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Preface

These notes started in the Spring of 2004, but contain naathat | have used in previous years.

| would appreciate any comments, suggestions, corregt&as which can be addressed at the email below.

David A. Santos
dsantos@ccp.edu

Things to do:

e Weave functions into counting,la twelfold way. . .
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GNU Free Documentation License

Version 1.2, November 2002
Copyright®© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim cepikthis license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbooktherdunctional and useful document “free” in the sense eédiom: to assure everyone the effective freedom to copy edigitribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this Liserpreserves for the author and publisher a way to get credtéir work, while not being considered responsible fodifications made by others.

This License is a kind of “copyleft”, which means that detive works of the document must themselves be free in the samge. It complements the GNU General Public License, whialtopyleft license designed for free software.

We have designed this License in order to use it for manuafsde software, because free software needs free docutizenta free program should come with manuals providing #eesfreedoms that the software does. But this License is not
limited to software manuals; it can be used for any textuakwegardless of subject matter or whether it is publisteed printed book. We recommend this License principally fork whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medihat contains a notice placed by the copyright holdemggifican be distributed under the terms of this License. $uobtice grants a world-wide, royalty-free license, untedi
in duration, to use that work under the conditions statediheiThe ‘Document’, below, refers to any such manual or work. Any member of thklig is a licensee, and is addressed ymu”. You accept the license if you copy, modify or distributeth
work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document artgn of it, either copied verbatim, or with modificationsddor translated into another language.

A “Secondary Sectiohis a named appendix or a front-matter section of the Docurteat deals exclusively with the relationship of the puifitiss or authors of the Document to the Document's overafestifor to related matters) and contains
nothing that could fall directly within that overall subje¢Thus, if the Document is in part a textbook of mathematicSecondary Section may not explain any mathematics.) &latanship could be a matter of historical connection \lih subject or
with related matters, or of legal, commercial, philosophiethical or political position regarding them.

The “Invariant Sections’ are certain Secondary Sections whose titles are designasebeing those of Invariant Sections, in the notice that tizat the Document is released under this License. If dosedbes not fit the above definition of
Secondary then it is not allowed to be designated as InvarT&re Document may contain zero Invariant Sections. If tbeubnent does not identify any Invariant Sections then taezeone.

The “Cover Texts' are certain short passages of text that are listed, as f8onér Texts or Back-Cover Texts, in the notice that saystifeaDocument is released under this License. A Front-CBeermay be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, reptextin a format whose specification is available to the gémeiblic, that is suitable for revising the document gtiaorwardly with generic text editors or (for
images composed of pixels) generic paint programs or (fawihgs) some widely available drawing editor, and that isable for input to text formatters or for automatic tranisla to a variety of formats suitable for input to text forreas. A copy
made in an otherwise Transparent file format whose markughsence of markup, has been arranged to thwart or discosmbgequent modification by readers is not Transparent. Agénformat is not Transparent if used for any substantialato
of text. A copy that is not “Transparent” is calle®paque’.

Examples of suitable formats for Transparent copies irepldin ASCII without markup, Texinfo input format, LaTeXpint format, SGML or XML using a publicly available DTD, andastiard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transpareagéformats include PNG, XCF and JPG. Opaque formats ingrajeietary formats that can be read and edited only by ety word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, aadtichine-generated HTML, PostScript or PDF produced byeseard processors for output purposes only.

The “Title Page’ means, for a printed book, the title page itself, plus swalfofving pages as are needed to hold, legibly, the matdrislLiicense requires to appear in the title page. For worksrimats which do not have any title page as such,
“Title Page” means the text near the most prominent appearafthe work's title, preceding the beginning of the bodytaf text.

A section ‘Entitled XYZ " means a named subunit of the Document whose title eithereisigely XYZ or contains XYZ in parentheses following telit translates XYZ in another language. (Here XYZ standsafepecific section name
mentioned below, such a&tknowledgements, “ Dedications', “ Endorsements, or “History”.) To “Preserve the Titl¢' of such a section when you modify the Document means thahitins a section “Entitled XYZ" according to this definition

The Document may include Warranty Disclaimers next to thtecaavhich states that this License applies to the DocuniEimése Warranty Disclaimers are considered to be includegfeyence in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Risters may have is void and has no effect on the meaning et fhense.

2. VERBATIM COPYING

‘You may copy and distribute the Document in any medium, eitbenmercially or noncommercially, provided that this Liise, the copyright notices, and the license notice sayisd.tbense applies to the Document are reproduced in allesopi
and that you add no other conditions whatsoever to thoséoEitense. You may not use technical measures to obstructrdrol the reading or further copying of the copies you makeistribute. However, you may accept compensation inaxgh
for copies. If you distribute a large enough number of cogimsmust also follow the conditions in section 3.

YYou may also lend copies, under the same conditions state@abnd you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that comipdrave printed covers) of the Document, numbering more @) and the Document's license notice requires Cover Tgatsmust enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts onftbet cover, and Back-Cover Texts on the back cover. Botlecomust also clearly and legibly identify you as the pulglisf these copies. The front cover must present the full wiith all
words of the title equally prominent and visible. You may adtlder material on the covers in addition. Copying with clemlmited to the covers, as long as they preserve the titleeoDocument and satisfy these conditions, can be treateethatim
copying in other respects.

If the required texts for either cover are too voluminoustéfjibly, you should put the first ones listed (as many as disoaably) on the actual cover, and continue the rest onémexdj pages.

If you publish or distribute Opaque copies of the Documemhbering more than 100, you must either include a machingatsle Transparent copy along with each Opaque copy, oristatavith each Opaque copy a computer-network location
from which the general network-using public has access wnttzad using public-standard network protocols a complesmsparent copy of the Document, free of added materigloufuse the latter option, you must take reasonably prudepss
when you begin distribution of Opaque copies in quantityerisure that this Transparent copy will remain thus acclesattthe stated location until at least one year after thetilae you distribute an Opaque copy (directly or throughryagents or
retailers) of that edition to the public.

Itis requested, but not required, that you contact the asthithe Document well before redistributing any large nentf copies, to give them a chance to provide you with an gatieersion of the Document.

4. MODIFICATIONS

‘You may copy and distribute a Modified Version of the Documemder the conditions of sections 2 and 3 above, providedythatrelease the Modified Version under precisely this Lieengith the Modified Version filling the role of the
Document, thus licensing distribution and modificationte Modified Version to whoever possesses a copy of it. In addiyou must do these things in the Modified Version:

\Y



Vi

A. Use inthe Title Page (and on the covers, if any) a titleidéstfrom that of the Document, and from those of previousieers (which should, if there were any, be listed in the Hissection of the Document). You may use the same title as
a previous version if the original publisher of that versgives permission.

B. Liston the Title Page, as authors, one or more personstitiesiresponsible for authorship of the modifications ie Modified Version, together with at least five of the prin¢iathors of the Document (all of its principal authors, ihis
fewer than five), unless they release you from this requirgme

C. State on the Title page the name of the publisher of the fiéntiVersion, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modificai@ajacent to the other copyright notices.

F. Include, immediately after the copyright notices, arlie notice giving the public permission to use the ModifiedsM under the terms of this License, in the form shown inAtidendum below.
G. Preserve in that license notice the full lists of Invari@actions and required Cover Texts given in the Documeiggnée notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve itdeTiand add to it an item stating at least the title, year, aathors, and publisher of the Modified Version as given onTitle Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, abtigher of the Document as given on its Title Page, then adtean describing the Modified Version as stated in the previgentence.

J. Preserve the network location, if any, given in the Doautrfier public access to a Transparent copy of the Documenit|ikewise the network locations given in the Document fayous versions it was based on. These may be placed in
the “History” section. You may omit a network location for @sk that was published at least four years before the Doctitssdf, or if the original publisher of the version it refeto gives permission.

K. For any section Entitled “Acknowledgements” or “Dedicais”, Preserve the Title of the section, and preserve irséiction all the substance and tone of each of the contribotorowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,tened in their text and in their titles. Section numbers erghjuivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a seatiay not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endarents” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sectiomappendices that qualify as Secondary Sections and combaimaterial copied from the Document, you may at your optiesighate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections ie todified Version's license notice. These titles must béntisfrom any other section titles.

You may add a section Entitled “Endorsements”, providedittains nothing but endorsements of your Modified Versiorvédayous parties—for example, statements of peer reviewatrthe text has been approved by an organization as the
authoritative definition of a standard.

‘You may add a passage of up to five words as a Front-Cover Tekia passage of up to 25 words as a Back-Cover Text, to the ehe ti$t of Cover Texts in the Modified Version. Only one pagsaf Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) angrtity. If the Document already includes a cover text forshme cover, previously added by you or by arrangement matteetsame entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit peiimissom the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not bytticisnse give permission to use their names for publicityoioto assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

‘You may combine the Document with other documents releasdénthis License, under the terms defined in section 4 almveddified versions, provided that you include in the coration all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sestaf your combined work in its license notice, and that yasprve all their Warranty Disclaimers.

The combined work need only contain one copy of this Liceasd, multiple identical Invariant Sections may be replacét wsingle copy. If there are multiple Invariant Sectiorigwmthe same name but different contents, make the titled ea
such section unique by adding at the end of it, in parenthésesame of the original author or publisher of that secti&nown, or else a unique number. Make the same adjustmehétsection titles in the list of Invariant Sections in theetise notice
of the combined work.

In the combination, you must combine any sections Entitt¢idtory” in the various original documents, forming onetsmu Entitled “History”; likewise combine any sections Eted “Acknowledgements”, and any sections Entitled “Deadions”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

‘You may make a collection consisting of the Document andratbeuments released under this License, and replace tivédual copies of this License in the various documents \gitingle copy that is included in the collection, provideatth
you follow the rules of this License for verbatim copying afh of the documents in all other respects.

You may extract a single document from such a collection,disttibute it individually under this License, providedwimsert a copy of this License into the extracted document,fallow this License in all other respects regarding vérba
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with otheparate and independent documents or works, in or on a vafimstorage or distribution medium, is called an “aggregitée copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyonidatthe individual works permit. When the Document is ineldiéh an aggregate, this License does not apply to the othessimthe aggregate which are not themselves derivativésvofrthe
Document.

