- 1. (a) Write *n*th order Taylor polynomial approximation for the function f(x) expanded about x = a and indicate a bound on the error or the remainder term by this approximation.
 - (b) Estimate a bound on the error for a 2nd order approximation of f(x) = sin(x)when a = 0 and x = 1.
 - (c) Solve the quadratic equation $x^2 + c^2x 1 = 0$ where c is a constant, using the standard formula. Comment on what computational error might exist with either or both of the roots for certain values of the costant c. In the case that a problem does exists give an alternate form of the root that removes this difficulty.
- 2. (a) if the bisection method is applied to the solution of the equation, $x^3 + x 4 = 0$ with the initial search interval [1, 2] then what is the bound on the number of iterations needed to achieve an approximate solution with an accuracy of 10^{-3} .
 - (b) Starting from the formula for Newton's method, derive the Secant method.
 - (c) Starting at $p_0 = 1$, perform two iterations of Newton's method on the equation in (a). Retain at least 5 significant figures in your calculations.
- 3. (a) Show graphically what a fixed point iteration $p_{n+1} = g(p_n)$ does.
 - (b) Give conditions which guarantee that a fixed point exists and is unique, and also that the fixed point iteration converges linearly.
 - (c) Apply the results of (b) to the iteration $p_{n+1} = g(p_n)$, where $g(x) = \frac{e^{x/2}}{4}$ and show that it converges linearly to a unique fixed point in the interval [0, 0.5].
- 4. (a) Suppose a sequence $\{p_n\}_0^\infty$ converges to p^* with $p_n \neq p^*$ for all n, then state the mathematical condition that implies $\{p_n\}_0^\infty$ converges to p^* withorder α , with asymptotic error constant λ .
 - (b) For the iteration $p_{n+1} = g(p_n)$ where $g(x) = (x^3 2)(x 2^{1/3}) + x$, state whether the iteration will converge to $2^{1/3}$ given p_0 "close" to $2^{1/3}$.
- 5. Denote the successive intervals that arise in the bisection method by $[a_0, b_0], [a_1, b_1], [a_2, b_2],$ and so on.
 - (a) Show that $a_0 \leq a_1 \leq a_2 \leq \dots$ and that $b_0 \geq b_1 \geq b_2 \geq \dots$
 - (b) Show that, for all n, $a_nb_n + a_{n-1}b_{n-1} = a_{n-1}b_n + a_nb_{n-1}$.
- 6. Using a calculator, observe the sluggishness with which Newton's method converges in the case of $f(x) = (x 1)^m$ with m = 8. Use $p_0 = 1.1$.