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Introduction

● Byte-at-a-time XML parsing is too slow.
– Uses only 8 bits at a time 

● cf. 128-bit available registers and instructions.
– Scanning loops may yield only 1 bit at a time.

● is the next character an “<” or not?
– XML parsing in the 100 cycles/byte range.

● 10 MB/sec per processor GHz.
– Can we do better?



Introduction

● Byte-at-a-time XML parsing is too slow.
– Uses only 8 bits at a time 

● cf. 128-bit available registers and instructions.
– Scanning loops may yield only 1 bit at a time.

● is the next character an “<” or not?
– XML parsing in the 100 cycles/byte range.

● 10 MB/sec per processor GHz.
– Can we do better?

● Parallel bit stream approach.
– Form bit stream LAngle(i) = 1 iff byte i is “<”.
– Compute 128 bits at a time using SIMD.
– Find next “<” with bit scan operations.

● Built-in 32 or 64 bit operations on Intel, PPC.



The Parabix Project

● Systematic use of parallel bit streams in XML.
– UTF-8 and XML character validation
– UTF-8 to UTF-16 transcoding
– Computation of lexical item streams to support parsing.

● e.g., MarkupStart stream (for “<” or “&”)
– Parsing using bit scan operations.
– Parallel hash value computation.
– Parallel regular expression matching.

● Validation of schema datatypes.
● Our current goal/bet:

– validating XML parser at 10 cycles/byte (single core).
● Leverage bit stream parallelism for multicore.

– Expectation: over 90% parallelizable.



Beyond Research:
Open Source Technology Transfer

● Parabix is open source: parabix.costar.sfu.ca.
● Ambitious goal: be the Linux of XML middleware.
● Commitment to standards conformance, quality and 

portability, as well as performance.
● Commitments feed back to the research.

– performance implications of standards proposals
– feedback to standards activities?

● Parabix-0.53:
– architecture for most ASCII/EBCDIC family charsets
– DTD processing nearing completion
– assessment with XML Conformance Test Suite  underway

● SFU spin-off International Characters, Inc. is 
commercializing using a patentleft model.



Overview

● Part 1:  SIMD notation/idealized instructions.
● Part 2:  Parallel bit stream techniques

– Fast transform to basis bit streams.
– Character class formation.
– Lexical item streams.
– UTF-8 and XML character validation.
– UTF-8 to UTF-16 transcoding.
– Parallel regular expression matching.

● Part 3:  Parabix Performance Study
– Parabix 0.53 vs. Expat, Xerces

● Part 4: Performance Prospects.
– single core, multicore

● Conclusions



SIMD Notation

● An idealized SIMD notation simplifies and 
provides portability 
– SSE, MMX
– Altivec/Cell PPE, SPE

● r = simd_op/w(r1, r2)
– simultaneous application of operation op to all fields of 

width w



SIMD Notation

● An idealized SIMD notation simplifies and 
provides portability 
– SSE, MMX
– Altivec/Cell PPE, SPE

● r = simd_op/w(r1, r2)
– simultaneous application of operation op to all fields of 

width w
● r = simd_add/8(r1, r2)

– partition r, r1 and r2 into 8-bit fields
– add corresponding 8-bit fields of r1 and r2 to produce 

fields of r



Inductive Doubling Support

● The notation also provides systematic support for 
inductive doubling:
– algorithms that repeatedly double field widths or other 

data attributes
● SIMD operations defined for all field widths w = 2, 

4, 8, ...
● Half-operand modifiers may be applied to input 

operands to select either the high (h) or low (l) w/2 
bits of each field

● Note to chip architects: implementing our inductive 
doubling instruction set architecture would speed 
up many algorithms  (ours and others)!



Inductive Doubling Example

● Example: compute population count of each 16-bit 
field of rA  rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.



Inductive Doubling Example

● Example: compute population count of each 16-bit 
field of rA  rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)



Inductive Doubling Example

● Example: compute population count of each 16-bit 
field of rA  rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)
● Combine the low and high 4-bit sums in 8-bit fields.

t3 = simd_add/8(t2/l, t2/h)



Inductive Doubling Example

● Example: compute population count of each 16-bit 
field of rA  rB→

● Add the low bit of each 2-bit field to the high bit.
t1 = simd_add/2(rA/l, rA/h)

● We now have 64 2-bit sums.
● Combine the low and high 2-bit sums in 4-bit fields.

t2 = simd_add/4(t1/l, t1/h)
● Combine the low and high 4-bit sums in 8-bit fields.

t3 = simd_add/8(t2/l, t2/h)
● Now combine the 8-bit sums for 16-bit pop count.

rB = simd_add/16(t3/l, t3/h)



Transposition to Parallel Bit 
Streams

● Start with 8 consecutive registers s0, s1, s2, ... s7 of 
serial byte data.

