
Math 128a - Homework 1 - Due Feb 7 at the beginning of class
Corrections made on Feb 1 to Questions 1.6 and 4.3

1) In class we saw an example showing that in decimal floating point arithmetic, the computed
value of xmid=(xlower+xupper)/2 is not necessarily between xlower and xupper, which would be
a problem for the logic in bisection (in 3 decimal digit arithmetic, try xlower = .997 and xupper
= .999). We will show that this is impossible in IEEE arithmetic, which is binary. In other
words, we will show that in IEEE arithmetic xmid = fl(fl(xlower + xupper)/2) is in the interval
[xlower,xupper], assuming overflow does not occur when adding xlower and xupper. (Here fl(a op b)
means the floating point result of the operation a op b.

Part 1. Using the fact that IEEE arithmetic is correctly rounded, show that it is monotonic, that
is if a, b, c, d and x are IEEE floating point numbers then

a ≤ b and c ≤ d implies fl(a+ c) ≤ fl(b+ d)
a ≤ b and 0 < x implies fl(a/x) ≤ fl(b/x)

(Similar facts hold for subtraction and multiplication, but we will not need these here.)

Part 2. Show that fl(2 ∗ x) = 2 ∗ x exactly, assuming overflow does not occur.

Part 3. Show that 2 ∗ xlower ≤ fl(xlower + xupper) ≤ 2 ∗ xupper.
Part 4. Conclude that xlower ≤ fl(fl(xlower + xupper)/2) ≤ xupper.

Part 5. Where does this argument fail for correctly rounded decimal arithmetic?

Part 6. What happens if xlower and xupper are adjacent IEEE floating point numbers?
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2) Suppose x is the exact answer to a problem, and x̂ is our approximate answer. In class we
defined the absolute error in x̂ as |x − x̂| and the relative error in x̂ as |x− x̂|/|x|. In this problem
we will explore some simple properties of these error measures.

Write the base β expansion of x > 0 as x = .x1x2 · · · xn · βex , and the base β expansion of
y > 0 as y = .y1y2 · · · yn · βey . We will say that x and y agree to their leading d base β digits if
|x − y| < 1

2βmax(ex,ey)−d. For example, .1230 and .1226 agree to 3 decimal digits, as do 1.00 and
.996, or .1233 and .1237.

Part 1. Suppose you print out x̂ as a base β number. Show that if the relative error |x−x̂|/|x| < 1,
then the leading �logβ

|x|
|x−x̂|� − 1 nonzero base β digits of x̂ are correct, i.e. x and x̂ agree to

that many digits. (�x� is the floor of x, the largest integer less than or equal to x.)

Part 2. Suppose you have solved your problem and gotten x̂, and also a bound eabs ≥ |x − x̂| on
the absolute error (perhaps using rounding error analysis as described in class). You would
like a bound erel ≥ |x− x̂|/|x| on the relative e rror. One obvious candidate is erel = eabs/|x|,
but of course you can’t compute this because you don’t know x (otherwise we wouldn’t need
an error bound!). So instead you try erel = eabs/|x̂|. Show that it is ok to use eabs/|x̂| instead
of eabs/|x| by showing that

|x−x̂|
|x̂|

1 + |x−x̂|
|x̂|

≤ |x − x̂|
|x| ≤

|x−x̂|
|x̂|

1− |x−x̂|
|x̂|

Conclude that if erel ≤ .1, then the actual relative error satisfies .8erel ≤ |x− x̂|/|x| ≤ 1.2erel.
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3) Let 1 + r =
∏n

i=1(1 + δi), where |δi| ≤ ε < 1.

Part 1. Show that if nε < 1, then |r| ≤ nε/(1− nε).

Part 2. Show that if nε ≤ .1, then r ≤ 1.2nε.

Part 3. In IEEE double precision, how big can n be and satisfy nε ≤ .1?

Part 4. If you compute p =
∏n

i=1 xi in floating point arithmetic, and no over/underflow occurs,
and nε ≤ .1, about how many leading decial digits of the computed value of p are correct
when using IEEE double precision arithmetic with n = 10? n = 100? n = 1000? n = 10000?
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4) Suppose x > 0. Here are two Matlab algorithms for computing e−x:
Algorithm 1: Compute e−x using a Taylor expansion

s = 1; t = 1; i = 1;
while (abs(t) > eps*abs(s))

... stop iterating when adding t to s does not change s
t = -t*x/i;
s = s + t;
i = i + 1;

end
result1 = s;

Algorithm 2: Compute e−x as 1/ex, using a Taylor expansion for ex

s = 1; t = 1; i = 1;
while (abs(t) > eps*abs(s))

... stop iterating when adding t to s does not change s
t = t*x/i;
s = s + t;
i = i + 1;

end
result2 = 1/s;

Part 1. Run these two algorithms for x = 1:20, tabulating the relative errors and number of
iterations to converge for each.

Part 2. Prove that the relative error of result2 is, as you observe, bounded by (3i − 2)ε, i.e. very
accurate. You may assume the error from terminating the Taylor expansion is smaller than
round off error, and you may ignore terms proportional to ε2. Confirm that (3i− 2)ε bounds
the relative errors in your table above.

Part 3. Prove that the relative error of result1 is bounded by 3(i − 1)εe2x, i.e. it grows quickly
with x, so that Algorithm 1 is much less accurate than Algorithm 2. You may make the same
assumptions as before. Confirm that 3(i − 1)εe2x bounds the relative errors in your table
above.

Part 4. The computer implementation for ex takes the same time for large and small arguments;
i.e. it does not use a simple Taylor expansion, which would require more terms for larger
arguments. Sketch an algorithm for ex that does not take longer for large x. Use the fact
that ex = 2y where y = x · log2 e, write y = yint + yfrac as a sum of an integer and a fraction
less than 1, and use the fact that 2y = 2yint · 2yfrac is to be rounded to a floating point
number. How many term of a Taylor expansion of 2yfrac are needed so that the remaining
terms contribute less than ε to the relative error?
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