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Abstract 
 
The technique of support vector regression is applied to 
the problem of estimating the chromaticity of the light 
illuminating a scene from a color histogram of an image 
of the scene. Illumination estimation is fundamental to 
white balancing digital color images and to 
understanding human color constancy.  Under 
controlled experimental conditions, the support vector 
method is shown to perform better than the neural 
network and color by correlation methods. 
 
Introduction 
 
Accurate estimation of the spectral properties of the light 
illuminating an imaged scene by automatic means is an 
important problem. It could help explain human color 
constancy and it would be useful for automatic white 
balancing in digital cameras. Many papers have been 
published on the topic. Some aim to recover the full 
spectrum of the illumination, while others aim to recover 
either a 2-parameter (eg., xy or rg) estimate of its 
chromaticity[18, 22] or a 3-parameter description of its 
color (e.g., XYZ or RGB)[10,12].  
 
The new method we propose here is similar to previous 
work by Funt et. al. [18, 19] and Finlayson et. al. [22] in 
that it aims to recover the chromaticity of the scene 
illumination based on the statistical properties of 
binarized chromaticity histograms; however, the 
proposed method replaces the neural networks and 
Bayesian statistics of these previous methods with 
powerful support vector machine regression. 

 
Vapnik’s[1,2] Support Vector Machine theory has been 
applied successfully to a wide variety of classification 
problems [3,4,5,6]. Support vector machines have been 
extended as well to regression problems including 
financial market forecasts, travel time prediction, power 
consumption estimation, and highway traffic flow 
prediction [7,8,9]. 
 
Depending on the problem domain support vector 
machine based regression (SVR) can be superior to 
traditional statistical methods in many ways. SVR 
enables inclusion of a minimization criterion into the 
regression, training can be easier, and it achieves a global 
rather than local optimum. It also facilitates explicit 
control of the tradeoff between regression complexity 
and error. We show how the illumination estimation 
problem can be formulated in SVR terms and find that, 
overall, SVR leads to slightly better illumination 
estimates than the neural net and color by correlation 
methods. 
 
1. Support Vector Regression 
 
SVR estimates a continuous-valued function that 
encodes the fundamental interrelation between a given 
input and its corresponding output in the training data. 
This function then can be used to predict outputs for 
given inputs that were not included in the training set. 
This is similar to a neural network. However, a neural 
network’s solution is based on empirical risk 
minimization. In contrast, SVR introduces structural risk 
minimization into the regression and thereby achieves a 
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global optimization while a neural network achieves only 
a local minimum [26].   
 
Most classical regression algorithms require knowledge 
of the expected probability distribution of the data. 
Unfortunately, in many cases, this distribution is not 
known accurately. Furthermore, many problems involve 
uncertainties such that it is insufficient to base a decision 
on the event probability alone. Consequently, it is 
important to take into account the potential cost of errors 
in the approximation. SVR minimizes the risk without 
prior knowledge of the probabilities.  This paper 
explores the extent to which the relatively new tool of 
SVR can improve upon the performance of related 
likelihood estimation illumination estimation algorithms. 
 
Smola and Schölkopf [1] provide an introduction to SVR. 
Some simple intuition about it can be gained by 
comparison to least-squares regression in fitting a line in 
2-dimensions.  Least squares regression minimizes the 
sum of squares distance between the data points and the 
line.  SVR maximizes the space containing the data 
points subject to minimization of the distance of the 
points to the resulting line. The width of the space is 
called the ‘margin’. Points within an ‘insensitivity’ 
region are ignored. The technique represents the region 
defined by the margin by a subset of the initial data 
points. These data points are called the support vectors. 
SVR is extended to the fitting of a non-linear function by 
employing the kernel trick[1] which allows the original 
non-linear problem to be reformulated in terms of a 
kernel function. The reformulated problem is linear and 
can be solved using linear SVR. We used the Chang and 
Lin [25] SVR implementation.  
 
2. SVR for Illumination Chromaticity Estimation  
 
In this section, we discuss how the SVR technique can be 
applied to analyze the relationship between the image of 
a scene and the chromaticity of the illumination 
chromaticity incident upon it.  
 
As introduced in the neural network method[19], we will 

first use binarized 2D chromaticity space histograms to 
represent the input image data. Later, we extend these 
histograms to 3D to include intensity as well as 
chromaticity. Chromaticity histograms have the potential 
advantage that they discard intensity shading which 
varies with the surface geometry and viewing direction, 
but is most likely unrelated to the illumination’s spectral 
properties.  
 