If the Cover Text requirement of section 3 is applicable &sthcopies of the Document, then if the Document is less thamalf of the entire aggregate, the Document’s Cover Tegtsime placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if theubuent is in electronic form. Otherwise they must appear amtga covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you misyriute translations of the Document under the terms ctiee 4. Replacing Invariant Sections with translatiorpiees special permission from their copyright holders yiou may
include translations of some or all Invariant Sections idiidn to the original versions of these Invariant Sectiovisu may include a translation of this License, and all teeriise notices in the Document, and any Warranty Disclairpeosided that
you also include the original English version of this Licer@d the original versions of those notices and disclaintersase of a disagreement between the translation anditfiealiversion of this License or a notice or disclaimer, ¢higinal version
will prevail.

If a section in the Document is Entitled “Acknowledgement&edications”, or “History”, the requirement (sectionté)Preserve its Title (section 1) will typically require ctuang the actual title.

9. TERMINATION

‘You may not copy, modify, sublicense, or distribute the Dnent except as expressly provided for under this Licensg.otiner attempt to copy, modify, sublicense or distributeffocument is void, and will automatically terminate yoghtis
under this License. However, parties who have receivedesppr rights, from you under this License will not have tlieenses terminated so long as such parties remain in faibtiance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revisedmesssf the GNU Free Documentation License from time to timechShew versions will be similar in spirit to the present i@ns but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing versiomber. If the Document specifies that a particular nuntbeeesion of this License “or any later version” applies toydu have the option of following the terms and conditiontbei
of that specified version or of any later version that has Ipedstished (not as a draft) by the Free Software FoundatfdthelDocument does not specify a version number of this lseegou may choose any version ever published (not as a tyaft)

the Free Software Foundation.



Chapter

Pseudocode

In this chapter we study pseudocode, which will allow us tenfmicomputer language in writing algorithms.

1.1 Operators

1 Definition (Operator) An operatoris a character, or string of characters, used to perform tamragn some entities. These
entities are called theperands.

2 Definition (Unary Operators) A unary operatolis an operator acting on a single operand.

Common arithmetical unary operators aréplus) which indicates a positive number, andminus) which indicates a negative
number.

3 Definition (Binary Operators) A binary operatoris an operator acting on two operands.

Common arithmetical binary operators that we will use -arélus) to indicate the sum of two numbers ardminus) to
indicate a difference of two numbers. We will also us@sterisk) to denote multiplication afidslash) to denote division.

There is a further arithmetical binary operator that we wélé.

4 Definition (mod Operator) The operator mod is defined as follows: for 0,b > 0,
a modb
is the integral non-negative remainder wtaeis divided byb. Observe that this remainder is one of theumbers
0, 1, 2, ..., b-1

In the case when at least oneaoér b is negative, we will leava modb undefined.
5 Example We have
38 mod 15=8,
15 mod 38= 15,
1961 mod 3%=0,

and
1966 mod 3%=5,

for example.
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6 Definition (Precedence of Operators)  The priority orprecedencef an operator is the order by which it is applied to its
operands. Parentheses () are usually used to coerce pneeeat@aong operators. When two or more operators of the same
precedence are in an expression, we definefisaciativityto be the order which determines which of the operators veill b
executed firstLeft-associativeperators are executed from left to right aight-associativeoperators are executed from right

to left.

Recall from algebra that multiplication and division halre same precedence, and their precedence is higher thdioadaid
subtraction. The mod operator has the same precedenceigicatlon and addition. The arithmetical binary operatare
all left associative whilst the arithmetical unary operatare all right associative.

7 Example 15—3x4=3 but(15—3)x4=48.
8 Example 12x (5 mod 3 = 24 but(12x5) mod 3=0.

9 Example 12 mod5+3%«3=11but12 mod5+3)+«3=12 mod 83=4x3=12.

1.2 Algorithms

In pseudocode parlance atgorithmis a set of instructions that accomplishes a task in a finiteuarnof time. If the algorithm
produces a single output that we might need afterwards, Weisa the wordreturn to indicate this output.

10 Example (Area of a Trapezoid) Write an algorithm that gives the area of a trapezoid whogghhés h and bases arand
b.

Solution: One possible solution is

Algorithm 1.2.1: AREATRAPEZOID(a,b, h)

return (hx (i2b>)

11 Example (Heron’s Formula)  Write an algorithm that will give the area of a triangle wiitessa, b, andc.

Solution: A possible solution is

Algorithm 1.2.2: AREAOFTRIANGLE(a,b,c)

return (.25 \/(a+b+c)* (b+c—a)=(c+a—b)*(a+b—c)

We have used Heron'’s formula

Area = \/s(s— a)(s—b)(s—c)= %\/(a—i— b+c)(b+c—a)(c+a—b)(a+b—c),

where
o a+b+c

2

is the semi-perimeter of the triangle.

12 Definition The symbok— is read “gets” and it is used to denote assignments of value.

2



Arrays 3

13 Example (Swapping variables)  Write an algorithm that will interchange the values of twaiahlesx andy, that is, the
contents ok becomes that of and viceversa.

Solution: We introduce a temporary variabl@& order to store the contentsfn y without erasing the contents gf

(Algorithm 1.2.3: SWAP(X, Y) )
(t—Xx comment: First storex in temporary place
1
{ Xy comment:x has a new value.
e t comment:y now receives the original value &f
g J

If we approached the problem in the following manner

Algorithm 1.2.4: SWAPWRONG(X, Y)
(x—5
{ X—Yy comment: X = 6 now.
Ily —X comment:y takes the current value &f i.e., 6.

we do not obtain a swap.

14 Example (Swapping variables 2)  Write an algorithm that will interchange the values of tweigblesx andy, that is, the
contents ok becomes that of and viceversayithout introducing a third variable

Solution: The idea is to use sums and differences to storedtti@bles. Assume that initially= a andy = b.

(Algorithm 1.2.5: SWAP2(X,Y) R
(X—X+Yy comment:x=a+bandy =h.
{y<—x—y comment:y=a+b—b=aandx=a+h.
(X X=Y comment:y=aandx=a+b—a=h.

- /

1.3 Arrays

15 Definition An array is an aggregate of homogeneous types. [Ehgth of the arrays the number of entries it has.

A 1-dimensional array is akin to a mathematical vector. Tihdsis 1-dimensional array of lengtithen

and all then coordinate([k] belong to the same set. We will follow the C-C++-Java coneentf indexing the arrays from 0.
We will always declare the length of the array at the begigmiha code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Tiixsis a 2-dimensional array with 2 rows and 3 columns then

Y00 Y[O[[L Y[0[2]
V= Nmm Y[y Ymm]'
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1.4 1f-then-el se Statements

16 Definition Thelf-then-elsecontrol statement has the following syntax:
if expression
(statementA-1

then i
statementA- |
(statementB- 1

else i
statementB-J
and evaluates as follows. dkpression is true then alktatementA 's are executed. Otherwise athtementB’s are executed.

17 Example (Maximum of 2 Numbers)  Write an algorithm that will determine the maximum of two rloens.

Solution: Here is a possible approach.

Algorithm 1.4.2: MAX(x,y)

if x>y
then return (x)
else return (y)

18 Example (Maximum of 3 Numbers)  Write an algorithm that will determine the maximum of threembers.

Solution: Here is a possible approach using the precedimgfifan.

Algorithm 1.4.3: MAX3(X,Y,2)

if MAX (x,y) >z
then return (MAX (x,y))
else return (2)

19 Example (Compound Test) Write an algorithm that prints “Hello” if one enters a numbetween 4 and 6 (inclusive) and
“Goodbye” otherwise. You are not allowed to use any boolgaerators likeand, or, etc.

Solution: Here is a possible answer.

(Algorithm 1.4.4: HELLOGOODBYE(X) h

if x>=4
(if x <=6
then ¢ then output (Hello.)
else output(Goodbye)

L else output(Goodbye) y
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1.5 Thef or loop

20 Definition Thefor loop has either of the following syntaxes:
for indexvariable— lowervalueto uppervalue
do statements
or
for indexvariable— uppervalualownto lowervalue
do statements
Here lower value and upper value must be non-negative irgegéh uppervalue> lowervalue.

21 Example (Factorial Integers) Recall that for a non-negative integerthe quantityn! (read ‘n factorial”) is defined as
follows. 0! =1 and ifn > 0 thenn! is the product of all the integers from 1 tanclusive:

n=1.2.--n.

For example 5= 1-2-3-4-5=120. Write an algorithm that given an arbitrary non-negaititegem outputsn!.

Solution: Here is a possible answer.

(Algorithm 1.5.3: FACTORIAL(n)

comment: Must input an integen > 0.

f—1
ifn=0
then return (f)
| {for i—1lton
do f « f i
\return (f)

22 Example (Positive Integral Powers 1)  Write an algorithm that will compute”, wherex is a given real number antis a
given positive integer.

Solution: We can approach this problem as we did the fadtinigction in example21. Thus a possible answer would be

Algorithm 1.5.4; POWERL(X, n)

power— 1
fori<— 1ton

do power«— xx power
return (power)

In example34 we shall examine a different approach.

23 Example (Reversing an Array)  An array(X[0],...X[n—1]) is given. Without introducing another array, put its ergiiie
reverse order.

Solution: Observe that we exchange
X[0] « X[n—1],

X[1] < X[n—2],

1The syntax in C, C++, and Java is slightly different and makesor loop much more powerful than the one we are presenting here.

5
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and in general

X[i] < X[n—i-1].
This holds as long ais< n—i—1, that is 2 < n— 1, which happens if and only ifiZ n— 2, which happens if and only if
i <|(n—2)/2]. We now use a swapping algorithm, say the one of exaihplEhus a possible answer is

Algorithm 1.5.5: REVERSEARRAY(n, X)

comment: X is an array of lengtim.

fori«<—0to [(n—2)/2]
do SwagX|i],X[n—i—1])

24 Definition The commandbreak stops the present control statement and jumps to the nettbéstatement. The command
output(...) prints whatever is enclosed in the parentheses.

|:| Many a programmer considers using theeak command an ugly practice. We will use it here and will
abandon it once we study thehile loop.

