## $\begin{array}{c} {\rm MACM~316\text{-}2} \\ {\rm TEST~1-SOLUTIONS} \end{array}$

10:30 – 11:20am, June 5, 2002 Instructor: Adrian Lewis

| Family name:       | Initials: |  |  |
|--------------------|-----------|--|--|
| Student ID number: |           |  |  |

## READ INSTRUCTIONS CAREFULLY:

- Do not lift the cover page until instructed!
- Fill out your name and ID in the space provided.
- You may use an approved graphing calculator. No other aids.
- Answer all questions, <u>explaining your answers</u> carefully in the space provided. If you run out of space, use the back of the preceding page.
- This exam consists of 4 questions and 7 pages (including this one).

| Question | 1  | 2  | 3  | 4  | Total |
|----------|----|----|----|----|-------|
| Grade    | /9 | /4 | /5 | /7 | /25   |

## 1. Consider the equation

$$e^x - 3x = 0.$$

(a) [2 marks] Explain why the equation must have at least one solution in the interval [0, 1].

The function  $f(x) = e^x - 3x$  is continuous.

It satisfies f(0) = 1 > 0 and f(1) = e - 3 < 0.

The intermediate value theorem now shows there is an  $x \in (0, 1)$  satisfying f(x) = 0.

(b) [2 marks] Explain why the equation has a unique solution in the interval [0, 1].

Part (a) shows it has at least one solution.

Since  $f'(x) = e^x - 3 < 0$  for all  $x \in (0, 1)$ , the function f is strictly decreasing on [0, 1].

Hence f can have at most one zero in [0, 1].

## Question 1 (continued)

(c) [3 marks] Starting with the interval [0, 1], how many steps of the bisection method would you need to find a number guaranteed to be within 0.001 of the exact solution of the equation?

After n steps, current interval has length  $2^{-n}$ . On the (n+1)th step, we calculate the midpoint, which must be within  $2^{-n-1}$  of the exact solution. Providing  $2^{-n-1} \leq .001$ , we are then done. This is equivalent to  $(-n-1) \ln 2 \leq \ln(.001)$ , or

$$n+1 \ge 9.96...$$

Hence we need  $n \geq 9$ , so we need 10 steps of bisection.

(d) [2 marks] Starting close to the solution, what would the order of convergence of Newton's method be?

 $f \in C^2[0,1].$  $f'(x) = e^x - 3 \neq 0 \text{ for all } x \in [0,1].$ 

Hence Newton's method converges quadratically to the solution, if we begin nearby.

2. [4 marks] Suppose  $\delta$  is a small number. Explain why calculating  $\sqrt{1+\delta} - \sqrt{1-\delta}$ 

directly may give an inaccurate answer. Suggest how to calculate a more accurate answer.

If  $\delta$  is small,  $\sqrt{1+\delta}$  and  $\sqrt{1-\delta}$  are nearly equal, so subtracting them will typically cause roundoff errors.

By rationalizing the numerator, we have

$$\begin{split} \sqrt{1+\delta} - \sqrt{1-\delta} &= \\ \frac{(\sqrt{1+\delta} - \sqrt{1-\delta})(\sqrt{1+\delta} + \sqrt{1-\delta})}{\sqrt{1+\delta} + \sqrt{1-\delta}} \\ &= \frac{2\delta}{\sqrt{1+\delta} + \sqrt{1-\delta}}. \end{split}$$

In this way we avoid the roundoff errors caused by subtracting nearly equal numbers. 3. Consider the function

$$h(x) = 1 - \frac{x^3}{4}$$

on the interval [0, 1].

(a) [3 marks] Use the Fixed Point Theorem to prove h has a unique fixed point in the interval [0, 1].

h is continuous on [0,1].

$$h'(x) = -3x^2/4 < 0$$
 for all  $x \in (0, 1)$ .

Hence h is decreasing on [0, 1].

$$h(0) = 1$$
 and  $h(1) = 3/4$ , so

$$h(x) \in \left[\frac{3}{4}, 1\right] \subset [0, 1] \text{ for all } x \in [0, 1].$$

Hence h has a fixed point.

Since |h'(x)| < 1 for all  $x \in (0,1)$ , the fixed point p is unique.

(b) [2 marks] What is the order of convergence of the fixed-point iteration for this function?

In addition to the above conditions, we have

$$|h'(x)| \le \frac{3}{4} < 1$$
 for all  $x \in (0, 1)$ .

Hence the fixed point iteration converges to p.

Clearly  $p \neq 0$ .

Hence  $h'(p) \neq 0$ , so the convergence is only linear.

4. (a) [2 marks] Define linear convergence.

If  $p_n \to p$  and  $p_n \neq p$  for all n and

$$\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p}$$

exists, then  $p_n$  converges linearly to p.

Now suppose you apply Newton's method to the equation

$$|x|^{3/2} = 0$$

starting with the initial iterate  $x_0 = 1$ .

(b) [1 mark] Find the next iterate  $x_1$ .

If  $f(x) = |x|^{3/2}$ , then  $f(x) = x^{3/2}$  for x > 0.

Hence

$$f'(x) = \frac{3}{2}x^{1/2}$$

for x > 0.

Hence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^{3/2}}{3x^{1/2}/2} = x_n - \frac{2x_n}{3} = \frac{x_n}{3}.$$

Hence

$$x_1 = \frac{1}{3}.$$

Question 4 (continued)

(c) [2 marks] Find the order of convergence of the sequence  $\{x_n\}$  generated by Newton's method.

By the calculations in part (b),  $x_n = 3^{-n}$ . Hence  $x_n \to 0$  and  $x_n \neq 0$  for all n, and

$$\lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \frac{1}{3}.$$

Hence  $x_n \to 0$  linearly (ie. with order one). But for any  $\alpha > 1$ ,

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n^\alpha}=\lim_{n\to\infty}\frac{3^{-n-1}}{3^{\alpha n}}=\lim_{n\to\infty}3^{(\alpha-1)n-1}=\infty.$$

Hence  $x_n$  does not converge with any order higher than one.

(d) [2 marks] How large must n be before  $x_n$  approximates the solution with absolute error less than  $5 \times 10^{-6}$ .

We need

$$x_n = 3^{-n} < 5 \times 10^{-6}$$

or

$$-n \ln 3 < \ln 5 - 6 \ln 10.$$

Hence we need n > 11.11..., so n must be at least 12.