
Math 128a - Homework 1 - Due Feb 7 at the beginning of class

1) In class we saw an example showing that in decimal floating point arithmetic, the computed
value of xmid=(xlower+xupper)/2 is not necessarily between xlower and xupper, which would be
a problem for the logic in bisection (in 3 decimal digit arithmetic, try xlower = .997 and xupper
= .999). We will show that this is impossible in IEEE arithmetic, which is binary. In other
words, we will show that in IEEE arithmetic xmid = fl(fl(xlower + xupper)/2) is in the interval
[xlower,xupper], assuming overflow does not occur when adding xlower and xupper. (Here fl(a op b)
means the floating point result of the operation a op b.

Part 1. Using the fact that IEEE arithmetic is correctly rounded, show that it is monotonic, that
is if a, b, c, d and x are IEEE floating point numbers then

a ≤ b and c ≤ d implies fl(a+ c) ≤ fl(b+ d)
a ≤ b and 0 < x implies fl(a/x) ≤ fl(b/x)

(Similar facts hold for subtraction and multiplication, but we will not need these here.)

Answer: The simplest way to describe how IEEE arithmetic computes fl(a ⊗ c) (where ⊗
is any binary arithmetic operation +, −, × or ÷) can be described as follows (although it is
not implemented this way!): Take the mathematically exact value of a ⊗ c and round it to
the nearest floating point number. If there is a tie (because a⊗ c is exactly half way between
two floating point numbers) break the tie by rounding to the nearest floating point number
whose bottom bit is zero.

We give two different proofs: first a direct case analysis, and second a proof by contradiction.
First suppose a⊗ c = b⊗ d; then the rules above imply that fl(a⊗ c) = fl(b⊗ d). So suppose
a⊗ c < b⊗d. There are two cases: either there is a floating point number x somewhere in the
range a⊗c ≤ x ≤ b⊗d or there is not. If there is, then x is closer to a⊗c than any floating point
number exceeding x, so fl(a⊗ c) ≤ x. Simililary fl(b⊗d) ≥ x, so fl(a⊗ c) ≤ x ≤ fl(b⊗d) as
desired. Now suppose there is no floating point number x between a ⊗ c and b ⊗ d. In other
words xl < a ⊗ c < b ⊗ d < xu where xl and xu are adjacent floating point numbers. Then
the nearest floating point number to either a⊗ c or b⊗ d must be either xl or xu. Now there
are 3 possibilities: a⊗ c < (xl +xu)/2, a⊗ c = (xl +xu)/2 or a⊗ c > (xl + xu)/2. In the first
case fl(a ⊗ c) = xl, which must be less than or equal to fl(b ⊗ d) (which is either xl or xu).
In the second case fl(b ⊗ d) = xu, which must be greater than or equal to fl(a ⊗ b) (which
is either xl or xu). In the third case fl(a ⊗ b) = xu = fl(c ⊗ d).

Now we do a proof by contradiction. As before, if a ⊗ c = b ⊗ d then fl(a ⊗ c) = fl(b ⊗ d),
so it suffices to consider the case a ⊗ c < b ⊗ d. Suppose for the sake of contradiction that
fl(a⊗ c) > fl(b⊗ d). Because we round to the nearest floating point number, there can’t be
any floating point numbers between a ⊗ c and fl(a ⊗ c), so in particular fl(b ⊗ d) < a ⊗ c.
Similarly b ⊗ d < fl(a ⊗ c). Altogether then fl(b ⊗ d) < a ⊗ c < b ⊗ d < fl(a ⊗ c). But this
implies

|(b ⊗ d)− fl(b ⊗ d)|+ |fl(a ⊗ c)− (a ⊗ c)| = (b ⊗ d)− fl(b ⊗ d) + fl(a ⊗ c)− (a ⊗ c)
> (a ⊗ c)− fl(b ⊗ d) + fl(a ⊗ c)− (b ⊗ d)
= |(a ⊗ c)− fl(b ⊗ d)|+ |fl(a ⊗ c)− (b ⊗ d)|

1

But
|(b ⊗ d)− fl(b ⊗ d)| ≤ |fl(a ⊗ c)− (b ⊗ d)|

since fl(b ⊗ d) is the closest floating point number to b ⊗ d, and

|fl(a ⊗ c)− (a ⊗ c)| ≤ |(a ⊗ c)− fl(b ⊗ d)|

since fl(a ⊗ c) is the closest floating point number to a ⊗ c, so we get

X ≡ |(b ⊗ d)− fl(b ⊗ d)|+ |fl(a ⊗ c)− (a ⊗ c)| > |(a ⊗ c)− fl(b ⊗ d)| + |fl(a ⊗ c)− (b ⊗ d)|
(from before)

≥ |fl(a ⊗ c)− (a ⊗ c)| + |fl(b ⊗ d)− (b ⊗ d)|
= X

or X > X, a contradiction.

