Math 128a - Homework 1 - Due Feb 7 at the beginning of class

1) In class we saw an example showing that in decimal floating point arithmetic, the computed value of xmid=(xlower+xupper)/2 is not necessarily between xlower and xupper, which would be a problem for the logic in bisection (in 3 decimal digit arithmetic, try xlower = .997 and xupper = .999). We will show that this is impossible in IEEE arithmetic, which is binary. In other words, we will show that in IEEE arithmetic xmid = fl(fl(xlower + xupper)/2) is in the interval [xlower,xupper], assuming overflow does not occur when adding xlower and xupper. (Here fl(a op b) means the floating point result of the operation a op b.

Part 1. Using the fact that IEEE arithmetic is correctly rounded, show that it is monotonic, that is if a, b, c, d and x are IEEE floating point numbers then

 $a \le b$ and $c \le d$ implies $fl(a+c) \le fl(b+d)$ $a \le b$ and 0 < x implies $fl(a/x) \le fl(b/x)$

(Similar facts hold for subtraction and multiplication, but we will not need these here.)

Answer: The simplest way to describe how IEEE arithmetic computes $fl(a \otimes c)$ (where \otimes is any binary arithmetic operation $+, -, \times$ or \div) can be described as follows (although it is not implemented this way!): Take the mathematically exact value of $a \otimes c$ and round it to the nearest floating point number. If there is a tie (because $a \otimes c$ is exactly half way between two floating point numbers) break the tie by rounding to the nearest floating point number whose bottom bit is zero.

We give two different proofs: first a direct case analysis, and second a proof by contradiction. First suppose $a \otimes c = b \otimes d$; then the rules above imply that $fl(a \otimes c) = fl(b \otimes d)$. So suppose $a \otimes c < b \otimes d$. There are two cases: either there is a floating point number x somewhere in the range $a \otimes c \leq x \leq b \otimes d$ or there is not. If there is, then x is closer to $a \otimes c$ than any floating point number exceeding x, so $fl(a \otimes c) \leq x$. Simililary $fl(b \otimes d) \geq x$, so $fl(a \otimes c) \leq x \leq fl(b \otimes d)$ as desired. Now suppose there is no floating point number x between $a \otimes c$ and $b \otimes d$. In other words $x_l < a \otimes c < b \otimes d < x_u$ where x_l and x_u are adjacent floating point numbers. Then the nearest floating point number to either $a \otimes c$ or $b \otimes d$ must be either x_l or x_u . Now there are 3 possibilities: $a \otimes c < (x_l + x_u)/2$, $a \otimes c = (x_l + x_u)/2$ or $a \otimes c > (x_l + x_u)/2$. In the first case $fl(a \otimes c) = x_l$, which must be less than or equal to $fl(b \otimes d)$ (which is either x_l or x_u). In the third case $fl(a \otimes b) = x_u = fl(c \otimes d)$.

Now we do a proof by contradiction. As before, if $a \otimes c = b \otimes d$ then $fl(a \otimes c) = fl(b \otimes d)$, so it suffices to consider the case $a \otimes c < b \otimes d$. Suppose for the sake of contradiction that $fl(a \otimes c) > fl(b \otimes d)$. Because we round to the nearest floating point number, there can't be any floating point numbers between $a \otimes c$ and $fl(a \otimes c)$, so in particular $fl(b \otimes d) < a \otimes c$. Similarly $b \otimes d < fl(a \otimes c)$. Altogether then $fl(b \otimes d) < a \otimes c < b \otimes d < fl(a \otimes c)$. But this implies

$$\begin{aligned} |(b \otimes d) - fl(b \otimes d)| + |fl(a \otimes c) - (a \otimes c)| &= (b \otimes d) - fl(b \otimes d) + fl(a \otimes c) - (a \otimes c) \\ &> (a \otimes c) - fl(b \otimes d) + fl(a \otimes c) - (b \otimes d) \\ &= |(a \otimes c) - fl(b \otimes d)| + |fl(a \otimes c) - (b \otimes d)| \end{aligned}$$

