Denotational Semantics

Robert D. Cameron

January 23, 2002

1 Introduction

The denotational approach to semantics is to provide a mathematical interpretation of program-
ming language constructs. This is done by first of all grouping various related types of constructs
into syntactic domains, e.g., declarations, statements, expressions and numerical constants. The
constructs of each domain are then assigned their semantics through a semantic function. The se-
mantic function maps the various elements of the syntactic domain into a corresponding semantic
domain; the elements of this domain comprise the mathematical entities which model the meaning
of language constructs. This mapping is defined using semantic equations on a case by case basis for
each syntactic construct type. Following this basic framework, it is possible to formulate detailed
and accurate semantic definitions of programming languages.

The denotational approach can be nicely illustrated using the example syntactic domain of
binary numerals. These may be specified syntactically using the following BNF productions.

(numeral) = (digit) | (numeral) (digit)
(digit) == 01
The semantics of such numerals may be described by a semantic function N' which maps binary

numerals into the integer numbers they represent. In this case, then, the semantic domain is very
simple, namely I, the set of integers. The N function is defined by the following semantic equations.

N[o] = 0
N[= 1
N[(numeral) (digit)] = 2 x N[(numeral)] + N(digit)]

The special brackets [] are used as meta-syntactic brackets to enclose syntactic entities (terminal
and nonterminal symbols). Thus, in the first equation, the 0 within brackets denotes the terminal
symbol 0 as a syntactic element, whereas the 0 outside of the brackets denotes the integer num-
ber zero as an element of the semantic domain. In this example, the semantic equations for N
completely specify how binary numerals are interpreted as representing integer numbers.

2 The Denotational Semantics of TINY

We will now use the programming language TINY to further illustrate the use of denotational
semantics. TINY is a simple programming language, not intended for any practical programming
work. It incorporates only a subset of the useful constructs typically found in any modern program-
ming language; this subset is chosen purely to illustrate the principles of denotational semantics.
The following denotational description of TINY is adapted from The Denotational Description of
Programming Languages, by Michael J.C. Gordon.

2.1 The Syntax of TINY

(exp) == 0] 1] true| false | read | (ide) | not (exp) |
(exp) = (exp) | (exp) + (exp)
(cmd) == (ide) := (exp) | output (exp) |

if (exp) then (cmd) else (cmnd) fi |
while (exp) do (cmd) od | (cmd) ; (cmd)

2.2 Syntactic Domains

Ide : identifiers
Exp : expressions
Cmd : commands

2.3 Informal Semantics

Informally, the semantics of TINY commands is that they are executed to make some change to the
current computer state. The state has three components, namely, the memory, the input, and the
output. The memory models the current contents of the computer memory as a function mapping
the various defined identifiers to their current values. The input models that part of the input file
that remains to be read in at any given time; abstractly, it is a sequence of values which is initially
the sequence of values in the input file. Similarly, the output is a sequence of values modelling that
part of an output file which has already been generated; initially, it is the empty sequence.

The semantics of TINY expressions is primarily that they are evaluated to return some value,
either a boolean value or an integer. The value returned depends, in general, on the current state
since expressions may contain identifiers. In addition, evaluation of expressions may affect the
current state, i.e., the read expression reads the first value from the input stream and advances
the input by one value.

2.4 Basic Semantic Domains

State = Memory x Input x Output

The state is modelled mathematically as the domain of all triples (m, i, 0), where m is a memory, i is
an input and o is an output. (In general, given domains Dy, Do, ...D,,, the notation Dy x Do X...x D,
stands for the domain of tuples (d1, ds, ..., d,) where each d; is a value in the corresponding domain
D;.)

Memory = Ide — [Value + {unbound}]
Value = Num + Bool

The memory is the domain of all functions mapping identifiers into the domain [Value+{unbound}].
(In general D; — Dy stands for the domain of functions taking input values from D; and generating
output values in Dy.) [Value + {unbound}] is the domain of objects which are either members of
the domain Value or the special value unbound. This special value is used to model the case when
an identifier has not actually been given a value through an assignment statement. The domain
Value is in turn the domain of objects which are either members of the domain Num (numbers)

or of the domain Bool (boolean values).

Input = Value®
Output = Value*

For a given domain D, D* denotes the domain of all sequences of 0 or more elements from D.

2.5 Semantic Functions

The detailed semantics of TINY now requires that we show how TINY expressions and commands
are modelled in terms of these basic semantic domains. We need to define two functions:

€ : Exp — {denotations of expressions}

C : Cmd — {denotations of commands}

The function £ describes the mapping from the syntactic domain of expressions (Exp) into the
mathematical objects we use to model expressions and the function C similarly defines the mapping
of commands as syntactic objects into their corresponding semantic models.

In general, we model expressions as functions which take as input the current state and generate
as output one of the following:

e a special value error, if an error occurs, or
e the value for the expression and a possibly modified state (for expressions with side-effects).
This gives the functionality of £
£ : Exp — [State — [[Value x State] + {error}]]

The domain [State — [[Value x State] + {error}]] is thus the domain of objects which are used
to mathematically model the various types of expression.

Commands are modelled as functions which change the state if the command succeeds or gen-
erate the value error if an unexpected situation arises.

C : Cmd — [State — [State + {error}]]

2.6 Semantic Equations
For each syntactic clause we want a semantic equation of the form, e.g.,
E[syntactic clause] = denotation of syntactic clause

For both expressions and commands, these R.H.S. denotations are functions, i.e., functions in the
domain
[State — [[Value x State] + {error}]

for expressions and functions in the domain
[State — [State + {error}]]

for commands.

In order to denote these functions, we will use lambda notation, following the lambda calculus
of Alonzo Church. In the lambda notation, functions are described by lambda ezxpressions which
have the following syntax.