25 Example What will the following algorithm print?

Algorithm 1.5.6: PRINTING(-)

fori—3to11
(ifi=7
do then break
else output(i)

Solution: We have, in sequence,
O i =3. Since 3£ 7, the programme prints 3.

O i =4. Since 4~ 7, the programme prints 4.
O i =5. Since 5£ 7, the programme prints 5.
O i =6. Since 6# 7, the programme prints 6.

O i =7. Since 7= 7, the programme halts and nothing else is printed.
The programme ends up printing 3456.

26 Example (Maximum of n Numbers) Write an algorithm that determines the maximum element ofdindensional array
of n elements.

Solution: We declare the first value of the array (the O-tmgrtb be the maximum (aentinel valug Then we successively
compare it to othen — 1 entries. If an entry is found to be larger than it, that erdrgeclared the maximum.

(Algorithm 1.5.7: MAXENTRYINARRAY (N, X) B

comment: X is an array of lengtim.

max«— X[0]
fori—1lton—1
d {if X[i] > max
then max= X[i]
\return (max)
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Recall that a positive integgr > 1 is aprimeif its only positive factors ofp are either 1 op. An integer greater than 1
which is not prime is said to beomposite’ To determine whether an integer is prime we rely on the fahgwesult.

27 Theorem Letn > 1 be a positive integer. Eitheris prime orn has a prime factox /n.

Proof: If nis prime there is nothing to prove. Assume then than n mspmsite. Then n can be written as the
product n=ab with1 < a <b. If every prime factor of n were /n then we would have botha,/n and b> /n
then we would have & ab > \/n\/n=n, which is a contradiction. Thus n must have a prime fagtayn. O

28 Example To determine whether 103 is prime we proceed as follows. ®@bgbat|/103] = 103 We now divide 103 by
every prime< 10. If one of these primes divides 103 then 103 is not a printke@vise, 103 is a prime. A quick division finds
103 mod2=1,

103 mod 3=1,

103 mod 5= 3,

103 mod 7= 5,
whence 103 is prime since none of these remainders is 0.

29 Definition (Boolean Variable) A boolean variablds a variable that only accepts one of two possible valtres: or false
Thenot unary operator changes the status of a boolean variabletftanto falseand viceversa.

30 Example (Eratosthenes’ Primality Testing) Given a positive integarwrite an algorithm to determine whether it is prime.

Solution: Here is a possible approach. The special cased, n = 2, n = 3 are necessary because in our version offdhe
loop we need the lower index to be at most the upper index.

(Algorithm 1.5.8: ISPRIMEL(n) )
comment:nis a positive integer.
ifn=1
then output (nis a unit)
ifn=2
then output (nis prime)
ifn=3

then output (nis prime)
comment:If n> 4, then|\/n] > 2.

if n>3
(if n mod2=0
then output (nis even Its smallest factor is 2
(flag— true
i Hfor i — 2to | /A
(if n modi=0

then
do then {flag<— false

else
break

if flag= true
then output (nis prime)
L | else output(Not prime n smallest factor is.)

e e e e N e e

- J

2Thus 1 is neither prime nor composite.
3Here| x| denotes the floor of, that is, the integer just to the left &fif x is not an integer ang otherwise.

7
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|:| From a stylistic point of view, this algorithm is unsatisfary, as it uses thereak statement. We will see in

example35 how to avoid it.

31 Example (The Locker-room Problem)

A locker room contains lockers, numbered 1 through Initially all doors are
open. Person number 1 enters and closes all the doors. Parsdrer 2 enters and opens all the doors whose humbers are

multiples of 2. Person number 3 enters and if a door whose pumsba multiple of 3 is open then he closes it; otherwise

he opens it. Person number 4 enters and changes the statusoffien to closed and viceversa) of all doors whose numbers

are multiples of 4, and so forth till person numbeenters and changes the status of door numbe#/rite an algorithm to

determine which lockers are closed.

Solution: Here is one possible approach. We use an dromker of sizen+ 1 to denote the lockers (we will ignore
Locker [ 0]). The valuerue will denote an open locker and the valiaésewill denote a closed lockér.

(Algorithm 1.5.9: LoCKERROOMPROBLEM(N,Locken

comment: Lockeris an array of size + 1.
comment: Closing all lockers in the first for loop.

fori—1ton
do Locketli] < false
comment: From open to closed and vice-versa in the second loop .

for j«—2ton
(for k— jton
do doifk modj=0
then Lockerk] = not LockerKk]

forl —1ton

d {if Lockefl] = false

L then output (Lockerl is closed)

~N

1.6 Thewhi | e loop

32 Definition Thewhile loop has syntax:

while test
do {body of loop

The commands in the body of the loop will be executed as lorigea$ evaluates to true.

33 Example (Different Elements in an Array)

An array X satisfiesX[0] < X[1] < --- < X[n—1]. Write an algorithm that

finds the number of entries which are different.

Solution: Here is one possible approach.

(Algorithm 1.6.2: DIFFERENT(N, X) B

comment: X is an array of lengtim.

i—0

different— 1

whilei#An—1

(i—it+1
do < if X[i] # x[i —1]
then different« different+ 1

Kreturn (different) )

“We will later see that those locker doors whose numbers arareg are the ones which are closed.

8




Thewhi | e loop 9

34 Example (Positive Integral Powers 2)  Write an algorithm that will computa”, wherea is a given real number anis a
given positive integer.

Solution: We have already examined this problem in exarigleFrom the point of view of computing time, that solution
is unsatisfactory, as it would incur inftomultiplications, which could tax the computer memoryifs very large. A more
efficient approach is the following. Basically it consisfswiting n in binary. We successively squargetting a sequence

ok

)

X=X X -8 ... 5x

and we stop when*2< n < 2t1, For example, ifi = 11 we computex — x* — x* — x8. We now write 11= 8+2+1 and so
11_ 8,2
XM = x8x2x.

(Algorithm 1.6.3: POWER2(X, n) R

power— 1
C«+—X
ke—n
while k #£ 0
(if k mod2=0

then {k<—k/2
C+—CxC

do

i {k —k-1

1 else

L power«— powerxC
Kreturn (power

Thewhile loop can be used to replace thoe loop, and in fact, it is more efficient than it. For, the cddei < kto n
do something

is equivalent to
i—k
while i <=n

do {' | +1.

something
But more can be achieved from thile loop. For instance, instead of jumping the index one-step#me, we could

jumpt steps at a time by declaring— i +t. Also, we do not need to use theeak command if we incorporate the conditions
for breaking in the test of the loop.

35 Example Here is the $PRIME1 programme from exampl&0 with while loops replacing théor loops. Ifn > 3, thenn is
divided successively by odd integers, as it is not necedeativide it by even integers.

9
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Homework

(Algorithm 1.6.6: |SPRIME2(n)
comment:nis a positive integer.
ifn=1
then output (nis a unit)
ifn=2
then output (nis prime)
ifn=3
then output (nis prime)
if n>3
(if n mod2=0
then output (nis even Its smallest factor is 2
i (flag— true
i i—1
i while i <= [/n] andflag= true
then i (i—i+2
e|se{ do if n modi =0
: i then {flag<— false
! i if flag= true
i then output (nis prime)
\  else output(Not prime n smallest factor is.)
-

36 Problem What will the following algorithm return fon = 5? You must trace the algorithm carefully, outlining all ysteps.

(AIgorithm 1.6.7: MYSTERY(n)

x+—0
i—1
whilen> 1
(if nxi >4
I thenx— x+2n
do{ elsex «— x+n
inen-2
li—i+1
return (x)

N

37 Problem What will the following algorithm return fon = 3?

(Algorithm 1.6.8: MYSTERY(n)

X«—0
whilen> 0
(
1fori—1ton
do{ {forjgiton
do .
! dO{X<—IJ+X
(n<—n—1

\retu m (x)

10
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38 Problem Assume that the division operatgracts as follows on the integers: if the division is not evefh truncates the decimal part
of the quotient. For example/3 = 2, 5/3 = 1. Assuming this write an algorithm that reverses the digfita given integer. For example, if
123476 is the input, the output should be 674321. Use onlybié e loop, one mod operation, one multiplication by 10 and onésitin
by 10.

39 Problem Given is an array of lengtim+ n, which is sorted in increasing order:
X[0] < X[ <... < Xm—=1] < X[m] < ... < X[m+n—1].
Without using another arrayeorder the array in the form
X[m — X[m+1] — ... = X[m+n—-1] — X[0] — X[1] — ... — X[m—1].

Do this using algorithm RVERSEARRAY from example23 a few times.

40 Problem TheFibonacci Sequende defined recursively as follows:
fo=0; fi=1 f=1 fi=f+tf1,n>1

Write an algorithm that finds the-th Fibonacci number.

41 Problem Write an algorithm which reads a sequence of real numberglateimines the length of the longest non-decreasing subse-
guence. For instance, in the sequence
7,8,7,8,9,2,1,8,7,9,9,10,10,9,

the longest non-decreasing subsequenced®710, 10, of length 5.
42 Problem Write an algorithm that reads an arrayroitegers and finds the second smallest entry.

43 Problem A partition of the strictly positive integem is the number of writingn as the sum of strictly positive summands, without taking
the order of the summands into account. For example, théipast of 4 are (in “alphabetic order” and with the summandgten in
decreasing order)

1+1+1+4+1;241+1;3+1;2+2;4

Write an algorithm to generate all the partitions of a givetegem.

Answers

36 In the first turn around the loop,= 5,i = 1, nxi > 4 and thusx = 10. Now n = 3, i = 2, and we go a second turn around the loop. Since
nxi > 4,x=10+2+3 =16. Finally,n=1,i = 3, and the loop stops. Henge= 16 is returned.

38 Here is a possible approach.

(Algorithm 1.6.9: REVERSHN) h

comment:n is a positive integer.
x<—0
whilen#0

|{ comment: x accumulates truncated digit.
1

X+ x*104+n mod 10
comment: We now truncate a digit of the input.
(n—n/10

\retu m (x) )

39 Reverse the array first as
X[m+n—1] > X[m+n—2] > ... > X[m > Xm-1] > ... > X][0].
Then reverse each one of the two segments:

X[m — Xm+1] — ... = X[m+n—1] — X[0] — X[1] — ... = X[m—1].

