
Using Parallel Bit Streams to
Accelerate XML Processing

The Parabix Project

Robert D. Cameron
School of Computing Science

Simon Fraser University

President and CTO,
International Characters, Inc.

Research Seminar
IBM TJ Watson Research Center

June 5, 2008

Introduction

● Byte-at-a-time XML parsing is too slow.
– Uses only 8 bits at a time

● cf. 128-bit available registers and instructions.
– Scanning loops may yield only 1 bit at a time.

● is the next character an “<” or not?
– XML parsing in the 100 cycles/byte range.

● 10 MB/sec per processor GHz.
– Can we do better?

Introduction

● Byte-at-a-time XML parsing is too slow.
– Uses only 8 bits at a time

● cf. 128-bit available registers and instructions.
– Scanning loops may yield only 1 bit at a time.

● is the next character an “<” or not?
– XML parsing in the 100 cycles/byte range.

● 10 MB/sec per processor GHz.
– Can we do better?

● Parallel bit stream approach.
– Form bit stream LAngle(i) = 1 iff byte i is “<”.
– Compute 128 bits at a time using SIMD.
– Find next “<” with bit scan operations.

● Built-in 32 or 64 bit operations on Intel, PPC.

The Parabix Project

● Systematic use of parallel bit streams in XML.
– UTF-8 and XML character validation
– UTF-8 to UTF-16 transcoding
– Computation of lexical item streams to support parsing.

● e.g., MarkupStart stream (for “<” or “&”)
– Parsing using bit scan operations.
– Parallel hash value computation.
– Parallel regular expression matching.

● Validation of schema datatypes.
● Our current goal/bet:

– validating XML parser at 10 cycles/byte (single core).
● Leverage bit stream parallelism for multicore.

– Expectation: over 90% parallelizable.

Beyond Research:
Open Source Technology Transfer

● Parabix is open source: parabix.costar.sfu.ca.
● Ambitious goal: be the Linux of XML middleware.
● Commitment to standards conformance, quality and

portability, as well as performance.
● Commitments feed back to the research.

– performance implications of standards proposals
– feedback to standards activities?

● Parabix-0.53:
– architecture for most ASCII/EBCDIC family charsets
– DTD processing nearing completion
– assessment with XML Conformance Test Suite underway

● SFU spin-off International Characters, Inc. is
commercializing using a patentleft model.

Overview

● Part 1: SIMD notation/idealized instructions.
● Part 2: Parallel bit stream techniques

– Fast transform to basis bit streams.
– Character class formation.
– Lexical item streams.
– UTF-8 and XML character validation.
– UTF-8 to UTF-16 transcoding.
– Parallel regular expression matching.

● Part 3: Parabix Performance Study
– Parabix 0.53 vs. Expat, Xerces

● Part 4: Performance Prospects.
– single core, multicore

● Conclusions

SIMD Notation

● An idealized SIMD notation simplifies and
provides portability
– SSE, MMX
– Altivec/Cell PPE, SPE

● r = simd_op/w(r1, r2)
– simultaneous application of operation op to all fields of

width w

SIMD Notation

● An idealized SIMD notation simplifies and
provides portability
– SSE, MMX
– Altivec/Cell PPE, SPE

● r = simd_op/w(r1, r2)
– simultaneous application of operation op to all fields of

width w
● r = simd_add/8(r1, r2)

– partition r, r1 and r2 into 8-bit fields
– add corresponding 8-bit fields of r1 and r2 to produce

fields of r

Inductive Doubling Support

● The notation also provides systematic support for
inductive doubling:
– algorithms that repeatedly double field widths or other

data attributes
● SIMD operations defined for all field widths w = 2,

4, 8, ...
● Half-operand modifiers may be applied to input

operands to select either the high (h) or low (l) w/2
bits of each field

● Note to chip architects: implementing our inductive
doubling instruction set architecture would speed
up many algorithms (ours and others)!

Inductive Doubling Example

● Example: compute population count of each 16-bit
field of rA rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.

Inductive Doubling Example

● Example: compute population count of each 16-bit
field of rA rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)

Inductive Doubling Example

● Example: compute population count of each 16-bit
field of rA rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)
● Combine the low and high 4-bit sums in 8-bit fields.

t3 = simd_add/8(t2/l, t2/h)

Inductive Doubling Example

● Example: compute population count of each 16-bit
field of rA rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)
● Combine the low and high 4-bit sums in 8-bit fields.

t3 = simd_add/8(t2/l, t2/h)
● Now combine the 8-bit sums for 16-bit pop count.

rB = simd_add/16(t3/l, t3/h)

Transposition to Parallel Bit
Streams

● Start with 8 consecutive registers s0, s1, s2, ... s7 of
serial byte data.