But

$$|(b \otimes d) - fl(b \otimes d)| \le |fl(a \otimes c) - (b \otimes d)|$$

since $fl(b \otimes d)$ is the closest floating point number to $b \otimes d$, and

$$|fl(a \otimes c) - (a \otimes c)| \le |(a \otimes c) - fl(b \otimes d)|$$

since $fl(a \otimes c)$ is the closest floating point number to $a \otimes c$, so we get

$$\begin{split} X \equiv |(b \otimes d) - fl(b \otimes d)| + |fl(a \otimes c) - (a \otimes c)| &> |(a \otimes c) - fl(b \otimes d)| + |fl(a \otimes c) - (b \otimes d)| \\ & (\text{from before}) \\ \ge & |fl(a \otimes c) - (a \otimes c)| + |fl(b \otimes d) - (b \otimes d)| \\ &= X \end{split}$$

or X > X, a contradiction.

Part 2. Show that fl(2 * x) = 2 * x exactly, assuming overflow does not occur.

Answer: If x is an exact floating point number, so is 2 * x (barring overflow), since multiplying by two just increases the exponent by one. So fl(2 * x) = 2 * x.

Part 3. Show that $2 * \text{xlower} \le fl(\text{xlower} + \text{xupper}) \le 2 * \text{xupper}$.

Answer: If xlower \leq xupper are floating point numbers, we have xlower+xlower \leq xlower+xupper, so by the first part of Part 1 fl(xlower+xlower $) \leq fl($ xlower+xupper), and by Part 2 we get 2*xlower $\leq fl($ xlower+xupper). Similarly, fl(xlower+xupper $) \leq 2$ *xupper.

Part 4. Conclude that xlower $\leq fl(fl(\text{xlower} + \text{xupper})/2) \leq \text{xupper}$.

Answer: Dividing 2*xlower $\leq fl(\text{xlower}+\text{xupper}) \leq 2^*\text{xupper}$ by x = 2 and applying part 2 of Part 1 yields $fl(2^*\text{xlower}/2) \leq fl(fl(\text{xlower}+\text{xupper})/2) \leq fl(2^*\text{xupper}/2)$. But $(2^*\text{xlower})/2 = \text{xlower}$ is an exact floating point number, so $fl((2^*\text{xlower})/2) = \text{xlower}$. Similarly $fl((2^*\text{xupper})/2) = \text{xupper}$.

Part 5. Where does this argument fail for correctly rounded decimal arithmetic?

Answer: This argument fails for decimal arithmetic because fl(2 * x) does not have to equal 2 * x exactly. (In decimal arithmetic, the formula xmin = (xlower+xupper)/2 could be replaced by xmmin = max(xlower, min(xupper, (xupper+xlower)/2.)) to guarantee that $xlower \leq xmid \leq xupper$.

Part 6. What happens if xlower and xupper are adjacent IEEE floating point numbers?

Answer: The argument that xlower $\leq xmin \leq xupper$ is still true, so either xmid = xlower or xmin = xupper.

2) Suppose x is the exact answer to a problem, and \hat{x} is our approximate answer. In class we defined the absolute error in \hat{x} as $|x - \hat{x}|$ and the relative error in \hat{x} as $|x - \hat{x}|/|x|$. In this problem we will explore some simple properties of these error measures.

Write the base β expansion of x > 0 as $x = .x_1 x_2 \cdots x_n \cdot \beta^{e_x}$, and the base β expansion of y > 0 as $y = .y_1 y_2 \cdots y_n \cdot \beta^{e_y}$. We will say that x and y agree to their leading d base β digits if $|x - y| < \frac{1}{2}\beta^{\max(e_x, e_y) - d}$. For example, .1230 and .1226 agree to 3 decimal digits, as do 1.00 and .996, or .1233 and .1237.

Part 1. Suppose you print out \hat{x} as a base β number. Show that if the relative error $|x - \hat{x}|/|x| < 1$, then the leading $\lfloor \log_{\beta} \frac{|x|}{|x - \hat{x}|} \rfloor - 1$ nonzero base β digits of \hat{x} are correct, i.e. x and \hat{x} agree to that many digits. ($\lfloor x \rfloor$ is the *floor of* x, the largest integer less than or equal to x.)