(lambda-exp) :=)\ (parameters) . (body)

The (parameters) are single letter names for the arguments of the function, typically z, y, and z.
The body is an expression defining the value of the function in terms of the values of the parameters.
For example, the successor function, which, for any given integer returns the next one in sequence,
can be represented using the following lambda expression.

Ar.x +1
The absolute value function can be written as
Az. if £ > 0 then z else —x

using an extension of lambda notation to include conditional expressions. A simple example of a
two argument function is
Azy. if x > y then z else y

which returns the maximum of two numbers.
The semantic equations for expressions can now be given as follows.

E[0] = Xs.(0,s) (1)

For the numeral 0 in TINY, the denotation is the function which returns the number 0 as its value
and does not change the current state. Note that the notation (0, s) is being used to denote the
two-tuple (pair) which is a member of the domain [Value x State].

E[1] = As.(1,9) (2)
E[true] = As.(true,s) (3)
E[false] = As.(false,s) (4)
E[read] = A(m,i,0). ifi = {} then error (5)

else (head(i), (m, tail(z),0))

Here (m,1,0) replaces s as the name of the state parameter, so that the components of the state
can be referred to individually. This clause defines the semantics of the read expression as follows.
The test ¢ = {} checks if the current input is the empty sequence, if so the special value error is
returned. Otherwise, the value of the expression is the first element in the input sequence (denoted
by head(7)) and the state is modified by advancing the input stream (tail(7) denotes the remaining
elements after the first one in the old input sequence).

E[(ide)] = A(m,i,0). if m[(ide)] = unbound then error (6)
else (m[(ide)], (m,,0))

Recall that the memory is a function mapping identifiers to values, so m[(ide)] is just the value
corresponding to identifier (ide). If, in fact, there is no proper value for this identifier, then the
value unbound is returned by the memory when it is applied to that identifier. In such a case, the
result of evaluating the identifier as an expression is to be the special value error, otherwise the
result of evaluation should be the actual value of the identifier together with an unchanged state.

E[not (exp)] = As. if E[(exp)](s) = error then error (7)
else if £[(exp)](s) = (true, s1) then (false, s1)
else if £[(exp)](s) = (false, s1) then (true, s1)
else error

The meaning of a not expression is defined in terms of the meaning of its component expression.
The notation £[(exp)](s) means the value of the function denoted by £[(exp)] applied to the state
s. If this value is the error value then the value of the not expression is also error. If the evaluation
of the component expression returns a value of true and some new state s; (which may be different
from s), then the evaluation of the not expression yields the value false and the new state s;.

E[{expl) = (exp2)] = As. if E[(expl)](s) = (v1, 1) (8)
then if £[(exp2)](s1) = (ve, s2)
then if v1 = vy then (true, s2)
else (false, s9)
else error
else error

Note that (exp2) is evaluated in the state s; which results from the evaluation of (expl).

E[(expl) + (exp2)] = As. if E[{expl)](s) = (v1, s1) (9)
then if £[(exp2)](s1) = (v2, $2)
then if isNum(v;) A isNum(wvz) then (v; + vg, s2)
else error
else error
else error

The function isNum(v;) denotes a check that the value v; is a number rather than a boolean value;
if either v1 or vy is boolean then the result is an error.
The semantic equations for commands are developed similarly as follows.

Cl[(ide) := (exp)] = A(m,i,0). if E[(exp)](m,1,0) = (v, (m1,%1,01)) (10)
tlllen (mq[v/(ide)], %1, 01)

Here, the notation m4[v/(ide)] denotes a new memory which defines the same mapping of identifiers
to values that the memory my does, except that the given identifier (ide) maps to the value v.

Cloutput (exp)] = X\(m,i,0). if E[{exp)](m,i,0) = (v, (m1,i1,01)) (11)
then (mg,41,appendl1(o1,v))
else error

Here appendl(o;,v) is an operation which adds the element v to the end of the stream of values
01.

C[if (exp) then (cmdl) else (cmd2) fi] =
As. if E[{exp)](s) = (v, s1) (12)
then if isBool(v)
then if v = true
then C[{cmd1)](s1)
else C[(cmd2)](s1)
else error
else error

C[while (exp) do (cmd) od] =
As. if E[(exp)](s) = (v, s1) (13)
then if isBool(v
then if v = false
then s
else if C[(cmd)](s1) = s2
then C[while (exp) do (cmd) od](s2)
else error
else error
else error

Here the interpretation of a while loop is defined recursively.

C[{cmdl) ; (cmd2)] = As.if C[{cmd1)](s) = s1 (14)
tilen C[{cmd2)](s1)

3 Viewpoint on Denotational Semantics

Denotational semantics provides a way of precisely and completely describing the semantics of a
programming language. Such descriptions can be useful, in various ways, to language designers,
to language implementors and to programmers. Language designers can benefit in two ways from
developing denotational descriptions of their languages as they design them. First of all, such
descriptions are often useful in pinpointing weaknesses in the design, and secondly, the complete-
ness of these descriptions helps in making sure that every important detail has been taken care
of. Denotational descriptions benefit language implementors by giving them complete language
descriptions, allowing implementation of systems which exactly conform both to the original defi-
nition and to other implementations. Programmers can use denotational descriptions for reference
purposes when the informal semantic descriptions are either unclear or incomplete in describing
various details.

Unfortunately, the metalanguage of denotational semantics is in itself quite complicated. As a
result, it is probably too much to expect of the average programmer to be able to master denota-
tional semantics and be able to use it for reference purposes. However, the importance of having
well-defined standards for programming languages should lead to an increasing use of denotational
semantics by language designers and implementors in the future.