11
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40 Here is a possible solution.

(Algorithm 1.6.10: FiIBONACCI(n) h

ifn=0
then return (0)

last« 0
else
current— 1

fori<—2ton
temp« last+ current
{IastH current
current— temp
return (curren

-

41 Assume that the data is read from some fileeof means “end of file’hewElandoldEI are the current and the previous elemeunitss
the length of the current run of non-decreasing numt#axis the length of the longest run.

(Algorithm 1.6.11: LARGESTINCREASINGSEQUENCK )

1+~—d

1+ dMax

while not eof
( if newEl>= oldEl
i {d(—dJrl

do { i {if d > dMax
then { else{ thendMax«—d

! i d—1

\ (oldEl — newEL

if d > dMax

S then dMax+ d )

42 Here is one possible approach.

(AIgorithm 1.6.12: SECONDSMALLEST(n, X)

comment: X is an array of lengtim.

second— x[0]
minimum« second
fori—Oton—1
( if minimum= second
if X[i] < minimum
then { then minimum « Xi]
elsesecond— X[i]
(if X[i] < minimum
1

do

second— minimum
then L .

else{ minimum «— X[i]

i els if X[i] > minimumand X]i] < second

( then second— X][i]

——

-

43 We list partitions o in alphabetic order and with decreasing summands. We stere in an array of length+ 1 with X[0] =0.. The
length of the partition ik and the summands ar1] + - -- + X[K]. Initially k=nandX[1] = --- = X[n] = 1. At the end we havX[1] =n
and the rest are 0.

12
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13

(AIgorithm 1.6.13: PARTITIONS(N)

s—k-1

while not ((s=1) or (X[s—1] > X[g]))
S«—s—1

X[g X[ +1

sum«—0

fori«—s+1tok

{sume sum-+X(i]

fori«— 1ltosum-1

{X[S-H] —~1

K« s+sum—1

-

13
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Proof Methods

2.1 Proofs: Direct Proofs

A direct proof is one that follows from the definitions. Faptsviously learned help many a time when making a directfproo

44 Example Recall that
e an even number is one of the forrk, 2vherek is an integer.
e an odd integer is one of the formh2 1 wherel is an integer.
e an integer is divisible by an integeb if there exists an integarsuch that = bc.
Prove that
O the sum of two even integers is even,
the sum of two odd integers is even,
the sum of an even integer with and odd integer is odd,
the product of two even integers is divisible by 4,

the product of two odd integers is odd,

I s B o B

the product of an even integer and an odd integer is even.

Solution: We argue from the definitions. We assume as knoatrttie sum of two integers is an integer.
O If 2aand D are even integers, thema2- 2b = 2(a+b), Now a+ b is an integer, so@+ b) is an even integer.
O If2c+1and 21+1 are odd integers, them2 1+2d+1 =2(c+d+1), Nowc+d+1 is an integer, so+d+ 1) is an even integer.

O Let2f be an even integer andy2- 1 be an odd integer. Therf 2-29+ 1 = 2(f +g) + 1. Sincef +gis an integer, 2f +g)+ 1 is an
odd integer.

O Let 2h 2k be even integers. Thegh)(2k) = 4(hk). Sincehkis an integer, &Kk) is divisible by 4.
0 Let2+1 and 2n+ 1 be odd integers. Then

(2 +1)(2m+1) =4ml+2 +2m+1=2(2ml +1 +m) + 1.

Since Inl+1 +nis an integer, 2ml+m+1) 4+ 1 is an odd integer.

O Let2n be an even integer and lev 2 1 be an odd integer. Thef2n)(20+ 1) = 4no+ 2n = 2(2no+1). Since 2o-+1 is an integer,
2(2no+1) is an even integer.

45 Example Prove that ifnis an integer, then® — n is always divisible by 6.

Solution: We haver® —n = (n— 1)n(n-+ 1), the product of three consecutive integers. Among threseartive integers there is at least an
even one, and exactly one of them which is divisible by 3. &iand 3 do not have common factors, 6 divides the quafmtityl)n(n+ 1),
and son® —nis divisible by 6.

14
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46 Example Use the fact that the square of any real number is non-negatisrder to prove thérithmetic Mean-Geometric Mean Inequal-

ity: ¥x>0,vy>0
vy

Solution: First observe thafx— ,/y is a real number, since we are taking the square roots of agative real numbers. Since the square of
any real number is greater than or equal to 0 we have

(VX=V9)*>0.
Expanding
x—2xy+y20 = >
yielding the result.

47 Example Prove that a sum of two squares of integers leaves remaindesr® when divided by 4.

Solution: An integer is either even (of the forrk)r odd (of the form R+ 1). We have
(2k)2 = 42
(2k+1)?2 = 4K+K+1

Thus squares leave remainder 0 or 1 when divided by 4 and lleeicesum leave remainder 0, 1, or 2.

2.2 Proofs: Mathematical Induction

The Principle of Mathematical Induction is based on theofelhg fairly intuitive observation. Suppose that we are ¢éofprm a task that
involves a certain number of steps. Suppose that these rstiegtsbe followed in strict numerical order. Finally, suppdisat we know how
to perform then-th task provided we have accomplished the 1-th task. Thus if we are ever able to start the job (that iwgthave a base
case), then we should be able to finish it (because startitigthhé base case we go to the next case, and then to the casdriglthat, etc.).

Thus in the Principle of Mathematical Induction, we try taifiethat some assertioR(n) concerning natural numbers is true for some
base caskg (usuallyky = 1). Then we try to settle whether information B(n— 1) leads to favourable information d#(n).

48 Theorem Principle of Mathematical Induction If a set.” of positive integers contains the integer 1, and also costdie integen+ 1
whenever it contains the integerthen. = N.

The following versions of the Principle of Mathematical lretion should now be obvious.

49 Corollary If a set.«” of positive integers contains the integarand also containa+ 1 whenever it containg, wheren > m, then.«/
contains all the positive integers greater than or equal. to

50 Corollary (Strong Induction)  If a set.e/ of positive integers contains the integarand also containe+ 1 whenever it containe+
1, m+2,...,n, wheren > m, then.« contains all the positive integers greater than or equal.to

We shall now give some examples of the use of induction.

51 Example Prove that the expression
33 _2en—27

is a multiple of 169 for all natural numbens

Solution: LetP(n) be the assertiordT e N with 333 — 26n— 27 = 169T.” We will prove thatP(1) is true and thaP(n— 1) = P(n). For
n= 1 we are asserting thaf 3- 53 = 676 = 169 4 is divisible by 169, which is evident.
Now, P(n— 1) means there il € N such that 8"-1+3 _26(n— 1) — 27 = 16N, i.e., forn > 1,

3N _26n—1=16N
for some integeN. Then
33 _2en—27=27-3%"—26n—27=27(3""—26n—1)+676n

which reduces to
27-169N + 169 4n,

which is divisible by 169. The assertion is thus establidhethduction.

15
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52 Example Prove that2 >n, Yne N,

Solution: The assertion is true far= 0, as & > 0. Assume that® 1 > n—1 forn> 1. Now,
N=22"Y>2n-1)=2n-2=n+n-2
Now,n—1>0 = n—2>0, we haven+n—2>n+0=n, and so,
2">n.

This establishes the validity of theth step from the preceding step and finishes the proof.

53 Example Prove that
1+V2)" +(1-v2)™
is an even integer and that

(1+vV2)" - (1-vV2)*" = V2

for some positive integdy, for all integersn > 1.

Solution: We proceed by induction an Let P(n) be the proposition: (1+1/2)2" 4 (1—+/2)?" is even and1++/2)>" — (1- v/2)?" = by/2
for someb € N.” If n=1, then we see that
(1+V2?2%+(1-V2)2 =6,
an even integer, and
(1+V2)2-(1-V2)2=4v2.
ThereforeP(1) is true. Assume tha(n—1) is true forn > 1, i.e., assume that
(1+v2)2D 4 (1-v2)2D = 2N

for some integeN and that
1+v2)2Y —(1-v2)2"D = ay/2
for some positive integea.
Consider now the quantity

1+ V2P +(1- V2™ = (1+ V2 (1+ V2" 2+ (1-v2)2(1- V2)™ 2.
This simplifies to
(3+2V2)(1+V2)" 2 1 (3-2v2)(1- v2)2,

UsingP(n— 1), the above simplifies to
12N +2v/2ayv/2 = 2(6N + 2a),

an even integer and similarly
(1+V2)2 — (1-v2)?" = 3av/2+2V/2(2N) = (3a+4N)V/2,

and soP(n) is true. The assertion is thus established by induction.
54 Example Prove that ifk is odd, then 212 divides )

K -1
for all natural numbers.

Solution: The statement is evident for= 1, ask? — 1 = (k— 1)(k+ 1) is divisible by 8 for any odd natural numb&rbecause both
(k—1) and (k+ 1) are divisible by 2 and one of them is divisible by 4. Assume 8%2|k2" — 1, and let us prove that™3|k2"" — 1.
Ask?™ —1= (k" - 1)(k¥" + 1), we see that 2 divides (k2" — 1), so the problem reduces to proving tha@" + 1). This is obviously
true sincek® odd make&k®" + 1 even.
55 Example TheFibonacci Numbersre given by

fO = 07 fl = 17 fn+1 = fn + fnfly n Z 17
that is every number after the second one is the sum of thediregtwo. Thus the Fibonacci sequence then goes like

0,1,1,2,3,5,8,1321,....

Prove using the Principle of Mathematical Induction, ttwatiftegem > 1,

fo1foer = f24+ (=)

16
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Solution: Fom = 1, we have
0-1=fof; =212 (1)1 = 12— (1)

and so the assertion is true for= 1. Supposen > 1, and that the assertion is true forthat is
foafpe = 2+ (-D)".
Using the Fibonacci recursioffi, 2 = 11+ fn, @and by the induction hypothesit% = fp_1fri1 — (—1)". This means that

fafree = fa(fapr+fn)

fafnrr+ f,?

fn fn+1 +fna fn+1 - (71)n
frpa(fn+ foo1) + (=)
= fn+1 fn+l + (_1)n+17

and so the assertion follows by induction.