● Produce 8 parallel registers of serial bit stream data
p0, p1, ..., p7.

● Three stage algorithm:
– produce 2 streams of serial nybble data
– then 4 streams of serial bitpair data
– finally 8 streams of serial bit data

● Uses simd_pack: r = simd_pack/w(a,b)
– convert each w-bit field of a and b to w/2 bits and pack

them together consecutively

Idealized Transposition Stages

● High nybble stream (½ of stage 1)
– pack high 4 bits of each consecutive pair of 8-bit fields.
b0123_0 = simd_pack/8(s0/h, s1/h)
b0123_1 = simd_pack/8(s2/h, s3/h)
b0123_2 = simd_pack/8(s4/h, s5/h)
b0123_3 = simd_pack/8(s6/h, s7/h)

Idealized Transposition Stages

● High nybble stream (½ of stage 1)
– pack high 4 bits of each consecutive pair of 8-bit fields.
b0123_0 = simd_pack/8(s0/h, s1/h)
b0123_1 = simd_pack/8(s2/h, s3/h)
b0123_2 = simd_pack/8(s4/h, s5/h)
b0123_3 = simd_pack/8(s6/h, s7/h)

● Bits 2/3 bitpair stream (¼ of stage 2)
– pack low 2 bits of each consecutive pair of high nybbles.
b23_0 = simd_pack/4(b0123_0/l, b0123_1/l)
b23_1 = simd_pack/4(b0123_2/l, b0123_3/l)

Idealized Transposition Stages

● High nybble stream (½ of stage 1)
– pack high 4 bits of each consecutive pair of 8-bit fields.
b0123_0 = simd_pack/8(s0/h, s1/h)
b0123_1 = simd_pack/8(s2/h, s3/h)
b0123_2 = simd_pack/8(s4/h, s5/h)
b0123_3 = simd_pack/8(s6/h, s7/h)

● Bits 2/3 bitpair stream (¼ of stage 2)
– pack low 2 bits of each consecutive pair of high nybbles.
b23_0 = simd_pack/4(b0123_0/l, b0123_1/l)
b23_1 = simd_pack/4(b0123_2/l, b0123_3/l)

● Bit 2 and 3 bitstreams (¼ of stage 3)
bit2 = simd_pack/2(b23_0/h, b23_1/h)
bit3 = simd_pack/2(b23_0/l, b23_1/l)

Transposition Summary

● Idealized transposition requires 3 stages of 8
operations each.

● Using 128-bit registers: transpose 128 bytes in 24
operations.

● Runs on SSE, Altivec, SPE with idealized library..
● Better Altivec/SSE algorithms based on pack/16;

Altivec: 72 ops/128 bytes.
● Future: CPU support for single-cycle idealized

instructions => transposition at 0.2 cycles/byte.
– Attention chip architects!

Character Class Formation

● Combining 8 bits of a code unit gives a character
class stream

● compile([CharDef(LAngle, “<”)])

Character Class Formation

● Combining 8 bits of a code unit gives a character
class stream

● compile([CharDef(LAngle, “<”)])
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

● 7 operations per 128 characters.

Multiple Class Formation

● Common subexpression simplify.
● compile([CharDef(LAngle, “<”),

)
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

Multiple Class Formation

● Common subexpression simplify.
● compile([CharDef(LAngle, “<”),

 CharDef(RAngle, “>”)])
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);
temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);

Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']),
)

Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']),
)

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);

Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']),
 CharSet('Digit', ['0-9'])])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);

Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']),
 CharSet('Digit', ['0-9'])])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);
temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);

Lexical Item Streams

● Using the character class compiler, we define a set
of lexical item streams for XML.
– MarkupStart, NameFollow, WhiteSpace, QuoteScan,

Hyphen, Qmark, CDend, Hex, Digit
– 67 operations in total to classify 128 bytes.
– 0.5 ops per byte.

● Can define with no interblock dependencies
– data parallel distribution to multiple cores.

UTF-8 Byte Classification

● UTF-8 bytes are single-byte sequences, or
prefixes or suffixes of multibyte sequences.