● Produce 8 parallel registers of serial bit stream data 
p0, p1, ..., p7.

● Three stage algorithm:
– produce 2 streams of serial nybble data
– then 4 streams of serial bitpair data
– finally 8 streams of serial bit data

● Uses simd_pack: r = simd_pack/w(a,b)
– convert each w-bit field of a and b to w/2 bits and pack 

them together consecutively



Idealized Transposition Stages

● High nybble stream (½ of stage 1)
– pack high 4 bits of  each consecutive pair of 8-bit fields.
b0123_0 = simd_pack/8(s0/h, s1/h)
b0123_1 = simd_pack/8(s2/h, s3/h)
b0123_2 = simd_pack/8(s4/h, s5/h)
b0123_3 = simd_pack/8(s6/h, s7/h)
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b0123_3 = simd_pack/8(s6/h, s7/h)

● Bits 2/3 bitpair stream (¼ of stage 2)
– pack low 2 bits of each consecutive pair of high nybbles.
b23_0 = simd_pack/4(b0123_0/l, b0123_1/l)
b23_1 = simd_pack/4(b0123_2/l, b0123_3/l)



Idealized Transposition Stages

● High nybble stream (½ of stage 1)
– pack high 4 bits of  each consecutive pair of 8-bit fields.
b0123_0 = simd_pack/8(s0/h, s1/h)
b0123_1 = simd_pack/8(s2/h, s3/h)
b0123_2 = simd_pack/8(s4/h, s5/h)
b0123_3 = simd_pack/8(s6/h, s7/h)

● Bits 2/3 bitpair stream (¼ of stage 2)
– pack low 2 bits of each consecutive pair of high nybbles.
b23_0 = simd_pack/4(b0123_0/l, b0123_1/l)
b23_1 = simd_pack/4(b0123_2/l, b0123_3/l)

● Bit 2 and 3 bitstreams (¼ of stage 3)
bit2 = simd_pack/2(b23_0/h, b23_1/h)
bit3 = simd_pack/2(b23_0/l, b23_1/l)



Transposition Summary

● Idealized transposition requires 3 stages of 8 
operations each.

● Using 128-bit registers: transpose 128 bytes in 24 
operations.

● Runs on SSE, Altivec, SPE with idealized library..
● Better Altivec/SSE algorithms based on pack/16;  

Altivec: 72 ops/128 bytes.
● Future: CPU support for single-cycle idealized 

instructions => transposition at 0.2 cycles/byte.
– Attention chip architects!



Character Class Formation

● Combining 8 bits of a code unit gives a character 
class stream

● compile([CharDef(LAngle, “<”)])



Character Class Formation

● Combining 8 bits of a code unit gives a character 
class stream

● compile([CharDef(LAngle, “<”)])
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);

● 7 operations per 128 characters.



Multiple Class Formation

● Common subexpression simplify.
● compile([CharDef(LAngle, “<”),

                      )
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);



Multiple Class Formation

● Common subexpression simplify.
● compile([CharDef(LAngle, “<”),

 CharDef(RAngle, “>”)])
temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_and(bit[2], bit[3]);
temp3 = simd_andc(temp2, temp1);
temp4 = simd_and(bit[4], bit[5]);
temp5 = simd_or(bit[6], bit[7]);
temp6 = simd_andc(temp4, temp5);
LAngle = simd_and(temp3, temp6);
temp7 = simd_andc(bit[6], bit[7]);
temp8 = simd_and(temp4, temp7);
RAngle = simd_and(temp3, temp8);



Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']), 
                                )



Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']), 
                                )

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);



Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']), 
        CharSet('Digit', ['0-9'])])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);



Character Ranges

● Ranges may require fewer operations!
● compile([CharSet('Control', ['\x00-\x1F']), 
        CharSet('Digit', ['0-9'])])

temp1 = simd_or(bit[0], bit[1]);
temp2 = simd_or(temp1, bit[2]);
Control = simd_andc(simd_const_1(1), temp2);
temp3 = simd_and(bit[2], bit[3]);
temp4 = simd_andc(temp3, temp1);
temp5 = simd_or(bit[5], bit[6]);
temp6 = simd_and(bit[4], temp5);
Digit = simd_andc(temp4, temp6);



Lexical Item Streams

● Using the character class compiler, we define a set 
of lexical item streams for XML.
– MarkupStart, NameFollow, WhiteSpace, QuoteScan, 

Hyphen, Qmark, CDend, Hex, Digit
– 67 operations in total to classify 128 bytes.
– 0.5 ops per byte.

