Midterm Examination

FRIDAY, JUNE 16, 2000 10:30-11:20 AQ3182

This examination has 5 questions, worth a total of 25 points. The numbers in the margin describe the marking scheme.

LAST NAME (please print):		
First name:		
Student number:		
Signature:	-	

Instructions

- 1. Time: 50 minutes.
- 2. Fill in the information above now.
- 3. Do not open the examination booklet until you are told to do so.
- Attempt all questions. Make sure there are 6 pages and 5 questions.
 You may use the back of the pages for rough work.
- Please no books, no notes and no programmable or graphing calculators. Scientific calculators are permitted.

Question	Marks	Max
1		/5
2		/3
3		/7
4		/5
5		/5
Total		/25

3. 7 points A mathematical model for a one-dimensional heat flow problem leads to the following $n \times n$ matrix

$$\mathbf{A} = \begin{bmatrix} 2 + \frac{1}{n^2} & -1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 2 + \frac{1}{n^2} & -1 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 2 + \frac{1}{n^2} & -1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \cdots & 0 & -1 & 2 + \frac{1}{n^2} & -1 & 0 \\ 0 & 0 & \cdots & 0 & -1 & 2 + \frac{1}{n^2} & -1 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 2 + \frac{1}{n^2} \end{bmatrix}.$$

(a) Find a Cholesky factorization for **A** when n = 2.

(b) The n × n matrix A is known to have an LL^T factorization in which L has only 2n - 1 non-zero entries, given by

$$l_{i,i}$$
 for $i=1,\ldots,n,$ and $l_{i,i-1}$ for $i=2,\ldots,n.$

Assuming these entries have already been calculated, write the pseudocode for an algorithm to solve the $n \times n$ system $\mathbf{A}\mathbf{x} = \mathbf{b}$ for $\mathbf{x} = [x_1, \dots x_n]^T$ in $\mathcal{O}(n)$ floating point operations.

3 2. After 2 stages of Gaussian elimination, a 4×4 matrix A has been row-reduced to the matrix

$$\mathbf{A}^{(3)} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 6 & 12 \\ 0 & 0 & 12 & 12 \end{bmatrix}.$$

The sequence of row operations to obtain $A^{(3)}$ from A is given by

$$(E_2 - E_1) \to (E_2), \quad (E_3 - E_1) \to (E_3), \quad (E_4 - E_1) \to (E_4)$$

in the first stage, and

$$(E_3 + 2E_2) \to (E_3), \quad (E_4 + 3E_2) \to (E_4)$$

in the second stage.

Suppose A = LU with L lower-triangular and U upper-triangular. Find L, U and A.

- 4. 5 points Consider an indirect method for solving the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is the $n \times n$ matrix from Question 3.
- (a) Find the Jacobi iteration matrix T where

$$\mathbf{x}^{(k)} = \mathbf{T}\mathbf{x}^{(k-1)} + \mathbf{c}.$$

[2] (b) Calculate $||\mathbf{T}||_{\infty}$ and show that $||\mathbf{T}||_{\infty} \to 1$ as $n \to \infty$.

[2] (c) Let n=2. Show that after k=4 iterations of the Jacobi method we have $\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} \le B_n \|\mathbf{x}^{(0)} - \mathbf{x}\|_{\infty}$ with $B_2 \approx 5/8$.

(d) 2 points Bonus: Show that for arbitrary n, after $k = dn^2$ iterations, the above error bound holds with B_n satisfying

$$\lim_{n\to\infty} B_n = e^{-d/2}.$$

- 4. 5 points Consider an indirect method for solving the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ where \mathbf{A} is the $n \times n$ matrix from Question 3.
- (a) Find the Jacobi iteration matrix T where

$$\mathbf{x}^{(k)} = \mathbf{T}\mathbf{x}^{(k-1)} + \mathbf{c}.$$

[2] (b) Calculate $||\mathbf{T}||_{\infty}$ and show that $||\mathbf{T}||_{\infty} \to 1$ as $n \to \infty$.

[2] (c) Let n = 2. Show that after k = 4 iterations of the Jacobi method we have $\|\mathbf{x}^{(k)} - \mathbf{x}\|_{\infty} \le B_n \|\mathbf{x}^{(0)} - \mathbf{x}\|_{\infty}$ with $B_2 \approx 5/8$.

(d) 2 points Bonus: Show that for arbitrary n, after $k = dn^2$ iterations, the above error bound holds with B_n satisfying

$$\lim_{n\to\infty} B_n = e^{-d/2}.$$

5. 5 points Let the real number $x=0.d_1d_2...d_{10}d_{11}\cdots\times 10^e$ have floating point number representation

$$f\!f\!\{x\} = 0.d_1d_2\dots d_{10}\times 10^e, \qquad \text{where } d_i\in\{0,1,\dots,9\}, \ d_1\neq 0, \quad -100\leq e\leq 100.$$

Consider the function
$$f(h) = \sqrt{1+h} - 1$$
.
Let $\varepsilon = 0.5 \times 10^{-10}$. Then $f\{f(\varepsilon)\} = 0.2499999999 \times 10^{-10}$.

[2] (a) Consider $g(h) = f\{\{f\{\sqrt{f\{1+h\}}\}\} - 1\}$ as an implementation of f(h) in floating point arithmetic. Estimate the relative error in approximating $f(\varepsilon)$ by $g(\varepsilon)$.

(b) Find a Taylor polynomial approximation for f, such that

$$f(h) = P(h) + \mathcal{O}(h^2)$$
 as $h \to 0$

(c) Give a floating point implementation of a function which approximates f(h) to 10 significant digits at h = ε.

(d) 1 point Bonus: Show that your function from (c) still accurately represents f(h) for any h in $\varepsilon_0 < h < \varepsilon$ for some $0 < \varepsilon_0 < \varepsilon$.