● Classify 128 at a time.
u8unibyte = simd_not(u8bit0);
u8prefix = simd_and(u8bit0, u8bit1);
u8suffix = simd_andc(u8bit0, u8bit1);
u8prefix2 = simd_andc(u8prefix, u8bit2);
u8pfx3or4 = simd_and(u8prefix, u8bit2);
u8prefix3 = simd_andc(u8pfx3or4,u8bit3);
u8prefix4 = simd_and(u8pfx3or4, u8bit3);

● 7 cycles/128 bytes.

UTF-8 Scope Streams

● Identify suffix expectations for prefix bytes.
● Shift forward logical immediate of 1-3 positions.

– (forward = left for big-endian, right for little-endian)
scope22 = simd_sfli(u8prefix2, 1);
 ...
scope43 = simd_sfli(u8prefix4, 2);
scope44 = simd_sfli(u8prefix4, 3);
s_nn = simd_or(simd_or(scope22,scope33),
 scope44);

any = simd_or(simd_or(scope32, scope42),
 simd_or(scope43, s_nn));

● 6 shifts, 5 logic ops/128 bytes.

UTF-8 Validation

● Suffixes must occur where expected.
err_mask = simd_xor(any, u8suffix);

● Prefix bytes 0xC0, 0xC1 are illegal.
C0C1= simd_andc(u8prefix2,
 simd_or(simd_or(u8bit3, u8bit4),
 simd_or(u8bit5, u8bit6));
err_mask = simd_or(err_mask, C1);

● Other constraints similar.
● 26 logic and 4 shift operations for validation.

Transcoding to UTF-16

● XML files typically stored in UTF-8
– variable-length byte-oriented encoding

● Applications often use UTF-16 internally
– fixed 16-bits per character (except rare characters in

supplementary plane)
● UTF-8 to UTF-16 transcoding a typical requirement

for XML parsers.
● Frequently cited as a major cost: 30% or more.

Transcoding to UTF-16
(cont'd)

● Calculate 16 parallel bit streams using logic and shift
operations.
– About 4 ops per bit stream per block.

● Principal challenge: variable length mapping
– Every 1, 2 or 3 byte UTF-8 seq.: 1 UTF-16 value.
– 4-byte UTF-8 sequences: 2 UTF-16 values.
– Convention: calculate UTF-16 bit values at position of last

byte in sequence (& scope42).
– Output is only generated for these positions.
– Mapping is achieved by parallel bit deletion.

Parallel Bit Deletion

● Mark all positions to be deleted.
delmask = simd_or(u8prefix, scope32, scope43)

● Apply a parallel deletion algorithm.
● Ideal algorithm: deletion by central induction.

– Move bits to center within each field.
– Solve 4-bit fields, then 8-bit, then 16 ...
– Use SIMD rotate of PPU/SPU.
– One rotate per field width per stream.

UTF-8 to UTF-16 on Cell

● UTF-8 to UTF-16 transcoding has been
implemented and tested on PPE.

● Distribution to SPEs involves same transition
boundary issues as UTF-8 validation.

● SPE implementation should benefit from greater
register availability:
– eliminate PPE loads and stores for temporary values due

to register pressure

Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors

NaN 43215 594356 211 token character stream

0000011111000111111000111000000 [0-9] character class

0010000001000000001000001000001 c0, initial cursor

Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors
– Add the bitstreams!

NaN 43215 594356 211 token character stream

0000011111000111111000111000000 [0-9] character class

0010000001000000001000001000001 c0, initial cursor

0010100000001000000001000000001 c0 + [0-9]

Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors
– Add the bitstreams!

NaN 43215 594356 211 token character stream

0000011111000111111000111000000 [0-9] character class

0010000001000000001000001000001 c0, initial cursor

0010100000001000000001000000001 c0 + [0-9]

– Carry propagation moves the cursors through all
matching [0-9] characters!

Regular Expression Matching

● Matching [-+]? (zero or one sign)

NaN 4321- 59435+ 211 c++ character stream

0000000001000000001000000000011 [-+] character class

0010000001000000001000001000001 c0, initial cursor

Regular Expression Matching

● Matching [-+]? (zero or one sign)
– Limit propagation by masking.

NaN 4321- 59435+ 211 c++ character stream

0000000001000000001000000000011 [-+] character class

0010000001000000001000001000001 c0, initial cursor

0000000001000000001000000000001 c0 & [-+]

Regular Expression Matching

● Matching [-+]? (zero or one sign)
– Limit propagation by masking.
– Add the bitstreams!