● Can define with no interblock dependencies
– data parallel distribution to multiple cores.



UTF-8 Byte Classification

● UTF-8 bytes are single-byte sequences, or 
prefixes or suffixes of multibyte sequences.

● Classify 128 at a time.
u8unibyte = simd_not(u8bit0);
u8prefix = simd_and(u8bit0, u8bit1);
u8suffix = simd_andc(u8bit0, u8bit1);
u8prefix2 = simd_andc(u8prefix, u8bit2);
u8pfx3or4 = simd_and(u8prefix, u8bit2);
u8prefix3 = simd_andc(u8pfx3or4,u8bit3);
u8prefix4 = simd_and(u8pfx3or4, u8bit3);

● 7 cycles/128 bytes.



UTF-8 Scope Streams

● Identify suffix expectations for prefix bytes.
● Shift forward logical immediate of 1-3 positions.

– (forward = left for big-endian, right for little-endian)
scope22 = simd_sfli(u8prefix2, 1);
  ...
scope43 = simd_sfli(u8prefix4, 2);
scope44 = simd_sfli(u8prefix4, 3);
s_nn = simd_or(simd_or(scope22,scope33),     
         scope44);

any = simd_or(simd_or(scope32, scope42),
              simd_or(scope43, s_nn));

● 6 shifts, 5 logic ops/128 bytes.



UTF-8 Validation

● Suffixes must occur where expected.
err_mask = simd_xor(any, u8suffix);

● Prefix bytes 0xC0, 0xC1 are illegal.
C0C1= simd_andc(u8prefix2,
       simd_or(simd_or(u8bit3, u8bit4),
               simd_or(u8bit5, u8bit6));
err_mask = simd_or(err_mask, C1);

● Other constraints similar.
● 26 logic and 4 shift operations for validation.



Transcoding to UTF-16

● XML files typically stored in UTF-8
– variable-length byte-oriented encoding

● Applications often use UTF-16 internally
– fixed 16-bits per character (except rare characters in 

supplementary plane)
● UTF-8 to UTF-16 transcoding a typical requirement 

for XML parsers.
● Frequently cited as a major cost: 30% or more.



Transcoding to UTF-16 
(cont'd)

● Calculate 16 parallel bit streams using logic and shift 
operations.
– About 4 ops per bit stream per block.

● Principal challenge: variable length mapping
– Every 1, 2 or 3 byte UTF-8 seq.: 1 UTF-16 value.
– 4-byte UTF-8 sequences: 2 UTF-16 values.
– Convention: calculate UTF-16 bit values at position of last 

byte in sequence (& scope42).
– Output is only generated for these positions.
– Mapping is achieved by parallel bit deletion.



Parallel Bit Deletion

● Mark all positions to be deleted.
delmask = simd_or(u8prefix, scope32, scope43)

● Apply a parallel deletion algorithm.
● Ideal algorithm: deletion by central induction.

– Move bits to center within each field.
– Solve 4-bit fields, then 8-bit, then 16 ...
– Use SIMD rotate of PPU/SPU.
– One rotate per field width per stream.



UTF-8 to UTF-16 on Cell

● UTF-8 to UTF-16 transcoding has been 
implemented and tested on PPE.

● Distribution to SPEs involves same transition 
boundary issues as UTF-8 validation.

● SPE implementation should benefit from greater 
register availability:
– eliminate PPE loads and stores for temporary values due 

to register pressure



Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors

NaN  43215   594356   211 token    character stream

0000011111000111111000111000000       [0-9] character class

0010000001000000001000001000001    c0, initial cursor



Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors
– Add the bitstreams!

NaN  43215   594356   211 token    character stream

0000011111000111111000111000000       [0-9] character class

0010000001000000001000001000001    c0, initial cursor

0010100000001000000001000000001    c0 + [0-9]



Regular Expression Matching

● Parallel Matching of [0-9]* Regular Expression
– Match 5 instances starting from 5 cursors
– Add the bitstreams!

NaN  43215   594356   211 token    character stream

0000011111000111111000111000000       [0-9] character class

0010000001000000001000001000001    c0, initial cursor

0010100000001000000001000000001    c0 + [0-9]

– Carry propagation moves the cursors through all 
matching [0-9] characters!



