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Abstract  
    Principal Component Analysis (PCA), Independent Component Analysis (ICA), Non-Negative Matrix 
Factorization (NNMF) and Non-Negative Independent Component Analysis (NNICA) are all techniques that 
can be used to compute basis vectors for finite-dimensional models of spectra.  The two non-negative 
techniques turn out to be especially interesting because the pseudo-inverse of their basis vectors is also close 
to being non-negative. This means that after truncating any negative components of the pseudo-inverse 
vectors to zero, the resulting vectors become physically realizable sensors functions whose outputs map 
directly to the appropriate finite-dimensional weighting coefficients in terms of the associated (NNMF or 
NNICA) basis.  Experiments show that truncating the negative values incurs only a very slight performance 
penalty in terms of the accuracy with which the input spectrum can be approximated using a finite-
dimensional model.  
 
1.  INTRODUCTION 
 
       Finite-dimensional models of spectra based on PCA have been widely used since Judd’s model of 
daylight and Cohen’s analysis of Munsell chips. Previous studies have applied ICA to surface reflectance [4] 
and daylight spectra [3]. In this paper, we extend this analysis to a larger set of illuminants and to colour 
signal spectra. The colour signal is defined as the product of surface reflectance and spectral power 
distribution of the illuminant incident on it. We compare the PCA and ICA bases to the entirely non-negative 
bases obtained via NNICA and NNMF in terms of the accuracy with which full spectra can be modeled 
using the various bases.  
     For any finite-dimensional model, a spectrum is modeled by projecting it onto the pseudo-inverse of a set 
of basis vectors. This projection yields the weighting coefficients of the model as described in more detail 
below. The output of an optical sensor can also be described as the result of a projection of the incoming 
spectrum on the sensor’s spectral sensitivity functions. The leads to the question: Is there a good basis for 
modeling spectra that also has the property that the pseudo-inverse of the basis might be used as physically 
realizable sensors? 
      PCA is a standard technique for calculating a good orthogonal basis from a training set of spectra. 
However, being orthogonal, the PCA basis vectors contain significant negative components. The pseudo-
inverse of this basis is also orthogonal and similarly contains significant negative components. As a result, 
the PCA basis is unlikely to yield physically realizable sensors; however, we hypothesize that perhaps 
NNICA and NNMF which yield non-negative basis vectors might. Such a sensor would directly output the 
weighting coefficients of a finite-dimensional model of the incident light’s spectrum. 
 

2. METHOD 
 

    It is convenient to express a finite-dimensional linear model of spectra as:  ABX =  where X is an m-by-d 
matrix of m spectra each uniformly sampled at d wavelengths;  B is an n-by-d matrix of n basis vectors; and 
A is the m-by-n mixing matrix of weighting coefficients. Since the intent of the dimensionality reduction 
techniques is to identify a basis of reduced dimension that approximates the original data well, n is generally 
less than m. Each of the four dimensionality reduction techniques finds a basis B minimizing (possibly 
subject to additional constraints):          
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    PCA finds basis vectors that are uncorrelated and orthogonal. ICA finds basis vectors that are uncorrelated 
and in addition are independent but not orthogonal. There are many different ICA algorithms [6]. Here we 
used the JADE [7] (Joint Approximate Diagonalization of Eigenvalues) implementation. NNICA [2] carries 
out ICA subject to the additional constraint of non-negativity in the resulting basis vectors. Non-negative 
Matrix Factorization solves (1) subject to all entries in both A and B being nonnegative. An iterative 
algorithm [1] to do this is based on the following pair of equations:  
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3. RESULTS 
 

    We used the 1781 surface reflectances and 102 illuminant sources described in [5]. The wavelength range 
is from 380nm to 780nm with a sampling 4nm interval. The reflectance and illumination data sets are each 
broken into two random subsets for training and testing. Color signal training and test sets are constructed 
from the respective training and test reflectance and illumination datasets. The first 3 basis vectors obtained 
by each of PCA, ICA, NNMF and NNICA for training sets of surface reflectances, illuminations, and colour 
signals are shown in the Figure 1.  
        Surface    Reflectance                             Illumination                                         Colour   Signal 

 
Figure 1: First 3 basis vectors for surface reflectance, illumination and colour signal spectra as obtained by ICA, PCA, 
NNMF and NNICA. The horizontal axis is wavelength. The vertical axis is in terms of normalized power (illumination 
and colour signal) or fractional reflectance. 
 