Answer: Let $k = \lfloor \log_{\beta} \frac{|x|}{|x-\hat{x}|} \rfloor$. The assumption that $\frac{|x-\hat{x}|}{|x|} < 1$ tells us that $k \ge 0$ and that x and \hat{x} have the same sign (if they have opposite signs then $|x - \hat{x}| = |x| + |\hat{x}|$). Since they have the same sign, w.l.o.g. we will assume they are both positive. We will show that $|x - \hat{x}| \le \frac{1}{2} \times \beta^{e_x - (k-1)}$, which means that x and \hat{x} agree to k - 1 digits:

$$\begin{aligned} k &= \lfloor \log_{\beta} \frac{|x|}{|x - \hat{x}|} \rfloor \text{ implies} \\ \beta^{k} &\leq \frac{|x|}{|x - \hat{x}|} \text{ implies} \\ |x - \hat{x}| &\leq \beta^{-k} |x| \\ &< \beta^{e_{x} - k} \\ &\leq \frac{1}{2} \beta^{e_{x} - k + 1} \\ &= \frac{1}{2} \beta^{e_{x} - (k - 1)} \end{aligned}$$

Part 2. Suppose you have solved your problem and gotten \hat{x} , and also a bound $e_{abs} \ge |x - \hat{x}|$ on the absolute error (perhaps using rounding error analysis as described in class). You would like a bound $e_{rel} \ge |x - \hat{x}|/|x|$ on the relative e rror. One obvious candidate is $e_{rel} = e_{abs}/|x|$, but of course you can't compute this because you don't know x (otherwise we wouldn't need an error bound!). So instead you try $e_{rel} = e_{abs}/|\hat{x}|$. Show that it is ok to use $e_{abs}/|\hat{x}|$ instead of $e_{abs}/|x|$ by showing that

$$\frac{\frac{|x-\hat{x}|}{|\hat{x}|}}{1+\frac{|x-\hat{x}|}{|\hat{x}|}} \le \frac{|x-\hat{x}|}{|x|} \le \frac{\frac{|x-\hat{x}|}{|\hat{x}|}}{1-\frac{|x-\hat{x}|}{|\hat{x}|}}$$

Conclude that if $e_{rel} \leq .1$, then the actual relative error satisfies $.8e_{rel} \leq |x - \hat{x}|/|x| \leq 1.2e_{rel}$. **Answer:** Multiplying numerator and denominator of both ends of the inequality we want to prove by $|\hat{x}|$ shows that the inequality is equivalent to:

$$\frac{|x-\widehat{x}|}{|\widehat{x}|+|x-\widehat{x}|} \leq \frac{|x-\widehat{x}|}{|x|} \leq \frac{|x-\widehat{x}|}{|\widehat{x}|-|x-\widehat{x}|}$$

We need to assume that $\frac{|x-\hat{x}|}{|\hat{x}|} < 1$ so that the right-hand side is positive. Then we can take the reciprocal of everything and divide everything by $|x - \hat{x}|$ to see that the statement we need to prove is equivalent to:

$$|\widehat{x}| + |x - \widehat{x}| \ge |x| \ge |\widehat{x}| - |x - \widehat{x}|$$

which follows from the triangle inequality:

$$\begin{aligned} |x| &= |x - \hat{x} + \hat{x}| \le |\hat{x}| + |x - \hat{x}| \quad \text{and:} \\ |\hat{x}| &= |x - \hat{x} + x| \le |x - \hat{x}| + |x| \\ |x| \ge |\hat{x}| - |x - \hat{x}| \end{aligned}$$

So, if $e_{rel} \leq .1$ then $1 - e_{rel} \geq 0.9$ so $\frac{e_{rel}}{1 - e_{rel}} \leq \frac{e_{rel}}{0.9} \leq 1.2e_{rel}$, so that the actual relative error is less than or equal to $1.2e_{rel}$. Similarly $.8e_{rel} \leq \frac{e_{rel}}{1.1} \leq \frac{|x - \hat{x}|}{|x|}$.