The training set consists of histograms of many images 
along with the measured chromaticities of the 
corresponding scene illuminants.  Each image’s 
binarized chromaticity histogram forms an SVR binary 
input vector in which each component corresponds to a 
histogram bin. A ‘1’  or ‘0’ indicates that the presence or 
absence of the corresponding chromaticity in the input 
image. Partitioning the chromaticity space equally along 
each component into N equal parts yields N × N bins. 
The resulting SVR binary input vector is of size N2. We 
experimented with various alternative choices for N and 
eventually settled on N=50.  All the results reported 
below are based on this choice. With N = 50 the 
chromaticity step size is 0.02. With 1gr,0 ≤≤ only 

half these bins can ever be filled, so a sparse matrix 
representation was used. Support vector regression then 
finds the function mapping from image histograms to 
illuminant chromaticities.  
 
Since some other illumination estimation methods [12,15] 
(gamut mapping and color by correlation) benefit from 
the inclusion of intensity data, it is natural to consider it 
in the SVR case as well. The neural network method has 
thus far not been applied to 3D data (chromaticity plus 
intensity) because the number of input nodes becomes 
too large and the space too sparse for successful training, 
given the relatively small size of the available training 
sets.  
 
Support vector regression handles sparse data reasonably 
well, so we experimented with 3D binarized histograms 
in the training set. Intensity, defined as L = R + G + B, 
becomes the third histogram dimension along with the r 
and g chromaticity. We quantized L into 25 equal steps, 
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so the 3D histograms consist of 62,500 (25x50x50) bins. 
2.1 Histogram Construction  
 
To increase the reliability of the histograms, the images 
are preprocessed to reduce the effects of noise and pixels 
straddling color boundaries. We have chosen to follow 
the region-growing segmentation approach described by 
Barnard et. al. [15] This also facilitates comparison of 
the SVR method to the other color constancy methods he 
tested. The region-growing method is good because the 
borders it finds are perfectly thin and connected. 
Membership in a region is based on chromaticity and 
intensity. A region is only considered to be meaningful if 
it has a significant area. For the sake of easy comparison 
we used the same thresholds as [15]; namely, to be in the 
same region, the r and g chromaticities at a pixel must 
not differ from their respective averages for the region 
containing the pixel by more than 0.5% or its intensity by 
10%. Also, regions that result in an area of fewer than 5 
pixels are discarded. The RGB’s of all pixels within each 
separate region are then averaged, converted to L, r, g 
and then histogrammed. 
 
2.2 K-Fold Cross Validation for SVR Parameters 
 
The performance of SVR is known to depend on its 
insensitivity parameter ε, the choice of kernel function 
associated parameters. Different kernel functions work 
better on some problem domains than others. Four of the 
commonly used kernel functions are listed in Table 1. 
From a practical and empirical standpoint, the bigger the 
insensitivity parameter ε, the fewer the support vectors, 
and the higher the error in estimating the illumination. 
After much experimentation with different ε, we fixed its 
value to be 0.0001.  
 
In the case of SVR for illumination estimation, the best 
choice of kernel function and its parameters may depend 
on the training set. We eliminated the Sigmoid kernel 
function from further consideration since it is invalid for 
some values of the parameter r and focus instead on the 
RBF and polynomial kernel functions. 
 

 
.Name Definition Param. 

Linear K(xi,xj) = (xi) Txj --- 
Polynomial K(xi,xj) = [(xi) Txj+1]d d 
Radial Basis 
Function (RBF) K(xi,xj) =

2
ji xx

e
−−γ  

γ 

Sigmoid* K(xi,xj)=tanh[(xi) Txj+r] r 
(*: For some r values, the kernel function is invalid) 

Table 1 Admissible Kernel Functions 
.  
This leaves the choice of either the RBF or polynomial 
kernel functions and for each of these kernels the 
parameters: penalty C and width γ for the RBF kernel 
function; or penalty C and exponential degree d for 
polynomial kernel function. The parameters γ and d 
control the corresponding kernel function’s shape. The 
kernel choice and parameter settings are made during the 
training phase by k-fold cross validation, which involves 
running the training using several different parameter 
choices and then selecting the choice that works best for 
that particular training set. This is described in more 
detail below. 
 