56 Example Prove that a given square can be decomposechistpuares, not necessarily of the same size, fanall4,6,7,8, .. ..

Solution: A quartering of a subsquare increases the nunfleguares by three (four new squares are gained but the akigfjuare is lost).
Figure2.1thatn = 4 is achievable. If were achievable, a quartering would maken+3,n+6,n+9,...} also achievable. We will shew

Figure 2.1: Examplé&6. Figure 2.2: Examplé&6. Figure 2.3: Examplé6.

now thatn = 6 andn = 8 are achievable. But this is easily seen from the figdrésind2.3 and this finishes the proof.

57 Example In the country of SmallPesia coins only come in values of 3&pdsos. Shew that any quantity of pesos greater than or equal
to 8 can be paid using the available coins.

Solution: We use Strong Induction. Observe that 84+ 5,9 =3+3+3,10=5+5, so, we can pay,8, or 10 pesos with the available
coinage. Assume that we are able to pay3,n— 2, andn— 1 pesos, that is, thak3- 5y = k has non-negative solutions foe=n—3,n—2
andn— 1. We will shew that we may also obtain solutions far35y = k for k=n,n+ 1 andn+ 2. Now

3X+5y=n—3=3(x+1)+5y=n,

3X14+5y1 =n—2=3(x1+1)+5y; =n+1,
32 +5yr =n—1= 3(X2+1) +5y2 =n+2,

and so if the amounts— 3,n—2,n— 1 can be paid so camn-+1,n+ 2. The statement of the problem now follows from Strong Indurcti

2.3 Proofs: Reductio ad Absurdum

In this section we will see examples of proofs by contradittiThat is, in trying to prove a premise, we assume that gatien is true and
deduce incompatible statements from this.

58 Example Prove that 2003 is not the sum of two squares by proving tlestim of any two squares cannot leave remainder 3 upon
division by 4.

Solution: 2003 leaves remainder 3 upon division by 4. But wevkfrom examplet7 that sums of squares do not leave remainder 3 upon
division by 4, so it is impossible to write 2003 as the sum afesgs.

17
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. . 1
59 Example Shew, without using a calculator, that-6,/35 < o

Solution: Assume that 6 v/35> 1—10 Then 6— 1—10 > /35 or 59> 10y/35. Squaring both sides we obtain 34813500, which is clearly

nonsense. Thus it must be the case that635 < 1—10

60 Example Letaj,ay,...,a, be an arbitrary permutation of the numberg,1.. n, wheren is an odd number. Prove that the product
(a1 —1)(az—2)---(an—n)

is even.

Solution: First observe that the sum of an odd number of otiehars is odd. It is enough to prove that some differemce k is even.
Assume contrariwise that all the differenags— k are odd. Clearly

S=(a—1)+(a—2)+---+(a—n) =0,

since thegy's are a reordering of 2, ... . n. Sis an odd number of summands of odd integers adding to theietegyer 0. This is impossible.
Our initial assumption that all tha — k are odd is wrong, so one of these is even and hence the predaari.

61 Example Prove that/2 is irrational.

Solution: For this proof, we will accept as fact that any pesiinteger greater than 1 can be factorised uniquely apribduct of primes (up
to the order of the factors).

a . L o .
Assume that/2 = o with positive integers, b. This yields B2 = a2. Now botha? andb? have an even number of prime factors. So
2b2 has an odd numbers of primes in its factorisation ahtas an even number of primes in its factorisation. This israradiction.
62 Example Leta,b be real numbers and assume that for all numbers the following inequality holds:
a<b+e.

Prove thata < b.

. - a—b . . . . . .
Solution: Assume contrariwise that> b. HenceT > 0. Since the inequalitp < b+ € holds for everye > 0 in particular it holds for
€= a%b. This implies that
a<b+ a%b or a<h.

Thus starting with the assumption theat- b we reach the incompatible conclusion that b. The original assumption must be wrong. We
therefore conclude that< b.

63 Example (Euclid) Shew that there are infinitely many prime numbers.

Solution: We need to assume for this proof that any integeatgr than 1 is either a prime or a product of primes. Theuatlg beautiful
proof goes back to Euclid.
Assume thaf p1, p2, ..., pn} is a list that exhausts all the primes. Consider the number

N=pipz---pn+1

This is a positive integer, clearly greater than 1. Obsedmagrnone of the primes on the lisps, p2, ..., pn} dividesN, since division by any
of these primes leaves a remainder of 1. SiNde larger than any of the primes on this list, it is either angrior divisible by a prime outside
this list. Thus we have shewn that the assumption that artg fist of primes leads to the existence of a prime outsideltsi. This implies
that the number of primes is infinite.

64 Example If a,b,c are odd integers, prove thax’ + bx+c = 0 does not have a rational number solution.

18



Proofs: Pigeonhole Principle 19

Solution: Supposé2 is a rational solution to the equation. We may assumefitatdqg have no prime factors in common, so eitlpeaindq
are both odd, or one is odd and the other even. Now

2
a(%) +b<g> +¢c=0 — ap’+bpg+cf =0.

If both p and p were odd, themp? + bpg+ ccf is also odd and hencg 0. Similarly if one of them is even and the other odd then eithe
ap? +bpgor bpg+ccf is even andp? + bpg+ cc? is odd. This contradiction proves that the equation canavé a rational root.

2.4 Proofs: Pigeonhole Principle

The Pigeonhole Principle states that i 1 pigeons fly tan holes, there must be a pigeonhole containing at least tvempig) This apparently
trivial principle is very powerful. Thus in any group of 13qye, there are always two who have their birthday on the saoreh, and if the
average human head has two million hairs, there are at le&st people in NYC with the same number of hairs on their head.

The Pigeonhole Principle is useful in proviegistenceroblems, that is, we shew that something exists withoutadigt identifying it
concretely.

65 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmeticressijon 14,...,100 Prove that there must
be two distinct integers iA whose sum is 104.
Solution: We patrtition the thirty four elements of this pregsion into nineteen groups

{1},{52},{4,100},{7,97},{10,94},...,{49,55}.

Since we are choosing twenty integers and we have ninetégrbgethe Pigeonhole Principle there must be two integexsitblong to one
of the pairs, which add to 104.

66 Example Shew that amongst any seven distinct positive integersxoaegling 126, one can find two of them, segndb, which satisfy

b<a<2h

Solution: Split the number§l, 2,3,...,126} into the six sets
{1,2},{3,4,5,6},{7.8,...,13 14},{15,16, ..., 29,30},

{31,32,...,61,62} and{63,64,...,126}.

By the Pigeonhole Principle, two of the seven numbers mashlione of the six sets, and obviously, any such two will §atise stated
inequality.

67 Example Given any 9 integers whose prime factors lie in the{8¥, 11} prove that there must be two whose product is a square.

Solution: For an integer to be a square, all the exponentss @irime factorisation must be even. Any integer in the gisenhas a prime
factorisation of the form %°11¢. Now each tripleta, b, c) has one of the following 8 parity patterns: (even, even, g\@wen, even, odd),
(even, odd, even), (even, odd, odd), (odd, even, even), éaah, odd), (odd, odd, even), (odd, odd, odd). In a groupseic integers, there
must be two with the same parity patterns in the exponentse feese two. Their product is a square, since the sum of eachsponding

exponent will be even.

Figure 2.4: Examplé&8. Figure 2.5: Examplé&9.
68 Example Prove that if five points are taken on or inside a unit squaeretmust always be two whose distance |52—.

19



20 Chapter 2

Solution: Split the square into four congruent squares awslhin figure2.4. Two of the points must fall into one of the smaller squaresl, a

the longest distance there is, by the Pythagorean Theqr;éré,)2+ (%)2 = \/72

69 Example Fifty one points are placed on and inside a square of side thddstrate that there must be three of them that fit insideckecir
of radius=.
7

Solution: Divide the square into 25 congruent squares, figime2.5. At least three of the points must fall into one of these nsiirares.

. . - . ) 2 1 .
Form the circle with centre at the minisquare, and radiut@ftiagonal of the square, that %,- g > - proving the statement.

Homework

70 Problem Prove that ifn > 4 is composite, then divides(n—1)!.
71 Problem Prove that there is no primes triptep+ 2, p+ 4 except for 34,5.
72 Problem If x is an integer and 7 dividex3- 2 prove that 7 also divides ¥5— 11x — 14.

73 Problem An urn has 900 chips, numbered 100 through 999. Chips arendabwandom and without replacement from the urn, and the
sum of their digits is noted. What is the smallest number gisthat must be drawn in order to guarantee that at least thfrthese digital
sums be equal?

74 Problem Letsbe a positive integer. Prove that the closed intefsi&s| contains a power of 2.

75 Problem Let p < g be twoconsecutivedd primes. Prove thai+ g is a composite number, having at least three, not necesdéstinct,
prime factors.

76 Problem The following 4x 4 square has the property that for any of the 16 squares camgpibsthe sum of the neighbors of that square
is 1. For example, the neighborsa&ree andb and soe+b = 1. Find the sum of all the numbers in the 16 squares.

alb|c|d
e|flglh
ikl

m{njo|p

77 Problem Prove, by arguing by contradiction, that there are no inegd, ¢, d such that
X+ 22 4 2x+ 2 = (X% + ax+b) (3 + cx+ d).

78 Problem Leta > 0. Use mathematical induction to prove that

\/a+\/a+,/a+...+\/5< Lﬁl"

where the left member contains an arbitrary number of réglica

79 Problem Use the AM-GM Inequalityvx > 0,vVy >0, /Xy< %/ in order to prove that for all quadruplets of non-negativa reimbers
a,b,c,d we have

4 at+b+c+d
Vabcd< ————— —|
abcd< 7

Then, by choosing a special value fbabove, deduce that

3/ VWS

u+v+w

for all non-negative real numbeusy, w.

20



Homework 21

80 Problem Leta,b,c be real numbers. Prove thatdfb, c are real numbers then
a2 +b?+c?—ab—bc—ca>0.
By direct multiplication, or otherwise, prove that
a>+b®+c® - 3abc= (a+b+c)(a? +b? +c? —ab—bc—ca).
Use the above two results to prove once again that

< u+v+w

Juvw 3

for all non-negative real numbeusv, w.