Part 2. Show that fl(2 ∗ x) = 2 ∗ x exactly, assuming overflow does not occur.

Answer: If x is an exact floating point number, so is 2 ∗ x (barring overflow), since multi-
plying by two just increases the exponent by one. So fl(2 ∗ x) = 2 ∗ x.

Part 3. Show that 2 ∗ xlower ≤ fl(xlower + xupper) ≤ 2 ∗ xupper.
Answer: If xlower≤ xupper are floating point numbers, we have xlower+xlower ≤ xlower+xupper,
so by the first part of Part 1 fl(xlower+xlower) ≤ fl(xlower+xupper), and by Part 2 we get
2*xlower ≤ fl(xlower+xupper). Similarly, fl(xlower+xupper) ≤ 2*xupper.

Part 4. Conclude that xlower ≤ fl(fl(xlower + xupper)/2) ≤ xupper.

Answer: Dividing 2*xlower ≤ fl(xlower+xupper) ≤ 2*xupper by x = 2 and applyi ng
part 2 of Part 1 yields fl(2*xlower/2) ≤ fl(fl(xlower+xupper)/2) ≤ fl(2*xupper/2). But
(2*xlower)/2 = xlower is an exact floating point number, so fl((2*xlower)/2) = xlower.
Similarly fl((2*xupper)/2) = xupper.

Part 5. Where does this argument fail for correctly rounded decimal arithmetic?

Answer: This argument fails for decimal arithmetic because fl(2 ∗ x) does not have to
equal 2 ∗ x exactly. (In decimal arithmetic, the formula xmin = (xlower+xupper)/2 could be
replaced by xmmin = max(xlower, min(xupper, (xupper+xlower)/2.)) to guarantee that
xlower ≤ xmid ≤ xupper.

Part 6. What happens if xlower and xupper are adjacent IEEE floating point numbers?

Answer: The argument that xlower ≤ xmin ≤ xupper is still true, so either xmid = xlower
or xmin = xupper.

2

2) Suppose x is the exact answer to a problem, and x̂ is our approximate answer. In class we
defined the absolute error in x̂ as |x − x̂| and the relative error in x̂ as |x− x̂|/|x|. In this problem
we will explore some simple properties of these error measures.

Write the base β expansion of x > 0 as x = .x1x2 · · · xn · βex , and the base β expansion of
y > 0 as y = .y1y2 · · · yn · βey . We will say that x and y agree to their leading d base β digits if
|x − y| < 1

2βmax(ex,ey)−d. For example, .1230 and .1226 agree to 3 decimal digits, as do 1.00 and
.996, or .1233 and .1237.

Part 1. Suppose you print out x̂ as a base β number. Show that if the relative error |x−x̂|/|x| < 1,
then the leading �logβ

|x|
|x−x̂|� − 1 nonzero base β digits of x̂ are correct, i.e. x and x̂ agree to

that many digits. (�x� is the floor of x, the largest integer less than or equal to x.)

Answer: Let k = �logβ
|x|

|x−x̂|�. The assumption that |x−x̂|
|x| < 1 tells us that k ≥ 0 and

that x and x̂ have the same sign (if they have opposite signs then |x − x̂| = |x|+ |x̂|). Since
they have the same sign, w.l.o.g. we will assume they are both positive. We will show that
|x − x̂| ≤ 1

2 × βex−(k−1), which means that x and x̂ agree to k − 1 digits:

k = �logβ

|x|
|x − x̂|� implies

βk ≤ |x|
|x − x̂| implies

|x − x̂| ≤ β−k|x|
< βex−k

≤ 1
2
βex−k+1

=
1
2
βex−(k−1)

Part 2. Suppose you have solved your problem and gotten x̂, and also a bound eabs ≥ |x − x̂| on
the absolute error (perhaps using rounding error analysis as described in class). You would
like a bound erel ≥ |x− x̂|/|x| on the relative e rror. One obvious candidate is erel = eabs/|x|,
but of course you can’t compute this because you don’t know x (otherwise we wouldn’t need
an error bound!). So instead you try erel = eabs/|x̂|. Show that it is ok to use eabs/|x̂| instead
of eabs/|x| by showing that

|x−x̂|
|x̂|

1 + |x−x̂|
|x̂|

≤ |x − x̂|
|x| ≤

|x−x̂|
|x̂|

1− |x−x̂|
|x̂|

Conclude that if erel ≤ .1, then the actual relative error satisfies .8erel ≤ |x− x̂|/|x| ≤ 1.2erel.