For the KBF kernel function, we allow the penalty 
parameter to be chosen from 4 different values C ∈{0.01, 
0.1, 1, 10} and the width value from γ ∈{0.025, 0.05, 0.1, 
0.2}. For the polynomial kernel function, we used the 
same 4 penalty candidates and selected the best degree d 
from the set {2 3 4 5}. Thus for each training data set, 32 
test cases (2 kernel choices with 16 pairs of parameter 
settings each) will be tested to find the best choice. 
 
Among the algorithms generally used to find the best 
parameters for support vector regression, we chose k-fold 
cross validation because it does not depend on a priori 
knowledge or user expertise and it handles the possibility 
of outliers in the training data. The disadvantage of the 
k-fold method is that it is computationally intensive.  
 
In k-fold cross validation, the whole training set is 
divided evenly into k distinct subsets. Every kernel 
function and each of its related parameters forms a 
candidate parameter setting. For any candidate parameter 
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setting, we conduct the same process k times during 
which (k-1) of the subsets are used to form a training set 
and the remaining subset is taken as the test set. The 
RMS chromaticity distance errors (see section 3.1 for 
definition) from k trials are averaged to represent the 
error for that candidate parameter setting. The parameter 
setting leading to the minimum error is then chosen and 
the final SVR training is done using the entire training 
set based on the chosen parameter setting.  
 
3. Experiments 
 
We tested the proposed SVR-based illumination 
estimation method on both synthetic and real images. 
The implementation is based on the SVR implementation 
by Chang and Lin [25]. To this we added a Matlab 
interface which reads data files representing the image 
histograms and associated illumination chromaticities. 
Each row in the training data file represents one training 
image and consists of two parts: the true illumination 
chromaticity followed by the bin number for each 
non-zero histogram bin. 
 
Barnard et. al. [14,15] reported tests of several 
illumination estimation methods, including  
neural-network based and color by correlation. We have 
tried to follow their experimental procedure as closely as 
possible and used the same image data so that SVR can 
be compared fairly to these other methods.  
 
3.1 Error Measures 
There are two basic error measures we use. The first is 
the distance between the actual (ra,ga) and estimated 
chromaticity of the illuminant. (re,ge) as: 

 )1()()( 22
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We also compute the root mean square (RMS) error over 
a set of N test images as: 
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The second error measure is the angular error between 
the chromaticity 3-vectors when the b-chromaticity 

component is included. Given r and g, b = 1 – r – g. Thus, 
we can view the real illumination and estimated 
illumination as two <r,g,b> vectors in 3D chromaticity 
space and calculate the angle between them. The angular 
error represented in degrees is: 
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We also compute the RMS angular error over a set of 
images.   
3.2 Synthetic Data Training, Real Data Testing 
 
The first tests are based on training with synthesized 
image data constructed using the 102 illuminant spectra 
and 1995 reflectances described by Barnard [14] along 
with the sensor sensitivity functions of the calibrated 
SONY DXC-930 CCD[13]. Testing is based on 
Barnard’s[15] 321 real images taken with the SONY 
DXC-930 of 30 scenes under 11 different light sources. 
These images are linear (a gamma of 1.0) with respect to 
scene intensity. This data is available on-line from the 
Simon Fraser University color database[24]. 
 
The number of distinct synthesized training ‘scenes’ was 
varied from 8 to 1024 in order to study the effect of 
training size on performance. Each synthetic scene was 
‘lit’ by each of the 102 illuminants in turn to create 102 
images of each scene. The synthesized camera RGB 
values, their corresponding chromaticities and the 
illuminant chromaticity are mapped to 2D and 3D binary 
vectors for input to SVR.  
 
Table 2 shows that the parameters vary with the training 
set as expected. Although the basis function type was 
allowed to vary during the cross-validation, the RBF was 
eventually selected in all cases.  
 
To test on real data, Barnard’s calibrated 321 SONY 
images were first segmented and histogrammed 
according to the ‘generic pre-processing’ strategy[15]. 
Illumination estimation by SVR compares favorably to 
the methods Barnard tested [15] as shown below in Table 
3. The RMS errors for Color By Correlation with Binary 
Histogram (CC01), Color By Correlation with Maximum 
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Likelihood (CCMAP), Color By Correlation with Mean 
Likelihood (CCMMSE), Color By Correlation (CCMLM) 
and the Neural Network(NN) are from Table II, page 992 
of [15].  
 