81 Problem Use the fact that any odd number is of the forkit8l or &+ 3 in order to give a direct proof that the square of any odd remb
leaves remainder 1 upon division by 8. Use this to prove tB812s not the sum of three odd squares.

82 Problem Find, and prove by induction, the sum of the fingtositive odd numbers.

83 Problem Prove by induction that ifi non-parallel straight lines on the plane intersect at a compoint, they divide the plane int;2
regions.

84 Problem Demonstrate by induction that no matter hogtraight lines divide the plane, it is always possible tmaothe regions produced
in two colours so that any two adjacent regions have diffecetours.

85 Problem Demonstrate by induction that whenever the formula makesesene has

sin2'*1g
(cosB)(cosd)---(cos2'0) = S isng"

86 Problem Demonstrate by induction that whenever the formula makesesene has

i+l

, . , Sin"=Xx . nx
SINX+SIN2X+ - -+ +SINNX= ——5— -sin—.
sing 2

87 Problem Prove by induction that™2> n for integern > 0.

88 Problem Prove, by induction om, that
1242224328+ 4n-2"=24 (n—-1)2"1,

89 Problem An urn contains 28 blue marbles, 20 red marbles, 12 white iesrti0 yellow marbles, and 8 magenta marbles. How many
marbles must be drawn from the urn in order to assure thaa thidirbe 15 marbles of the same color?

90 Problem The nine entries of a8 3 grid are filled with—1, 0, or 1. Prove that among the eight resulting sums (thrieeroes, three rows,
or two diagonals) there will always be two that add to the saaraber.

91 Problem Forty nine women and fifty one men sit around a round table. @estnate that there is at least a pair of men who are facing
each other.

92 Problem An eccentric widow has five cdts These cats have 16 kittens among themselves. What is tiestantegen for which one
can say that at least one of the five cats maitens?

93 Problem No matter which fifty five integers may be selected from
{1,2,...,100},

prove that one must select some two that differ by 10.

Iwhy is it always eccentric widows who have multiple cats?
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22 Chapter 2

94 Problem (AHSME 1994) Label one disc 1", two discs ‘2", three discs 3", ..., fifty discs “560". Put these 2+ 3+--- +50= 1275
labeled discs in a box. Discs are then drawn from the box atoranwithout replacement. What is the minimum number of dikes must
me drawn in order to guarantee drawing at least ten discsthétbame label?

95 Problem Given any set of ten natural numbers between 1 and 99 inelugiove that there are two disjoint nonempty subsets oféhe s
with equal sums of their elements.

Answers

70 Eithernis a perfect square = a2 in which case Z a < 2a < n—1 and hence and 2 are among the numbe{8,4,...,n—1} ornis
not a perfect square, but still composite, witk=ab, 1 <a<b<n—1.

71 If p> 3 and primepis odd. But then one of the three consecutive odd numpepst 2, p+ 4, must be divisible by 3 and is different
from 3 and hence not a prime.

72 We have 3+ 2 = 7a, with aan integer. Furthermore, $5— 11x— 14 = (3x+ 2)(5x— 7) = 7a(5x— 7), whence 7 divides 2% — 11x— 14.

73 There are 27 different sums. The sums 1 and 27 only appear(im&80 and 999), each of the other 25 sums appears thriceasit |
Thus if 274+ 25+ 1 = 53 are drawn, at least 3 chips will have the same sum.

74 If sis itself a power of 2 then we are done. Assume #hatstrictly between two powers of 2/ 2! < s< 2. Thens< 2" < 2s < 2/+1,
and so the intervdk;, 25| contains 2, a power of 2.

75 Sincep andq are odd, we know that+ qis even, and se'% is an integer. Bup < g gives 2 < p+ < 2qand sop < Pt < q, that
is, the average ob andq lies between them. Singeandq are consecutive primes, any number between them is corapasi so divisible

by at least two primes. Sp+q =2 (%) is divisible by the prime 2 and by at least two other primesdiing #

76 The neighbors of

nj|o

is exactly the sum of all the elements of the table. Henceuhesought is 6.

77 We have
XA+ +2x+2 = (X% 4ax+b)(x%+cx+d)

x*+ (a+¢)x3 + (d+b+ac)x? + (ad+ bc)x+ bd.

Thus
bd=2 ad+bc=2 d+b+bc=2 a+c=2

Assumea, b, c,d are integers. Sinded = 2, bd must be of opposite parity (one odd, the other even). But thet must be odd, and since
d + b+ bc= 2, bc must be odd, meaning that bdtrandc are odd, whencd is even. Thereforad is even, and sad+ bc= 2 is even plus
odd, that is, odd: a contradiction since 2 is not odd.

P(n): \/a+\/a+\/a+-~-+\/é< 1tvda+i ;a+1

n radicands

78 Let

Let us proveP(1), that is

va>0, a< 1tvda+l “;aH.

To get this one, let’s work backwards.df> %1

1++v4a+1
va< % 2y/a<l++v4a+1
2y/a-1<+4a+1
(2ya-1)? < (Vda+1)?
da—4a+1<4a+1
—-2y/a<0.

rreee
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all the steps are reversible and the last inequality is adviye. Ifa < i then trivially 2,/a— 1 < v/4a+ 1. ThusP(1) is true. Assume now
thatP(n) is true and let's deriv®(n+ 1). From

\/a+\/a+\/a+-~-+\/5<% = \/a+\/a+\/a+-~~+\/5<\/a+1+7;a+1.

~- ~-
n radicands n+1 radicands

we see that it is enough to shew that

n 1+vd4a+1l 14++v4a+1l
2 N 2 ’

But observe that

1++v4a+1 1+v4a+1
(VaaTi+l)?=4at2yFarii2 — %: a++++7
proving the claim.
79 We have
Jab4 ved a+b+c+d
4 ab+ved "o T a+b+c+d
bcd= b-ved < < = .
vabcd= 1/ +vab-vecd < 5 < 5 2
Nowleta:u,b:wc:wandd:#v.Then
utvw W /
— 1/4
3 4 3 ) 3
1-1/4
— (u\/w)l/4§($v)
3/4
< u+v4+w\ 3/
S (u\/\/\/):l-/3§wv7

whence the required result follows.
80 Since squares of real numbers are non-negative, we have

(@a—b)?2+(b—c)?+(c—a)?>0 <= 2a%+2b?+2c?—2ab—2bc—2ca>0
<~ a?+b?+c2—ab—bc—ca>0.

Now, use the identity
Y2 = (x+y)° - 3xy(x+y)
twice. Then
a3 +b34c—3abc = (a+b)3+c®—3ab(atb)—3abc
= (at+b+c)®—3(a+b)c(a+b+c)—3aba+b+c)
(a+b+c)((a+b+c)? —3ac— 3bc— 3ab)
= (atb+c)(@+b?>+c?—ab—bc—ca)

If a,b,c are non-negative them+b+c > 0 and als@? +b? 4+ c2 —ab—bc—ca> 0. This gives

3 3 3
a’+b°4c
;3* > abc

The desired inequality follows upon putting= a3,v = b3, w = c3.
81 We have
(8k+1)%? = 64Kk2 £ 16k +1 = 8(8Kk2 £ 2) + 1,
(8k+3)2 = 64Kk> + 48+ 9 = 8(8K® £ 6+ 1) + 1,
proving that in all cases the remainder is 1 upon division by 8
Now, a sum of three odd squares must leave remainder 3 upimiodiby 8. Thus if 2001 were a sum of three squares, it woudslde

remainder 3= 1+ 1+ 1 upon division by 8. But 2001 leaves remainder 1 upon diwigip 8, a contradiction to the assumption that it is a
sum of three squares.
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82 We are required to find
14+3+---+(2n-1).
Observe that & 1%; 1+3=22; 1+ 3+5=3% 1+ 3+ 5+ 7 = 42, We suspect that
14+3+---+(2n—-1) =n?,

which we will prove by induction. We have already establistias forn = 1. LetP,_1 be the proposition

143+---+(2n—3) = (n—1)2,
which we assume true. Now

1+3+---+(2n-1) = 143+ ---+(2n—-3)+(2n—-1)

(n—1)2+2n—1

n?—-2n+1+2n—1
= n27

establishing the truth d®,.

83 The assertion is clear far= 1 since a straight line divides the plane into two regionssuliseP,_1, that is, thain — 1 non-parallel
straight lines intersecting at a common point divide theelanto Zn— 1) = 2n— 2 regions. A new line non-parallel to them but passing
through a common point will lie between two of the old linesdalivide the region between them into two more regions, ycod) then
2n— 2+ 2 = 2n regions, demonstrating the assertion.

84 Forn =1 straight lines this is clear. Assun®g_1, the proposition that this is possible for-1 > 1 lines is true. So consider the plane
split by n— 1 lines into regions and coloured as required. Consider noemaline added to tha— 1 lines. This line splits the plane into
two regions, say | and Il. We now do the following: in region ¢ \eave the original coloration. In region Il we switch théozos. We now
have a coloring of the plane in the desired manner. For, reitigetwo regions lie completely in region | or completely @gion I, and they
are coloured in the desired manner by the induction hypahBwone lies in region | and the other in region Il, then tlag coloured in the
prescribed manner because we switched the colours in tbadeegion.

85 Forn =0 this is the identity sin@ = 2sin6 cosB. Assume the statement is true for 1, that is, assume that

1,5, SIN2'6
(cosB)(cos ) ---(cos20) = Ssng
Then
(cosB)(cosd)---(cosP0) = (cosB)(cosP)---(cos?10)(cos2'0)
sin2'6
~ sin2't1g
~ 2™lsing’
as wanted.

