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ABSTRACT 

The problem of illumination estimation for colour constancy and automatic white balancing of digital 

color imagery can be viewed as the separation of the image into illumination and reflectance components. 

We propose using nonnegative matrix factorization with sparseness constraints (NMFsc) to separate the 

components.  Since illumination and reflectance are combined multiplicatively, the first step is to move to 

the logarithm domain so that the components are additive. The image data is then organized as a matrix to 

be factored into nonnegative components. Sparseness constraints imposed on the resulting factors help 

distinguish illumination from reflectance.  Experiments on a large set of real images demonstrate 

accuracy that is competitive with other illumination-estimation algorithms. One advantage of the NMFsc 

approach is that, unlike statistics- or learning-based approaches, it requires no calibration or training. 
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1.  INTRODUCTION 

A new approach to illumination estimation for 

color constancy and automatic white balancing is 

presented based on the technique of nonnegative 

matrix factorization with sparseness constraints 

(NMFsc). In essence, the logarithm of the input 

color image is viewed as a matrix to be factored 

into independent components. The resulting 

components represent the scene‟s illumination 

and the reflectance.  The nonnegative constraint 

on the factorization is important because 

illumination and reflectance are both nonnegative 

physical quantities.  The sparseness constraints--- 

illumination is non-sparse, reflectance is sparse--- 

guide the factorization to obtain an illumination 

component that is relatively constant across the 

scene, while allowing the reflectance component 

to vary.  Experiments on a large data set of real 

images show that both methods are competitive 

with existing illumination estimation methods. 

One advantage of the NMFsc illumination 

method is that like a few other methods
1-4

, it 

avoids the training step required by the many 

methods that rely on image statistics
5-9

 or finite-

dimensional models of spectra
10

. 

For a particular pixel in a color image, the 

RGB sensor response is defined by the model in 

Equation (1). Let )( and )(  SE  be the 

illumination spectral power distribution and matte 

surface reflectance function respectively, let 

)(kR be the sensor sensitivity function for a 

colour channel k, then the model can be defined 

as  

BGRkRSEp kk ,,)()()(    . (1) 

Assuming the camera has narrowband spectral 

sensitivity functions that can be modelled by a 

Dirac delta function, Equation (1) simplifies to:  

BGRkSEp kkk ,,)()(   . (2) 

By taking logarithm on both sides of the 

Equation (2), we have 

BGRkSEp kkk ,,)],(log[)](log[)log(   . (3) 

This has the advantage that the non-linear 

multiplicative combination of the illumination and 

reflectance becomes linear.  

For an image or image subwindow arranged as 

a vector, Equation (2) yields 

SEI  , (4) 

where I is a 2D image, and E and S are the 

illumination and surface reflectance images, 

respectively. The operator   denotes element-

wise multiplication. Applying logarithms again, 

we have 

SEI logloglog  . (5) 

Here, log E is the illumination term, and log S is 

the reflectance term. They correspond to the 

“illumination image” and “reflectance image” in 

log space. 
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Generally, illumination is relatively constant 

across an image, while the reflectance varies. The 

reflectance image in log space can be further 

decomposed and represented as a weighted linear 

combination of “feature” reflectances.  
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where Fi are independent reflectance features and 

hi are the weighting coefficients. In order to be 

independent, these features need to be “non-

overlapping,” which means that most entries of 

the vectors are zeros, and the non-zero entries 

appear at distinct locations. These non-

overlapping, sparse features can be thought of as 

building blocks from which the image is 

constructed. Therefore, in log space, by Equation 

(5) and (6), the image can be represented in terms 

of the illumination and M surface features as  
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Since we expect the illumination to vary 

slowly across an image, log E should be a non-

sparse vector. On the other hand, the reflectance 

term log S should be a sparse vector. Ideally, the 

feature vectors Fi should be sparse enough that 

there is no overlap between them so that they are 

completely independent features.  