Answer: Multiplying numerator and denominator of both ends of the inequality we want
to prove by |x̂| shows that the inequality is equivalent to:

|x − x̂|
|x̂|+ |x − x̂| ≤

|x − x̂|
|x| ≤ |x − x̂|

|x̂| − |x − x̂|

3

We need to assume that |x−x̂|
|x̂| < 1 so that the right-hand side is positive. Then we can take

the reciprocal of everything and divide everything by |x − x̂| to see that the statement we
need to prove is equivalent to:

|x̂|+ |x − x̂| ≥ |x| ≥ |x̂| − |x − x̂|

which follows from the triangle inequality:

|x| = |x − x̂+ x̂| ≤ |x̂|+ |x − x̂| and:
|x̂| = |x − x̂+ x| ≤ |x − x̂|+ |x|

|x| ≥ |x̂| − |x − x̂|

So, if erel ≤ .1 then 1 − erel ≥ 0.9 so erel
1−erel

≤ erel
0.9 ≤ 1.2erel, so that the actual relative error

is less than or equal to 1.2erel. Similarly .8erel ≤ erel
1.1 ≤ |x−x̂|

|x| .

4

3) Let 1 + r =
∏n

i=1(1 + δi), where |δi| ≤ ε < 1.

Part 1. Show that if nε < 1, then |r| ≤ nε/(1− nε).

Answer: Note that each term in the product is positive, so

(1− ε)n ≤ 1 + r =
n∏

i=1

(1 + δi) ≤ (1 + ε)n

and so
(1− ε)n − 1 ≤ r ≤ (1 + ε)n − 1

We first show (1 + ε)n − 1 ≤ nε/(1− nε) by induction, or equivalently (1 + ε)n ≤ 1/(1− nε).
We need to show the same expression is true with n+1 in place of n. The base case n = 0 is
trivial. Multiply through by 1+ε to get (1+ε)n+1 ≤ 1+ε

1−nε . We need to show 1+ε
1−nε ≤ 1

1−(n+1)ε ,
or (1 + ε)(1− (n + 1)ε) ≤ (1− nε), or 1− nε − (n + 1)ε2 ≤ 1− nε, which is true.

We take a different approach to showing (1−ε)n−1 ≥ −nε/(1−nε), or equivalently 1−2nε ≤
(1− ε)n(1−nε). This is clearly true for 1 > nε ≥ .5 and at ε = 0. To show it for ε in between
these values, we will show that the derivative of 1− 2nε with respect to ε is always less than
the derivative of (1 − ε)n(1 − nε), so they start equal to one at ε = 0, and then 1 − 2nε
decreases faster as ε increases from 0 to 1/(2n). In other words we have to show

−2n ≤ −n(1− ε)n−1(1− nε)− n(1− ε)n

= −n(1− ε)n−1(2− (n + 1)ε) or
2(1 − (1− ε)n−1) ≥ −(1− ε)n−1(n + 1)ε

which is clearly true as desired.

Part 2. Show that if nε ≤ .1, then r ≤ 1.2nε.

Answer: If nε ≤ .1 then 1
1−nε ≤ 1

0.9 ≤ 1.2, so r ≤ nε
1−nε ≤ 1.2nε.

Part 3. In IEEE double precision, how big can n be and satisfy nε ≤ .1?

Answer: In IEEE double precision, ε = 2−53 so we solve 2−53n ≤ .1 to get n ≤ (0.1)253 ≈
9× 1014.

Part 4. If you compute p =
∏n

i=1 xi in floating point arithmetic, and no over/underflow occurs,
and nε ≤ .1, about how many leading decial digits of the computed value of p are correct
when using IEEE double precision arithmetic with n = 10? n = 100? n = 1000? n = 10000?

Answer: If we compute p =
∏n

i=1 xi, the relative error is r ≤ 1.2nε, so, by problem 1
we expect log10(1/r) − 1 ≥ log10(1/(1.2nε)) − 1 = − log10(1.2ε) − log10(n) − 1 digits to be
correct. In IEEE arithmetic, − log10(1.2ε) > 15, so we expect at least 14 − log10(n) correct
digits. Thus if n = 10 we expect 13, if n = 100 we expect 12, if n = 1000 we expect 11 and if
n = 10000 we expect 10 correct digits.

5