86 The formula clearly holds fan = 1. Assume that

singx _ (n—1)x

SiINX+siN2X+--- +sin(n—1)x = —=5- -sin 5
sin3
sinX+sin2+---4+sinnx = sinx+sin 2+ -- - +sin(n— 1)x+ sinnx
sindx . (n_ .
= T Z20.sin % sinnx
sin3
sin5X . .
= 20 .sin X osinX cost
sing
sin=UX 4 2cossing
_ 2 2 2 (smm‘)
N sin% 2
2
in NX X inX nx NX qin X
B sin cos3 —sin cos’ +2cost sinj (sint)
N sin¥ 2
in DX X inX 2nx
B sin’y cos; +sinz cosy (sint)
N sin¥ 2
2
Sin%lx i NX
= —<— -sin&¥,
sinj

where we have used the sum identity
sin(a+b) = sinacosb+ sinbcosa.
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87 Forn=0we have 8 =1 > 0, and forn = 1 we have 2 = 2 > 1 so the assertion is true when= 0 andn = 1. Assume the assertion is
true forn—1 > 0, that is, assume thaf2! > n— 1. Examine

=22 =142 lsn_14n-1>n-141=n,
using the induction hypothesis and the fact thatl > 1.
88 Forn=1we have 12=2+(1— 1)22, and so the statement is true foe= 1. Assume the statement is true foithat is, assume
P(n):1.24+2.2243.2%4... 4 n.2" =24 (n—1)2™1.
We would like to prove that we indeed have
P(Nn+1):1.242.2243.22 ... 4 (n+1)- 21 =24 n2"2,
But adding(n+ 1)2"+1 to both sides oP(n) we obtain
12422243224 4n- 2" (n+1)2" = 24 (n—1)2™1 4 (n4 1)2" 1 = 24 2n2MF1 = 2 n2™+2,
provingP(n+1).

89 If all the magenta, all the yellow, all the white, 14 of the @t 14 of the blue marbles are drawn, then in among thes#®B 12+
14+ 14 =58 there are no 15 marbles of the same color. Thus we need Bamar order to insure that there will be 15 marbles of theesam
color.

90 There are seven possible sums, each one a numHerdn-2,—1,0,1,2,3}. By the Pigeonhole Principle, two of the eight sums must
add up to the same.

91 Pick a pair of different sex facing one another, that is, fiogra “diameter” on the table. On either side of the diamdterd must be
an equal number of people, that is, forty nine. If all the mesrenon one side of the diameter then we would have a total ef 49 50, a
contradiction.

92 We haveﬂl—fﬂ =4, so there is at least one cat who has four kittens.

93 First observe that if we chooset 1 integers from any string ofreconsecutive integers, there will always be some two thé&emify n.
This is because we can pair the @nsecutive integers

{a+1l,a+2,a+3,...,a+2n}

into then pairs
{a+1l,a+n+1},{a+2,a+n+2},....,{a+n,a+2n},

and ifn+ 1 integers are chosen from this, there must be two that betotige same group.

So now group the one hundred integers as follows:
{1,2,...20},{21,22...,40},

{41,42,...,60}, {61,62,...,80}
and
{81,82,...,100}.

If we select fifty five integers, we must perforce choose eldvem some group. From that group, by the above observalénm & 10),
there must be two that differ by 10.

94 If we draw all the 1+ 2+ ---+ 9 =45 labelled 1", ..., “9” and any nine from each of the disc4(’, ..., “50", we have drawn
45+ 9.41 =414 discs. The 415-th disc drawn will assure at least tersdisem a label.

95 There are ¥ — 1 = 1023 non-empty subsets that one can form with a given 10esieset. To each of these subsets we associate the sum
of its elements. The maximum value that any such sum camacti®0+ 91+ - - - +99 = 945< 1023 Therefore, there must be at least two
different subsets that have the same sum.
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Chapter

Logic, Sets, and Boolean Algebra

3.1 Logic

96 Definition A boolean propositions a statement which can be characterised as eiifver or false.

Whether the statementd@bviouslytrue or false does not enter in the definition. One only nee#tsdw that its certainty can be established.

97 Example The following are boolean propositions and their valuekndwn:
O 72=49. (true)
5> 6. (false)
If pis a prime therpis odd. (false)
There exists infinitely many primes which are the sum of asgaad 1. (unknown)
There is a G-d. (unknown)
There is a dog. {rue )
I am the Pope. false)
Every prime that leaves remainder 1 when divided by 4 is the altwo squares. ffue )

O 0Oo0ooooogao

Every even integer greater than 6 is the sum of two distirinotgs. (unknown)

98 Example The following are not boolean propositions, since it is isgible to assign drue or false value to them.
O Whenever | shampoo my camel.
0 Siton a potato pan, Otis!
0 y«—x
O This sentence is false.

99 Definition A boolean operatois a character used on boolean propositions. Its outputtiereirue or false

We will consider the following boolean operators in thesteroThey are listed in order of operator precedence andawaiuation rules are
given in Table3.1.

0 - (not or negation),
O A (and or conjunction)
O V (or or disjunction)
0 = (implies)
0 =(equaly
= has right-to-left associativity, all other operatorsdizhave left-to-right associativity.

|:| Thev = or isinclusive, meaning that if\ab then either a is true, or b is true, or both a and b are true.

26
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a bj|(-a (anb) (avb) (a=b) (a=Dh)
F F| T F F T T
F T T F T T F
T F| F F T F F
T T F T T T T

Table 3.1: Evaluation Rules

100 Example Consider the propositions:
e a: | will eat my socks.
e b:ltis snowing.
e c: | will gojogging.
The sentences below are represented by means of logicatopser
O (bv-b) = c: Whether or not it is snowing, | will go jogging.
0 b = —c: Ifitis snowing, | will not go jogging.
O b = (aA—c): Ifitis snowing, | will eat my socks, but | will not go jogging

101 Example —a = aVbis equivalent tq—a) = (aV b) upon using the precedence rules.

102 Example a = b = cis equivalent tda = b) = c upon using the associativity rules.

103 Example aA—-b = cis equivalent tdan —b) = c by the precedence rules.

104 Example Write a code fragment that accepts three numbers, decidethertthey form the sides of a triangle.

Solution: First we must have> 0,b > 0,c > 0. Sides of lengtfa, b, c form a triangle if and only they satisfy the triangle inedues::
a+b>c,

b+c>a
c+a>h

Algorithm 3.1.1: IsITATRIANGLE((a,b,c))

if ((a>0) and (b > 0) and (c > 0)

and ((a+b>c)and (b+c>a) and (c+a> b))
then istriangle— true
elseistriangle— false

return (istriangle

105 Definition A truth tableis a table assigning all possible combinationd adr F to the variables in a proposition. If there areariables,
the truth table will have 2lines.

106 Example Construct the truth table of the propositiaw —=b A c.

Solution: Since there are three variables, the truth tafilleheve 22 = 8 lines. Notice that by the precedence rules the given pitiposs
equivalent taaV (b A c), sinceA has higher precedence thenThe truth table is in Tabl8.2.

107 Definition Two propositions are said to lejuivalentif they have the same truth table. If propositiBris equivalent to propositio
we writeP = Q.
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a b c|(=b) (=bAc)|av(-bac)
F F F T F F
F F T T T T
F T F F F F
F T T F F F
T F F T F T
T F T T T T
T T F F F T
T T T F F T
Table 3.2: Examplé.06.

a|(-a (=(-a)

F T F

T F T

Table 3.3: Theorem08

108 Theorem (Double Negation) —(—-a)=a.
Proof: From the truth table3.3the entries for a aneh(—a) produce the same output, proving the assertion.

109 Theorem (De Morgan's Rules) —(aVvb) =—-aA-band-(anb) =-aVv-b.

Proof: Truth table3.4 proves that-(aV b) = -aA —b and truth table3.5 proves that-(aAb) = -aV —b.

a b (avh) —(avb) (-a) (-b) (-ar-b) a b (arb) —(aAb) (-a) (b) (-av-b)

F F F T T T T F F F T T T T

F T T F T F F F T| F T T F T

T F| T F F T F T F| F T F T T

T T| T F F F F T T T F F F F
Table 3.4:~(avb) = -an-b. Table 3.5:-~(aAb) = —aVv —b.

g
110 Example NegateAV —B.
Solution: Using the De Morgan Rules and double negatig#\ —B) = -AA —(—B) = -AAB.
111 Example Let p andq be propositions. Translate into symbols: eitpar q is true, but not both simultaneously.

Solution: By the conditions of the problem,ifis true theng must be false, which we represent@s —qg. Similarly if q is true, p must be
false and we must havep A g. The required expression is thus

(PA=Q) V (=pAQ).

112 Definition A predicateis a sentence containing variables, whose truth or falgpedds on the values assigned to the variables.

113 Definition (Existential Quantifier)  We use the symbal to mean “there exists.”

114 Definition (Universal Quantifier)  We use the symbaf to mean “for all.”
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Observe thatV =3 and-3=V.
115 Example Write the negation ofvn € N)(3x €]0;+oo[) (nx < 1).

Solution: Since~(Vn € N) = (3n € N), ~(3x €]0;4]) = (Vx €]0;4o0]) and—(nx < 1) = (nx> 1), the required statement is

(3n € N)(Vx €]0;+0o[)(nx > 1).

3.2 Sets

We will consider asetnaively as a collection of objects calletements We use the boldface letteRsto denote the natural numbers (non-
negative integers) and to denote the integers. The boldface let®rand C shall respectively denote the real numbers and the complex
numbers.

If Sis a set and the elemexis in the set, then we say thatelongs to %nd we write this ag € S If x does not belong t&we write
x ¢ S. For example iS= {n € N: nis the square of an integgr then 4 Shut 2¢ S. We denote by car@) thecardinality of A, that is, the
number of elements théthas.

If a setAis totally contained in another sBt then we say thak is a subset of Rnd we write this aé C B (some authors use the notation

A C B). For example, iS= {squares of integejsthenA = {1,4,9,16} is a subset o8. If Ix € A such tha ¢ B, thenA is not a subset of
B, which we write a®A Z B. Two setsA andB are equal ifA C BandB C A.