Training Set 
Size /102 

Histogram 
Dimension 

Kernel 
Selected 

C  γ 

2D RBF 0.01 0.2 
8 

3D RBF 0.01 0.2 
2D RBF 1 0.1 

16 
3D RBF 1 0.05 
2D RBF 0.1 0.05 

32 
3D RBF 0.1 0.025 
2D RBF 1 0.05 

64 
3D RBF 0.1 0.1 
2D RBF 0.01 0.025 

128 
3D RBF 1 0.2 
2D RBF 0.01 0.1 

256 
3D RBF 0.1 0.05 
2D RBF 0.01 0.1 

512 
3D RBF 10 0.025 
2D RBF 0.01 0.05 

1024 
3D RBF 1 0.2 

   Table 2 Results of k-fold kernel and parameter 
selection as a function of the histogram type and the 
number of training set images.  
 
 

Method RMS Dist  RMS Angle 
2D SVR. 0.080 10.1 

   3D SVR 0.067 8.1 
CC01 0.081 10.9 

CCMAP 0.071 9.9 
CCMMSE 0.072 9.9 
CCMLM 0.072 9.9 

Neural Network 0.070 9.5 
Table 3 Comparison of competing illumination 
estimation methods. All methods are trained on 
synthetic images constructed from the same 
reflectance and illuminant spectra and then tested on 
the same SONY DXC930 [15] camera images with 
identical pre-processing. 

 
Figure 1 shows how the SVR performance initially 
improves as the size of the synthetic training set 
increases. 
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Figure 1 RMS error in illumination chromaticity as a 
function of increasing training set size. 
 
3.3 Real Image Data Training, Real Data Testing 
 
Training on synthetic image data is convenient because 
large training sets can be calculated from existing 
databases of illuminant and reflectance spectra. The 
disadvantage of synthetic data is that it requires an 
accurate model of the camera and imaging process. On 
the other hand, creating a training set of real images is 
difficult because for each image the scene illumination 
must be measured.   
 
Our testing with real data is based on three image data 
sets. To begin, we train and test on Barnard’s [15] set of 
321 SONY images and find that training with real data is 
in fact better than training with synthetic data. Then on 
Cardei’s[18] set of 900 images from assorted cameras we 
find that SVR performs better on this data set than the 
methods on which he reports. Finally, we train using the 
11,346 image set that Ciurea et. al. [20] built using a 
digital video camera. This very large, real data training 
set improves overall performance. 
 
The training images are pre-processed, segmented and 
histogrammed in the same way as described above for 
the test images.  The SVR kernel and parameters were 
selected based on the ‘1024’ row of Table 2; namely, for 
3-D, radial basis function kernel with shape parameter 
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γ= 0.2 and penalty value C = 1, while in 2-D, these two 
parameters are set to 0.05 and 0.01 respectively. 
 
Since it would be biased to train and test on the same set 
of images, we evaluate the illumination error using 
leave-one-out cross validation procedure[26]. In the 
leave-one-out procedure, one image is selected for 
testing and the remaining 320 images are used for 
training. This is repeated 321 times, leaving a different 
image out of the training set each time, and the RMS of 
the 321 resulting illumination estimation errors is 
calculated. The errors are significantly lower than those 
obtained with synthetic training data. 

Hist. 
Type 

Max 
Angle 

RMS 
Angle 

Max Dist  
(×102) 

RMS Dist 
(×102) 

2D 22.99 10.06 16.41 7.5 
3D 24.66 8.069 16.03 6.3 

Table 4 Leave-one-out cross validation evaluation of 
SVR based on real data training and real data testing 
on 321 SONY images reported in terms of the RMS 
chromaticity angular and distance error measures. 
 
We next consider Cardei’s[18] set of 900 uncalibrated 
images taken using a variety of different digital cameras 
from Kodak, Olympus, HP, Fuji Polaroid, PDC, Canon, 
Ricoh and Toshiba. A gray card was placed in each scene 
and its RGB value is used as the measure of the scene 
illumination.  
 
As for the previous image set, histogram subsampling 
was used to create a training set of 45,000 histograms. 
The SVR was based on a polynomial kernel function of 
degree 3 and 0.1 penalty. Leave-one-out SVR 
performance is compared in Table 5 with the 
performance reported by Cardei[18] for Color by 
Correlation and the Neural Network.  
 
