Math 128a - Homework 1 - Due Feb 7 at the beginning of class

1) In class we saw an example showing that in decimal floating point arithmetic, the computed
value of xmid=(xlower+xupper)/2 is not necessarily between xlower and xupper, which would be
a problem for the logic in bisection (in 3 decimal digit arithmetic, try xlower = .997 and xupper
= .999). We will show that this is impossible in IEEE arithmetic, which is binary. In other
words, we will show that in IEEE arithmetic xmid = fI(fi(xlower + xupper)/2) is in the interval
[xlower , xupper|, assuming overflow does not occur when adding xlower and xupper. (Here fi(a op b)
means the floating point result of the operation a op b.

Part 1. Using the fact that IEEE arithmetic is correctly rounded, show that it is monotonic, that
is if a,b,c,d and x are IEEE floating point numbers then

a<b and ¢<d implies fl(a+c) < fl(b+d)
a<b and 0<zx implies fl(a/z)< fl(b/x)

(Similar facts hold for subtraction and multiplication, but we will not need these here.)

Answer: The simplest way to describe how IEEE arithmetic computes fl(a ® ¢) (where ®
is any binary arithmetic operation 4+, —, x or =) can be described as follows (although it is
not implemented this way!): Take the mathematically exact value of a ® ¢ and round it to
the nearest floating point number. If there is a tie (because a ® c is exactly half way between
two floating point numbers) break the tie by rounding to the nearest floating point number
whose bottom bit is zero.

We give two different proofs: first a direct case analysis, and second a proof by contradiction.
First suppose a ® ¢ = b® d; then the rules above imply that fl(a®c) = fl(b®d). So suppose
a®c < b®d. There are two cases: either there is a floating point number x somewhere in the
range a®@c < x < b®d or there is not. If there is, then x is closer to a®c than any floating point
number exceeding z, so fl(a®c) < x. Simililary fl(b®d) > x, so fl(a®c) <z < fl(b®d) as
desired. Now suppose there is no floating point number x between a ® ¢ and b ® d. In other
words 2 < a® ¢ < b® d < z, where x; and x,, are adjacent floating point numbers. Then
the nearest floating point number to either a ® ¢ or b ® d must be either z; or x,,. Now there
are 3 possibilities: a ® ¢ < (x;+x4)/2, a®c = (v;+zy)/2 or a®c > (x;+ x,)/2. In the first
case fl(a ® c) =z, which must be less than or equal to fI(b® d) (which is either x; or z,,).
In the second case fl(b® d) = x,, which must be greater than or equal to fl(a ® b) (which
is either x; or x,,). In the third case fl(a ® b) = z, = fl(c ® d).

Now we do a proof by contradiction. As before, if a ® ¢ = b® d then fl(a® c) = fl(b® d),
so it suffices to consider the case a ® ¢ < b ® d. Suppose for the sake of contradiction that
flla®c) > fl(b®d). Because we round to the nearest floating point number, there can’t be
any floating point numbers between a ® ¢ and fl(a ® ¢), so in particular fl(b® d) < a ® c.
Similarly b ® d < fl(a ® ¢). Altogether then fl(b®d) <a®c<b®d < fl(a® c). But this

implies

[(bod)— flbod)|+|flla®ec)—(a®c)| = (b®@d)— flbad) + flla®c)—(a®c)
a®c)— flb®d)+ flla®c)— (b®d)
®

c)— flbad)|+|flla®c)— (b®d)

\Y

(
(
|(a

But
[(b@d) - fllbed)| < [flla®c)— (b d)

since fl(b® d) is the closest floating point number to b ® d, and
[flla®c) —(a®@c)| < [(a®c) - fl(bd)|
since fl(a ® c) is the closest floating point number to a ® ¢, so we get

X=|bod) —flbd)|+|fllake)—(a®c) > |[(a®c)— flbad)|+|flla®c)— (b d)]
(from before)

|flla®c) —(a@c)| + |fl(b®d) — (b®d)|
= X

v

or X > X, a contradiction.

Part 2. Show that fI(2+z) = 2%z exactly, assuming overflow does not occur.

Answer: If x is an exact floating point number, so is 2 * = (barring overflow), since multi-
plying by two just increases the exponent by one. So fl(2* x) = 2 * x.

Part 3. Show that 2 x xlower < fl(xlower + xupper) < 2 % xupper.

Answer: If xlower < xupper are floating point numbers, we have xlower+xlower < xlower+xupper,
so by the first part of Part 1 fl(xlower+xlower) < fl(xlower+xupper), and by Part 2 we get
2*xlower < fl(xlower+xupper). Similarly, fl(xlower+xupper) < 2*xupper.

Part 4. Conclude that xlower < fi(fl(xlower 4+ xupper)/2) < xupper.
Answer: Dividing 2*xlower < fl(xlower+xupper) < 2*xupper by x = 2 and applyi ng
part 2 of Part 1 yields fi(2*xlower/2) < fi(fl(xlower+xupper)/2) < fi(2*xupper/2). But
(2*xlower)/2 = xlower is an exact floating point number, so fI((2*xlower)/2) = xlower.
Similarly fI((2*xupper)/2) = xupper.

Part 5. Where does this argument fail for correctly rounded decimal arithmetic?

Answer: This argument fails for decimal arithmetic because fI(2 x x) does not have to
equal 2 x x exactly. (In decimal arithmetic, the formula xmin = (xlower+xupper)/2 could be
replaced by xmmin = max(xlower, min(xupper, (xupper+xlower)/2.)) to guarantee that
xlower < xmid < xupper.

Part 6. What happens if xlower and xupper are adjacent IEEE floating point numbers?

Answer: The argument that xlower < xmin < xupper is still true, so either xmid = xlower
Or Xmin = xupper.