NaN 4321- 59435+ 211 c++ character stream

0000000001000000001000000000011 [-+] character class

0010000001000000001000001000001 c0, initial cursor

0000000001000000001000000000001 c0 & [-+]

0010000010000000010000001000010 c0 + (c0 & [-+])

Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421 character stream

00000000001001100100000000010000 [-+] character class

01011111100010001000000001100111 [0-9] character class

00000000101000100100000100010001 c0, initial cursor

10000000010100010010000010001000 end_mask

Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421 character stream

00000000001001100100000000010000 [-+] character class

01011111100010001000000001100111 [0-9] character class

00000000101000100100000100010001 c0, initial cursor

10000000010100010010000010001000 end_mask

00000000110001001000000100100001 c1 = c0 + (c0 & [-+])

Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421 character stream

00000000001001100100000000010000 [-+] character class

01011111100010001000000001100111 [0-9] character class

00000000101000100100000100010001 c0, initial cursor

10000000010100010010000010001000 end_mask

00000000110001001000000100100001 c1 = c0 + (c0 & [-+])

00100000000000010000000010001000 (c1+[0-9])&~[0-9] &~c1

Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421 character stream

00000000001001100100000000010000 [-+] character class

01011111100010001000000001100111 [0-9] character class

00000000101000100100000100010001 c0, initial cursor

10000000010100010010000010001000 end_mask

00000000110001001000000100100001 c1 = c0 + (c0 & [-+])

00100000000000010000000010001000 (c1+[0-9])&~[0-9] &~c1

00000000000000010000000010001000 end_mask & c2

Three complete matches found.

Parabix Performance Study

● Parabix vs. Expat, Xerces-C (SAX)
● Use markup statistics application.
● Use PAPI performance counters.

– L1 and L2 cache misses
– Conditional branches; mispredications
– Instruction counts
– Cycles per byte

● Sample data:
– 2 text-oriented files: German, Japanese
– 2 data-oriented files: small, large GML

L2 Data Cache Misses
 Per Byte

dewiki jawiki roads1 roads2
0

0.01

0.01

0.02

0.02

0.03

0.03

0.04

0.04

expat
xerces
parabix

Parabix has excellent L2 cache behaviour.

L1 Data Cache Misses
 Per Byte

dewiki jawiki roads1 roads2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
expat
xerces
parabix

L1 cache behaviour is an area for further work.

Conditional Branches
Per Byte

dewiki jawiki roads1 roads2
0

5

10

15

20

25

30

expat
xerces
parabix

Far fewer branches in parallel bit stream code.

Branch Mispredications
Per Byte

dewiki jawiki roads1 roads2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

expat
xerces
parabix

Far fewer branch mispredictions.

Cycles Per Instruction

dewiki jawiki roads1 roads2
0

0.2

0.4

0.6

0.8

1

1.2 expat
xerces
parabix

Better utilization of processor resources.

CPU Cycles Per Byte

dewiki jawiki roads1 roads2
0

20

40

60

80

100

120

expat
xerces
parabix

Parabix Component Performance
(Cycles Per Byte)

roads2

roads1

jawiki

dewiki

0 2 4 6 8 10 12 14 16

Rules
Parse
Lex
WS/Control
UTF-8
S2P

Performance Notes

● Parallel bit stream components perform well
– S2P, UTF8/XML validation, WS/Control, Lexical Items
– Less than 3 cycles/byte.

● Parser proper is < 5 cycles/byte.
– Inherently sequential
– Branches after each scan
– Difficult to partition

● Symbol table/well-formedness rules
– Use STL hashmaps throughout.
– Not parallelized.
– Major performance bottleneck at present.

Performance Prospects

● Parallel bit stream components
– Some further optimization
– Inductive doubling 3X speedups: S2P, || deletion
– Data parallel distribution to multicore straightforward.

● small overlap for UTF-8 sequences at partition boundaries.
● Develop fast Comment/PI/CDATA preparser.

– Mask off contents from lexical streams
– Remaining “<” and “&” must be markup.
– Independently parse complete markups within partitions.

● Symbol table/semantics
– Use length-sorted multipass symbol lookup.

● initial results: 2X improvement
– parallel hash value computation
– XML Screamer techniques: schema compilation

Conclusions

● Parallel bit stream technology offers dramatic
performance improvements for XML and other text
applications.

● Performance improvements can be demonstrated in
real-world application.

● Intraregister parallelism can be leveraged for
intrachip parallelism (multicore).

● Parabix is open source.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Transcoding to UTF-16
	Transcoding to UTF-16 (cont'd)
	Parallel Bit Deletion
	UTF-8 to UTF-16 on SPEs
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Parabix Project