 
 
 
 
 

Method Type Mean(×102) RMS(×102) 

2D 2.40 3.27 SVR 
3D 2.09 2.94 

C-by-C 2D    2.92    3.89 
NN 2D    2.26    2.76 

Table 5 Comparison of SVR performance to that of 
Color by Correlation and the Neural Network using 
leave-one-out cross validation on 900 uncalibrated 
images. The entries for C-by-C and NN are from 
Table 7 page 2385[18] 
 
Since a training set of 900 histograms is not very large, 
we would like to have used the histogram sampling 
strategy proposed by Cardei[18] in the context of neural 
network training to increase the training set size.  He 
observed that each a histogram in the original training set 
could be used to generate many new training histograms 
by random sampling of its non-zero bins. Each sampling 
yields a new histogram of an ‘image’ with the same 
illuminant chromaticity as the original. The number of 
possible subsamplings is large, which makes it possible 
to build a large training set based on real data, but 
extracted from a small number of images.   
 
We have used this method to construct a set of 45,000 
training histograms from the original 900 and used it for 
SVR. Unfortunately, the training for this sized set takes 
several hours. Normally, lengthy training time would not 
matter since it is only done once; however, leave-1-out 
testing requires 900 separate trainings. As a result, we 
have not been able to do a leave-1-out based on the 
enhanced training set. Instead, the leave-1-out results in 
Table 5 are based on the raw training set of 900 
histograms. This puts the SVR method at a disadvantage 
in comparison to the neural network in terms of 
leave-1-out error, since the network was trained on an 
enhanced training set. 
 
Our final test with real data is based on the 11,346 real 
images extracted from over 2 hours of digital video 
acquired with a SONY VX-2000. Ciurea et. al.[20] built 
the database by partially automating the measurement of 
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the illumination’s RGB. Their setup consisted of a matte 
gray ball connected by a rod attached to the camera. In 
this way, the gray ball was made to appear at a fixed 
location at the edge of each video frame. The ball’s 
pixels were thus easy to locate in each frame, and hence 
the chromaticity of the dominant illumination hitting the 
ball was easily measured as the average chromaticity of 
the pixels located in the ball’s brightest region.  The 
images include a wide variety of indoor and outdoor 
scenes including many with people in them.  
 
Based on some initial experimentation, for all subsequent 
tests with the Ciurea database, SVR was trained using 
the RBF kernel function with 0.1 as the penalty 
parameter and 0.025 as the width parameter.   
 
The size of the database means that leave-one-out 
validation is not feasible, although leave-N-out for a 
reasonable choice of N would be possible. In any case, it 
would not necessarily be a fair test because of the 
inherent regularities in the database. Since the database 
was constructed from a 3-frame-per-second sampling of 
video clips, neighboring images in the database tend to 
be similar. Hence, to ensure that SVR that the training 
and testing sets would be truly distinct we partitioned the 
database into two sets in two different ways.  
 
The first partitioning is based on geographical location. 
We take as the test set the 541 indoor and outdoor images 
taken exclusively in Scottsdale Arizona. The training set 
is the 10,805 images in the remainder of the database, 
none of which is from Scottsdale.  The estimation errors 
are listed in Table 6.  
 
The second partitioning divides the entire database into 
two parts of similar size. Subset A includes 5343 images, 
and subset B includes 6003.  Subset A contains images 
from Apache Trail, Burnaby Mountain, Camelback 
Mountain, CIC 2002 and Deer Lake. Subset B contains 
images from different locations: False Creek, Granville 
Island Market, Marine, Metrotown shopping center, 
Scottsdale, Simon Fraser University and Whiteclyff Park. 
We then used A for training and B testing and vice versa. 

The results are again listed in Table 6. 
 

Angular Distance 
(×102) Training Testing 

Max RMS Max RMS 
All-but- 

Scottsdale 
Scottsdale 11.6 3.4 7.05 2.263 

Subset A Subset B 14.9 3.7 12.24 2.625 
Subset B Subset A 16.8 3.6 15.00 2.611 
Table 6 SVR (3D) illumination estimation errors for 
different training and test sets 
 
4. Conclusion 
 
Many previous methods of estimating the chromaticity of 
the scene illumination have been based in one way or 
another on statistics of the RGB colors arising in an 
image, independent of their spatial location or frequency 
of occurrence in the image.  Support vector regression 
is a relatively new tool developed primarily for machine 
learning that can be applied in a similar way. We have 
tried it here, with good results, to the problem of learning 
the association between color histograms and 
illumination chromaticity. Under almost the same 
experimentation conditions as those used by Barnard 
[14,15] in rigorous testing of the neural network and 
color by correlation methods, SVR performance is as 
good or better. 
 
Using Cuirea’s[20] large image database, SVR 
performance is shown, furthermore, to improve as the 
training set size is increased. 
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