3) Let $1 + r = \prod_{i=1}^{n} (1 + \delta_i)$, where $|\delta_i| \le \epsilon < 1$.

Part 1. Show that if $n\epsilon < 1$, then $|r| \le n\epsilon/(1 - n\epsilon)$.

Answer: Note that each term in the product is positive, so

$$(1-\epsilon)^n \le 1+r = \prod_{i=1}^n (1+\delta_i) \le (1+\epsilon)^n$$

and so

$$(1-\epsilon)^n - 1 \le r \le (1+\epsilon)^n - 1$$

We first show $(1+\epsilon)^n - 1 \le n\epsilon/(1-n\epsilon)$ by induction, or equivalently $(1+\epsilon)^n \le 1/(1-n\epsilon)$. We need to show the same expression is true with n+1 in place of n. The base case n = 0 is trivial. Multiply through by $1+\epsilon$ to get $(1+\epsilon)^{n+1} \le \frac{1+\epsilon}{1-n\epsilon}$. We need to show $\frac{1+\epsilon}{1-n\epsilon} \le \frac{1}{1-(n+1)\epsilon}$, or $(1+\epsilon)(1-(n+1)\epsilon) \le (1-n\epsilon)$, or $1-n\epsilon-(n+1)\epsilon^2 \le 1-n\epsilon$, which is true.

We take a different approach to showing $(1-\epsilon)^n - 1 \ge -n\epsilon/(1-n\epsilon)$, or equivalently $1-2n\epsilon \le (1-\epsilon)^n(1-n\epsilon)$. This is clearly true for $1 > n\epsilon \ge .5$ and at $\epsilon = 0$. To show it for ϵ in between these values, we will show that the derivative of $1-2n\epsilon$ with respect to ϵ is always less than the derivative of $(1-\epsilon)^n(1-n\epsilon)$, so they start equal to one at $\epsilon = 0$, and then $1-2n\epsilon$ decreases faster as ϵ increases from 0 to 1/(2n). In other words we have to show

$$\begin{array}{rcl} -2n & \leq & -n(1-\epsilon)^{n-1}(1-n\epsilon) - n(1-\epsilon)^n \\ & = & -n(1-\epsilon)^{n-1}(2-(n+1)\epsilon) \text{ or} \\ 2(1-(1-\epsilon)^{n-1}) & \geq & -(1-\epsilon)^{n-1}(n+1)\epsilon \end{array}$$

which is clearly true as desired.

Part 2. Show that if $n\epsilon \leq .1$, then $r \leq 1.2n\epsilon$.

Answer: If $n\epsilon \leq .1$ then $\frac{1}{1-n\epsilon} \leq \frac{1}{0.9} \leq 1.2$, so $r \leq \frac{n\epsilon}{1-n\epsilon} \leq 1.2n\epsilon$.

Part 3. In IEEE double precision, how big can n be and satisfy $n \epsilon \leq .1$?

Answer: In IEEE double precision, $\epsilon = 2^{-53}$ so we solve $2^{-53}n \leq .1$ to get $n \leq (0.1)2^{53} \approx 9 \times 10^{14}$.

Part 4. If you compute $p = \prod_{i=1}^{n} x_i$ in floating point arithmetic, and no over/underflow occurs, and $n\epsilon \leq .1$, about how many leading decial digits of the computed value of p are correct when using IEEE double precision arithmetic with n = 10? n = 100? n = 1000? n = 10000?

Answer: If we compute $p = \prod_{i=1}^{n} x_i$, the relative error is $r \leq 1.2n\epsilon$, so, by problem 1 we expect $\log_{10}(1/r) - 1 \geq \log_{10}(1/(1.2n\epsilon)) - 1 = -\log_{10}(1.2\epsilon) - \log_{10}(n) - 1$ digits to be correct. In IEEE arithmetic, $-\log_{10}(1.2\epsilon) > 15$, so we expect at least $14 - \log_{10}(n)$ correct digits. Thus if n = 10 we expect 13, if n = 100 we expect 12, if n = 1000 we expect 11 and if n = 10000 we expect 10 correct digits.