2.  ESTIMATING ILLUMINATION 

USING NMFSC 

Non-negative matrix factorization creates a non-

negative approximation for a given set of input 

data that represents the data in terms of a linear 

combination of non-negative basis features
11

.  In 

the context of color imagery, we will use it to 

represent the log image data in terms of a linear 

combination of log illumination and log 

reflectance. 

Let us assume that the data consists of T 

measurements of N non-negative scalar variables. 

Denoting the (N-dimensional) measurement 

vectors by v
t
 (t = 1, . . . ,T), a linear approximation 

of each data vector is given by 

t
i

M

i

i
t h Whwv 

1

, (8) 

where W is an N ×M matrix containing the basis 

vectors wi as its columns, and h
t
 is the vector of 

coefficients hi. Arranging vectors v
t
 as columns of 

an N×T matrix V, we have  

WHV  , (9) 

where each column of H contains the coefficient 

vector h
t
 corresponding to the measurement 

vector v
t
. Written in this form, it becomes 

apparent that this linear data representation is 

simply a factorization of the data matrix. Principal 

component analysis, independent component 

analysis, vector quantization, and non-negative 

matrix factorization can all be viewed as matrix 

factorization methods, with different choices of 

objective functions or constraints. Whereas PCA 

and ICA do not restrict the signs of the entries of 

W and H, NMF requires all entries of both 

matrices to be non-negative, which means that the 

data is described in terms of additive components 

only.  

The concept of „sparse coding‟ refers to a 

representational scheme where only a few units 

are used to represent typical data vectors
12

.  In 

effect, this implies that the majority of units take 

values close to zero, with only a few having 

significantly non-zero values.  

Hoyer
12

 adopts a sparseness measure based on 

the relationship between the L1 norm and the L2 

norm defined as 
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where N is the dimensionality of x.  ix  is the 

L1 norm, and 
2
ix is the L2 norm. This function 

evaluates to unity if and only if x contains a single 

non-zero component, and  takes a value of zero if 

and only if all components are equal. It also 

interpolates smoothly between the two extremes. 

      Generally, an image will contain multiple 

surface reflectance features, so when subwindow 

sample blocks are drawn from the image, each 

block should contain some subset of those 

features. NMFsc provides a way to identify a set 

of basis vectors to represent these surface 

reflectance features plus a single illumination 

feature. Since each subwindow is described by 

using strictly additive positive components, it is a 

linear combination of those feature vectors.  

The imaging model in Equation (7) and 

NMFsc in Equation (8) have parallel structure, so 

that the imaging model can be reformatted in 

terms of an NMF approximation: 
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In this case, 
t

v  corresponds to Ilog  in 

Equation (7) and represents the data from one of 

the image blocks. Since 00hw takes the role of 

Elog , the basis vector w0 is the “illumination” 

basis with weighting factor h0.  M represents the 

number of features present in the data. Since 
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F , the 

basis vectors wi are the feature reflectance basis 

vectors with weighting factors hi. The weighting 

factors determine how strongly the corresponding 

feature reflectances should appear in this image 

block. For instance, if hi equals to zero, it means 

the feature is absent from this block; if hi is large, 

it means the feature is strongly visible in this 

sample block.  

By taking T sample sub-windows from the 

image and constructing the data matrix V, where 

the log RGB channels of each block are appended 

and stored as a column, we can then use NMFsc 

to solve for the basis matrix, W, and thereby 

obtain the illumination basis vector and the 

feature reflectance basis vectors. In other words, 

NMFsc decomposes V into the illumination and 

reflectance components that are the key to color 

constancy and automatic white balancing.  

Equation (7) is a purely additive model, which 

means NMF is an appropriate approach to solving 

for the basis. All basis vectors, including the 

feature reflectance images (the “building 

blocks”), along with the illumination image, are 

required to be non-negative. This requires the 

input data matrix V to be non-negative too.  The 

model is applied to the logarithm of the original 

image data, so there is the possibility of both 

positive and negative values. Simply scaling the 

original image data to (0,1] ensures that all pixel 

values in log space will be negative or zero.  

