L�a�b
error

Absolute 0.0141 0.79 0.0052 0.0056 0.303
Relative 0.0123 0.89 0.0027 0.0044 0.285

162 COLOR research and application



oratory; Contract No: HPL-97-54, Available from: http://www.hpl.
hp.com/techreports/97/HPL-97-54.html.

9. Barnard K. Practical colour constancy [PhD Thesis]. Burnaby [British
Columbia, Canada]; Simon Fraser University School of Computing
Science; 1999. Available from: ftp://fas.sfu.ca/pub/cs/theses/1999/
KobusBarnardPhD.ps.gz.

10. Wyszecki G. Multifilter method for determining relative spectral sen-
sitivity functions of photoelectric detectors. J Opt Soc Am 1960;50:
992–998.

11. Hubel PM, Sherman D, Farrell JE. A comparison of method of sensor
spectral sensitivity estimation. Proceedings of the IS&T/SID 2nd

Color Imaging Conference: Color Science, Systems, and Applications.
The Society for Imaging Science and Technology; Springfield (VA):
1994; p 45–48.

12. Prat WK, Mancill CE. Spectral estimation techniques for the spectral
calibration of a color image scanner. Appl Opt 1976;15:73–75.

13. Finlayson G, Hordley S, Hubel P. Recovering device sensitivities with qua-
dratic programming. The Proceedings of the IS&T/SID Sixth Color Imaging
Conference: Color Science, Systems and Applications, Springfield (VA): The
Society for Imaging Science and Technology; 1998. p 90–95.

14. Holst GC. CCD Arrays, cameras, and displays. 2nd ed. Bellingham
(WA): SPIE Press; 1998.

Volume 27, Number 3, June 2002 163