Regular Expression Matching

● Matching [-+]? (zero or one sign)

NaN  4321-   59435+   211   c++    character stream

0000000001000000001000000000011       [-+] character class

0010000001000000001000001000001    c0, initial cursor



Regular Expression Matching

● Matching [-+]? (zero or one sign)
– Limit propagation by masking.

NaN  4321-   59435+   211   c++    character stream

0000000001000000001000000000011       [-+] character class

0010000001000000001000001000001    c0, initial cursor

0000000001000000001000000000001    c0 & [-+]



Regular Expression Matching

● Matching [-+]? (zero or one sign)
– Limit propagation by masking.
– Add the bitstreams!

NaN  4321-   59435+   211   c++    character stream

0000000001000000001000000000011       [-+] character class

0010000001000000001000001000001    c0, initial cursor

0000000001000000001000000000001    c0 & [-+]

0010000010000000010000001000010    c0 + (c0 & [-+])



Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421   character stream

00000000001001100100000000010000      [-+] character class

01011111100010001000000001100111      [0-9] character class

00000000101000100100000100010001   c0, initial cursor

10000000010100010010000010001000   end_mask



Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421   character stream

00000000001001100100000000010000      [-+] character class

01011111100010001000000001100111      [0-9] character class

00000000101000100100000100010001   c0, initial cursor

10000000010100010010000010001000   end_mask

00000000110001001000000100100001   c1 = c0 + (c0 & [-+])



Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421   character stream

00000000001001100100000000010000      [-+] character class

01011111100010001000000001100111      [0-9] character class

00000000101000100100000100010001   c0, initial cursor

10000000010100010010000010001000   end_mask

00000000110001001000000100100001   c1 = c0 + (c0 & [-+])

00100000000000010000000010001000   (c1+[0-9])&~[0-9] &~c1



Composite Expression Matching

^[-+]?[0-9]+$ (signed integers anchored at each end)

;5.796953 - 6++ 4+ gnorw 17- 421   character stream

00000000001001100100000000010000      [-+] character class

01011111100010001000000001100111      [0-9] character class

00000000101000100100000100010001   c0, initial cursor

10000000010100010010000010001000   end_mask

00000000110001001000000100100001   c1 = c0 + (c0 & [-+])

00100000000000010000000010001000   (c1+[0-9])&~[0-9] &~c1

00000000000000010000000010001000   end_mask & c2

Three complete matches found.



Parabix Performance Study

● Parabix vs. Expat, Xerces-C (SAX)
● Use markup statistics application.
● Use PAPI performance counters.

– L1 and L2 cache misses
– Conditional branches; mispredications
– Instruction counts
– Cycles per byte

● Sample data:
– 2 text-oriented files: German, Japanese
– 2 data-oriented files: small, large GML



L2 Data Cache Misses
 Per Byte

dewiki jawiki roads1 roads2
0

0.01
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expat
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Parabix has excellent L2 cache behaviour.



L1 Data Cache Misses
 Per Byte
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L1 cache behaviour is an area for further work.



Conditional Branches 
Per Byte

dewiki jawiki roads1 roads2
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Far fewer branches in parallel bit stream code.



Branch Mispredications 
Per Byte
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Far fewer branch mispredictions.



Cycles Per Instruction
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Better utilization of processor resources.



CPU Cycles Per Byte
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Parabix Component Performance
(Cycles Per Byte)
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Parse
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Performance Notes

● Parallel bit stream components perform well
– S2P, UTF8/XML validation, WS/Control, Lexical Items
– Less than 3 cycles/byte.

● Parser proper is < 5 cycles/byte.
– Inherently sequential
– Branches after each scan
– Difficult to partition

● Symbol table/well-formedness rules
– Use STL hashmaps throughout.
– Not parallelized.
– Major performance bottleneck at present.



Performance Prospects

● Parallel bit stream components
– Some further optimization
– Inductive doubling 3X speedups: S2P, || deletion
– Data parallel distribution to multicore straightforward.

● small overlap for UTF-8 sequences at partition boundaries.
● Develop fast Comment/PI/CDATA preparser.

– Mask off contents from lexical streams
– Remaining “<” and “&” must be markup.
– Independently parse complete markups within partitions.

● Symbol table/semantics
– Use length-sorted multipass symbol lookup.

● initial results: 2X improvement
– parallel hash value computation
– XML Screamer techniques: schema compilation



Conclusions

● Parallel bit stream technology offers dramatic 
performance improvements for XML and other text 
applications.

● Performance improvements can be demonstrated in 
real-world application.

● Intraregister parallelism can be leveraged for 
intrachip parallelism (multicore).

● Parabix is open source.
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