    Given a set of basis vectors, a spectrum written as a column vector, x, can be represented by the weighting 
coefficients, 1−×= Bxw T .  The PCA basis vectors are orthogonal so B-1 = BT. However, for the other 
methods the basis vectors are not orthogonal so the pseudo-inverse of matrix B, B+, is used to obtain the 
coefficients instead. Figure 2 shows the corresponding pseudo-inverse for each of basis vectors sets from 
Figure 1.  
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Figure 2: The pseudo-inverse of the surface reflectance, illumination and colour signal basis vectors. The horizontal 
axis is wavelength. The horizontal line at zero. Physically realizable sensors approximating these pseudo-inverses can 
be based on the portion of each curve on or above the zero line. Clearly, the approximation is likely to be best in the 
case of NNICA and NNMF.  
 
    Setting all the negative values in the pseudo-inverse vectors to zero results in a new set of vectors we will 
call the truncated pseudo-inverse, +

TB .  The weighting coefficients are then obtained as +×= TBxw . An 
approximation, ax , to the original spectrum is reconstructed from the weights and basis as Bwxa ×= . The 
root mean square distance is one the measure of the accuracy of the approximation of ax to x : 
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We found that the L1 norm yielded qualitatively similar results to the RMS error and therefore report only 
the RMS error. For N spectra the mean RMS error is then simply the mean of the individual RMS errors: 
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     When the true pseudo-inverse of basis vectors is used, ICA always results in the least error. Figure 3 
shows the mean approximation error as a function of the number of basis vectors used. Plots of the median 
RMS error are qualitatively similar. 
                    Surface Reflectance                              Illumination                                      Colour Signal 

 
Figure 3 Mean RMS error in spectral approximation (MRMS error) for surface reflectances, illuminations, and colour 
signals in the test set for each of the four methods as a function of the number of basis vectors used. 
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    When the actual pseudo-inverse vectors are replaced with the truncated pseudo-inverse vectors, the 
approximation error necessarily increases. Figure 4 compares the mean RMS errors for colour signal 
reconstruction based on truncated versus un-truncated pseudo-inverse vectors. Since the negative 
components were small, truncation has little effect on the NNMF and NNICA results. 

                                
                                      (a)                                                                                           (b)  
Figure 4 (a) A comparison of the mean RMS error in reconstructing the colour signal spectra with the actual and 
truncated pseudo-inverse vectors for the case of NNMF and PCA. Without truncation the NNMF and PCA results 
overlap (lowest curve); however, with truncation the PCA error increases substantially (with the exception of dimension 
7) while the NNMF error increases marginally. (b) A comparison of the mean RMS error approximating colour signal 
spectra for all four methods using the truncated pseudo-inverse.  
 

4. CONCLUSION 
 

    Whether for reflectances, illuminants or colour signals, ICA consistently yielded the lowest mean RMS 
error in spectral approximation followed by PCA, NNMF and NNICA. The errors, however, for ICA, PCA 
and NNMF were all qualitatively very similar. NNMF and NNICA have the advantage that the basis vector 
components are all nonnegative. Although for NNMF and NNICA, the fact that the basis vectors are all 
nonnegative does not mean that and their pseudo-inverses necessarily will also be nonnegative, we found 
that in practice the negative components are relatively small. Setting the negative components to zero results 
in functions that could be realized by actual optical sensors. Such sensors would have the advantage that 
their output would correspond directly to the weighting coefficients of a finite-dimensional model of the 
incident spectra. As such, they could be considered optimal (ignoring the influence of noise) in terms of the 
information they capture about the incident spectra. 
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