2) Suppose z is the exact answer to a problem, and Z is our approximate answer. In class we
defined the absolute error in Z as |x — Z| and the relative error in Z as |x — Z|/|x|. In this problem
we will explore some simple properties of these error measures.

Write the base (8 expansion of z > 0 as x = .x1x2 - x, - 8%, and the base [expansion of
y>0asy = .y1y2 - Yn - 0% We will say that x and y agree to their leading d base B digits if
|z —y| < %ﬂma"(e“’ey)_d. For example, .1230 and .1226 agree to 3 decimal digits, as do 1.00 and
996, or .1233 and .1237.

Part 1. Suppose you print out T as a base § number. Show that if the relative error |z—7|/|z| < 1,

T . . ~ . ~
|J,‘§|J — 1 nonzero base 3 digits of Z are correct, i.e. x and T agree to

that many digits. (|z] is the floor of x, the largest integer less than or equal to x.)

then the leading |logg

Answer: Let k = |logg ‘x‘f‘ﬂj The assumption that % < 1 tells us that £ > 0 and
that x and Z have the same sign (if they have opposite signs then |z — Z| = |z| + |Z|). Since
they have the same sign, w.l.o.g. we will assume they are both positive. We will show that

v — 7| < 1 x B~ =D which means that = and 7 agree to k — 1 digits:

2]

k = [logg - fc\|J implies
Bk < |x|/\ implies
|z — 2|

|z — 7| < 57"z

< ﬁex—k

-2

L e

= 25

Part 2. Suppose you have solved your problem and gotten ¥, and also a bound egs > | — Z| on
the absolute error (perhaps using rounding error analysis as described in class). You would
like a bound e, > |z — Z|/|z| on the relative e rror. One obvious candidate is e,¢; = eqps/| 2],
but of course you can’t compute this because you don’t know = (otherwise we wouldn’t need
an error bound!). So instead you try e..; = eqps/|Z|. Show that it is ok to use eqps/|Z| instead
of e4bs/|x| by showing that

Conclude that if e,¢; < .1, then the actual relative error satisfies .8¢,¢; < |z —Z|/|z| < 1.2€,¢.

Answer: Multiplying numerator and denominator of both ends of the inequality we want
to prove by |Z| shows that the inequality is equivalent to:

|z — 2| |z — | |x — 7|

~ ~

e e N N N

|z—2|

Bl
the reciprocal of everything and divide everything by |x — Z| to see that the statement we
need to prove is equivalent to:

We need to assume that

< 1 so that the right-hand side is positive. Then we can take

Z| + o — 2| = || = [Z] — |z — Z|
which follows from the triangle inequality:
|| =|r -2+ 2| <|Z|+ |z —Z| and:

7] = |o =T + 2] < |z — 2| + 2]

|z > [Z] — | — 7]

So, if e, < .1 then 1 — e, > 0.9 s0 li:;rlel < Tg < 1.2e,¢, so that the actual relative error

is less than or equal to 1.2e,.;. Similarly .8e,¢ <

Erel \x—%\
TS T

3) Let 1+r=T[-,(1+d;), where |§;] < e < 1.

Part 1. Show that if ne < 1, then |r| < ne/(1 — ne).
Answer: Note that each term in the product is positive, so

n

G- <i4r=][1+6)<A+0"
=1

and so
l-e"—-1<r<(14¢"-1

We first show (1 + €)™ — 1 < ne/(1 — ne) by induction, or equivalently (1 +¢€)” < 1/(1 — ne).
We need to show the same expression is true with n + 1 in place of n. The base case n = 0 is

trivial. Multiply through by 1+¢ to get (1+¢)"* < % We need to show 11:er€ < 1_(nl+1)e,

or (1+¢€)(1—(n+1)) < (1—mne),or1—ne—(n+1)e? <1 — ne, which is true.

We take a different approach to showing (1—¢)” —1 > —ne/(1—ne), or equivalently 1 —2ne <
(1 —€)™(1 —ne). This is clearly true for 1 > ne > .5 and at € = 0. To show it for € in between
these values, we will show that the derivative of 1 — 2ne with respect to € is always less than
the derivative of (1 — €)™(1 — ne), so they start equal to one at ¢ = 0, and then 1 — 2ne
decreases faster as € increases from 0 to 1/(2n). In other words we have to show

—2n —n(l —€)" (1 —ne) —n(l —e)"
= —n(l—e)" 2= (n+1)e) or

—(1—e)" Yn+1)e

— €
— €

21— (1-o")

Y

which is clearly true as desired.

Part 2. Show that if ne < .1, then r < 1.2ne.

Answer: If ne < .1 then l%m < ﬁ <1.2,s0r < 2 < 1.2ne.

l—-ne —

Part 3. In IEEE double precision, how big can n be and satisfy ne < .17

Answer: In IEEE double precision, ¢ = 2753 so we solve 27%3n < .1 to get n < (0.1)2%3 ~
9 x 10,

Part 4. If you compute p = [[?"_; x; in floating point arithmetic, and no over/underflow occurs,
and ne < .1, about how many leading decial digits of the computed value of p are correct
when using IEEE double precision arithmetic with n = 107 n = 1007 n = 10007 n = 100007

Answer: If we compute p = [[I"; z;, the relative error is r < 1.2ne, so, by problem 1
we expect logo(1/r) — 1 > logio(1/(1.2ne)) — 1 = —log;o(1.2¢) — logo(n) — 1 digits to be
correct. In IEEE arithmetic, —log;(1.2¢) > 15, so we expect at least 14 — log;,(n) correct
digits. Thus if n = 10 we expect 13, if n = 100 we expect 12, if n = 1000 we expect 11 and if
n = 10000 we expect 10 correct digits.