Since the coefficient matrix H is always non-

negative, we negate both V and W to make 

everything completely non-negative.  

NMFsc allows the sparseness for each basis 

vector to be controlled individually. In our model, 

the illumination basis vector is supposed to be 

non-sparse, making its components relatively 

similar, while the reflectance basis vectors are 

supposed to be sparse.  In addition, with NMFsc 

the sparseness of each portion of a single basis 

vector can be controlled separately. This feature is 

important because in the formulation the RGB 

components needed to be packed into one vector. 

If a small sparseness value is set for the vector as 

a whole then the illumination basis will be similar 

across all the RGB channels, collectively leading 

to grey as the illumination estimate. To avoid this 

problem, the sparseness of the illumination basis 

vector needs to be controlled individually for the 

R, G, and B segments of the vector. In other 

words, the illumination vector must be divided 

into three segments and the same sparseness 

applied to each. For the reflectance basis vectors, 

a very sparse vector means that most of the entries 

are zeros. This property of high sparseness allows 

the reflectance basis vectors to be orthogonal and 

independent.   

Hence, NMFsc is an approach for solving the 

illumination-reflectance model globally, in that 

the factorization aims to minimize the objective 

functions based on the data matrix that includes 

all three channels. This is an advantage over those 

methods that estimate the illumination and 

reflectance for each colour component 

independently. 

The proposed algorithm based on Equation (9) 

using the NMFsc approach is: 

1. Scale the input image values to (0,1]  

2. Take N sample blocks from the image 

3. Take the logarithm of the RGB values in 

these blocks. 

4. For the data from each block, concatenate the 

color channels into a vector. 

5. Suppose there are M different surfaces 

appearing in N blocks (M<N) 

5.1. Apply NMFsc to find M+1 basis vectors 

5.2. Set the sparseness constraint of the 1
st 

 

basis close to 0 since it represents the 

illumination 

5.3. Set sparseness constraints of the 2
nd

 to 

(M+1)
th

 bases close to 1 since they 

represent the surface features 

6. Antilog the illumination basis 

7. The average R, G, B from the channels of the 

antilog of the illumination
 
basis yields the RGB 

color of the scene illumination. 

 

The parameter M represents the number of 

feature reflectances assumed to be present in the 

input image; however, the correct value of M is 

unknown and could differ from image to image.  

Experimentally, we found that fixing M at 5 for 

all images worked well. 

In the above development, an image was 

assume to contain multiple reflectance features. 

An image contains M feature reflectances with at 

least one feature appearing in each image 

subwindow. Data was collected from multiple 

subwindows to form the data matrix for NMFsc. 

However, instead of M reflectance features, 

suppose that we describe the scene as a single 

more complex reflectance feature under a single 

illumination and apply NMFsc. In this case, there 

is only one subwindow—the entire image—and 

there will be only a single reflectance basis 

vector. 

Equation (9) with M = 1 combined with 

Equation (6) becomes 
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Here again, Ew log00 h  so the basis vector w0 

is the “illumination” basis with weighting factor 



h0. Similarly, Sw log11 h  so the basis vector 

w1 is the feature reflectance basis vector with 

weighting factor h1. The goal in Equation (12) is 

to split the input color image into an illumination 

component and reflectance component in log 

space. How NMFsc does the split depends on the 

choice of sparseness constraints for the two 

components. 

Since NMFsc should return two basis vectors 

w1 and w2,  it requires an input data matrix of at 

least two columns. Rather than taking two distinct 

sample subwindows as the input data, we 

construct the data matrix V with two identical 

columns. Each column is a vectorized version of 

the full input image. It is no longer necessary to 

estimate the parameter M  because in this case it 

always equals 1. Note also, that whereas the 

location of each pixel matters in the multiple-

reflectance model, location has no effect in the 

single-reflectance model.  

3. EXPERIMENTS 

The NMFsc illumination estimation method is 

evaluated on a number of different image 

databases. Both the multiple-reflectance-feature 

reflectance and single-reflectance-feature 

approaches are tested.   

The first set of tests is with multiple features. 

Figure 1 gives an example. 

 
 

 
    

(a) (b) (c) (d) (e) 

Figure 1. The reflectance basis vectors (contrast enhanced for visualization) based on the multiple-feature reflectance 

model: (a) 128x128 input image ; (b)-(e) are the reflectances basis vectors Fi using 32x32 subwindows. 

Method 
Angular Degrees Distance(10

2
) 

Mean RMS Max Mean RMS Max 

GW 7.69 9.38 42.28 5.97 7.47 38.33 

SoG 7.50 8.93 34.52 5.50 6.57 27.67 

MAX RGB 9.99 11.76 27.42 7.24 8.60 21.72 

NMFsc (M = 5) 7.66 8.96 34.79 5.59 6.57 26.99 

NMFsc (M = 1) 6.82 8.15 38.27 5.11 6.18 32.74 

Table 1. Comparison of NMFsc to SoG, Max RGB, Grayworld performance.  The results involve testing on the large 

natural image dataset, with no real-data training required. Errors are reported in terms of both the RMS angular 

chromaticity and distance error measures.  

 

NMFsc is applied with M = 4, sparseness of 

the illumination basis is set to 0.005 for the R, G, 

and B channels separately, and the sparseness of 

the feature reflectance basis is set to be 0.45. 

Figure 1 (b)-(e) shows the feature reflectance 

basis vectors (i.e., the antilog of the wi‟s in 

Equation (11) with 1 ≤ i ≤ M).   

The second test provides statistical results 

about the accuracy of NMFsc-based illumination 

estimation. The test set is extracted from the large 

dataset of natural images representing a variety of 

indoor and outdoor scenes under different light 

conditions that Ciurea et. al.
13

 measured with a 

grayball attached to a digital video camera. The 

original image database includes 11,346 images. 

However, many of these images have very good 

color balance (i.e., RGB of the gray ball is gray) 

which could bias the testing of the illumination-

estimation methods. Therefore, we eliminated 

from the data set the majority of the correctly 

balanced images so that the overall distribution of 

the illumination color is more uniform. The 

resulting data set contains 7661 images. The 

grayball appears in the lower right-hand quadrant 

of every original image, so for testing that 

quadrant is cropped from every image.  

The 7,661 images are tested based on the SoG, 

Max RGB, and Grayworld methods, as well as 

both our multiple-reflectance and single-

reflectance methods. The accuracy of various 

illumination estimation methods (Shades of Gray, 

Max RGB, Grayworld, single-reflectance NMFsc, 

and multiple-reflectance NMFsc) applied to the 

7,661 images is listed in Table 1. In the case of 



the multiple-reflectance based estimation, each 

image is resized to 64x64 pixels, and divided into 

sixteen 16x16 subwindows. The number of 

reflectance features M is set to be 5; the 

sparseness of the illumination and the reflectance 

bases are 0.001 and 0.45, respectively. The 

average computation time for processing one 

image is 0.83 seconds. In the case of the single-

reflectance based estimation, each image is also 

resized to 64x64. The sparseness of the 

illumination and the reflectance bases are 0.001 

and 0.45, respectively. With M = 1, the average 

computational time for processing one 64x64 

image is 2.43 seconds.   

4. CONCLUSION 

The experiments show that nonnegative matrix 

factorization with sparseness constraints provides 

a method of separating a color image into its 

illumination and reflectance components. The 

accuracy of the NMFsc method is competitive 

with other illumination-estimation algorithms.   

One possible disadvantage of the approach is that 

existing factorization algorithms are iterative, and 

in comparison to some of the other illumination-

estimation algorithms, somewhat costly in terms 

of computation. A particularly good feature of the 

NMFsc approach is that it requires no training. 
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