116 Example Find all the subsets dfa, b, c}.

Solution: They are

{a}
{b}

{c}
{a,b}
{b,c}
{c.a}
= {ab,c}

LYY Yo
Il

117 Example Find all the subsets dfa, b,c,d}.

Solution: The idea is the following. We use the result of egeEm 16. Now, a subset ofa,b,c,d} either containsl or it does not. Since the
subsets ofa, b, c} do not contaird, we simply list all the subsets §&, b, c} and then to each one of them we atldThis gives

S = o S = {d
S = {a So = {ad}
S = {b} Su = {bd}
S = {c} S = {cd}
S = {avb} S3 = {avbvd}
S = {b,C} Si4 = {b,C,d}
S = {Cva} Sl5 = {Cvavd}
S = {ab,c} S = {ab,cd}

118 Theorem A finite n-element set has"subsets.

Proof: We use induction and the idea of exampilé&. Clearly a set A with r= 1 elements hag! = 2 subsets:z and A itself.
Assume every set with-nl elements hag"~! subsets. Let B be a set with n elements.dfB&then B\ {x} is a set with n- 1
elements and so by the induction hypothesis it2ias subsets. For each subsetB\ {x} we form the new subset §x}.
This is a subset of B. There a?8~1 such new subsets, and so B has a tot@oft +2"1 = 2" subsets[]

119 Definition Theunionof two setsA andB, is the set

AUB={x:(xeA) v (xeB)}.
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30 Chapter 3

This is read A unionB.” See figure3.1. Theintersectionof two setsA andB, is
ANB={x:(xe A) A (xeB)}.
This is read A intersectiorB.” See figure3.2. Thedifferenceof two setsA andB, is
A\B={x:(xeA) A(x¢ZB)}.
This is read A set minusB.” See figure3.3.

CA

A B A B A B

Figure 3.1:AUB Figure 3.2.ANB Figure 3.3:A\ B Figure 3.4:CA

120 Definition Let A C X. Thecomplemenof A with respect toX is CA = X\ A.

Observe thabA is all that which is outsidé\. Usually we assume thatis a subset of some universal &ktvhich is tacitly understood.
The complemenfA represents the event thatloes not occur. We represdi pictorially as in figure3.4.

121 Example LetU ={0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits andAet {0,2,4,6,8} C U be the set of even
digits. ThenCA = {1,3,5,7,9} is the set of odd digits.

Observe that

CANA= o. (3.1)

We also have thBe Morgan Lawsif A andB share the same universal set, we have
C(AuB) = CANCB, (3.2
C(AnB) = CAUCB. (3.3)

We will now prove one of the De Morgan’s Rules.
122 Example Prove thaC(AuB) = CANCB.

Solution: Letx € C(AUB). Thenx g€ AUB. Thusx ¢ AAX ¢ B, that is,x € CAAx € CB. This is the same as € CANCB. Therefore
C(AuB) c CANCB.

Now, letx € CANCB. Thenx € CAAx € CB. This means that ¢ AA x ¢ B or what is the same ¢ AU B. But this last statement asserts
thatx € C(AUB). HencelANCB C C(AUB).

Since we have shown that the two sets contain each othersitlmeithe case that they are equal.
123 Example Prove thatA\ (BUC) = (A\B)N(A\C).

Solution: We have

xe A\ (BUC) xe AAx¢ (BVC)
(xeA) A ((x€B) A (xgC))
(xeA A x¢B) A (xeA A x¢C)
(xe A\B) A (xeA\C)
x€ (A\B)N(A\C)

11eee
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124 Example Shew how to write the unioAUBUC as adisjoint union of sets.

Solution: The seté, B\ A,C\ (AUB) are clearly disjoint and

AUBUC =AU (B\A)U(C\ (AUB)).

125 Example Letx; <Xp < --- < Xpandy; <y» < --- < ym be two strictly increasing sequences of integers. Writdgarighm to determine

{X17X27~-~7Xn}m{y17)’27-~~>Ym}-

Solution:

(AIgorithm 3.2.1: INTERSECTIONNn,m, X,Y)

comment: X is an array of lengtim.
comment:Y is an array of lengtim.

nl—0
ml«+ 0
common— 0
while (n1 # n) and (m1 # m)
(if X[n1+1] <Y[ml+1]
thennl «—nl1+1
else ifX[n1+1] >Y[ml+1]
thenml«— ml+1
nl<—nl+1
else{m1<— ml+1

commorn— commory 1

do

S m——— N

3.3 Boolean Algebras and Boolean Operations

126 Definition A boolean algebraonsists of a seX with at least two different elements 0 and 1, two binary opens + (addition) and
(multiplication), and a unary operatien- (calledcomplementationsatisfying the following axioms. (We use the juxtapositABto denote
the produciA-B.)

1. A+ B =B+ A (commutativity of addition)

. AB= BA (commutativity of multiplication)

. A+ (B+C) = (A+B) +C (associativity of addition)
. A(BC) = (AB)C (associativity of multiplication)

. A(B+C) = AB+ AC (distributive law)

. A+ (BC) = (A+B)(A+C) (distributive law)
A+0=A(0is the additive identity)

. Al=A(1 is the multiplicative identity)

A+A=1

.AA=0

© ©® N O U A WN

=
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127 Example Ifweregard0=F,1=T,+ =V, = A, and— = —, then the logic operations ov§F, T} constitute a boolean algebra.

128 Example If we regard 0= @, 1=U (the universal set} = U, - =N, and— = C, then the set operations over the subsets obnstitute
a boolean algebra.

. — .30 L o T .
- as the greatest common divisor of two eIements,Am:dK. The additive identity is 1 and the multiplicative identity30. Under these
operationsX becomes a boolean algebra.
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A B|A A+B AB
0 0|1 0 0
0 1|1 1 0
1 0|0 1 0
1 1|0 1 1

Table 3.6: Evaluation Rules

The operations of complementation, addition and multitiamn act on 0 and 1 as shewn in taBlé.

The following properties are immediate.

130 Theorem 0=1 and1=0.

Proof: Since0 is the additive identity) = 0+ 0. But by axion®, 04+-0= 1 and thus0=0+40= 1.

Similarly, sincel is the multiplicative identity]l = 1-1. But by axioml0,1-1=0and thusl=1-1=0. 0

131 Theorem (Idempotent Laws) A+A=AandAA=A

Proof: We have

A=A+0=A+A-A=(A+A)(A+A) = (A+A)(1) =A+A

Similarly

A=Al=AA+A) =AA+A-A=AA+0=AA

O

132 Theorem (Domination Laws) A+1=1andA-0=0.

Proof: We have

A+1=A+(A+A) = (A+A +A=A+A=1

Also,

A-0=A(A-A) = (AAA=AA=0.

O

133 Theorem (Uniqueness of the Complement)  If AB=0 andA+B = 1thenB=A.

Proof: We have

B=Bl1=B(A+A)=BA+BA=0+BA=BA

Also,
A=Al=A(A+B)=A-A+AB=AB.
Thus
B=BA=AB=A
O

134 Theorem (Involution Law) f\ =A

Proof: By axioms9 and 10, we have the identities

1=A+A and A-A=0.

By uniqueness of the complement we must havedAD
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135 Theorem (De Morgan’s Laws) A+B=A-BandA-B=A+B.

Proof: Observe that o B B
(A+B)+A-B=(A+B+A)(A+B+B)=(B+1)(A+1) =1,

and _ _ _
(A+B)A-B=AA-B+BA-B=0+0=0.

ThusA- B is the complement of-AB and so we must have B = A+B.

To obtain the other De Morgan Law pAtinstead of A andB instead of B in the law just derived and use the involution la

Taking complements once again we have

O

136 Theorem AB+AB=A.

Proof: Factoring
AB+AB=A(B+B)=A(1) =A

O

137 Theorem A(A+B)=ABandA+AB=A+B.

Proof: Multiplying
A(A+B)=AA+AB=0+AB=AB.

Using the distributive law, _ _
A+AB= (A+A)(A+B)=1(A+B)=A+B.

O

138 Theorem (Absorption Laws) A+ AB=AandA(A+B)=A.

Proof: Factoring and using the domination laws:
A+AB=A(1+B)=Al=A.
Expanding and using the identity just derived:

A(A+B) =AA+AB=A+AB=A.

3.4 Sum of Products and Products of Sums

Given a truth table in some boolean variables, we would kikind a function whose output is that of the table. This candieedby either
finding asum of product$SOP) or groduct of sumgPOS) for the table. To find a sum of products from a truth table

O identify the rows having output 1.

O for each such row, write the variable if the variable input isr write the complement of the variable if the variable injgu0, then
multiply the variables forming a term.

O add all such terms.
To find a product of sums from a truth table:
O identify the rows having output 0.

O for each such row, write the variable if the variable inpud isr write the complement of the variable if the variable injsul, then
add the variables forming a sum

O multiply all such sums.
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139 Example Find a SOP and a POS fa@r

RPRPrPRPPROOOO>
PRPOORRLR OO
RORrROROPR OO
HI—\OOOHOI—“N

Solution: The output4) 1's occur on the rows (A = 0,B = 0,C = 0, so we form the terngd)(B)(C), (i) A= 0,B=1,C =0, so we form
the termABC, (iii) A= 1,B=1,C =0, so we form the terlABC, and (iv)A= B =C = 1, giving the termABC. The required SOP is

Z = (A)(B)(C)+ABC+ ABC + ABC.
The output Z) O's occur on the rows (A = 0,B=0,C = 1, so we form the ternA+ B+C, (i) A=0,B=1,C = 1, so we form the term
A+B+C, (i) A=1,B=0,C =0, so we form the terrA+B+C, and (iv)A=1,B = 0,C = 1, giving the termA+B+C. The required
POSis
Z=(A+B+C)(A+B+C)(A+B+C)(A+B+C).

Using the axioms of a boolean algebra and the aforementithresiems we may simplify a given boolean expression, ostoam a
SOP into a POS or viceversa.

140 Example Convert the following POS to a SOP:
(A+BC)(A+BD).

Solution: _ L
AA+ ABD-+ABC+ BCBD
= A+ABD+ABC+BCD
= A+BCD.

(A+BC)(A+BD)

141 Example Convert the following SOP to a POS:

Solution:

142 Example Write W XY+W XZ+Y +Z as a sum of two products.

Solution: We have . . o
WXY+WXZ+Y+Z = WXY+2Z)+Y+Z
= WX+Y+Z
WX+Y-Z,
where we have used the fact t#e8+ B = A+ B and the De Morgan laws.

3.5 Logic Puzzles

The boolean algebra identities from the preceding sectiay imelp to solve some logic puzzles.

143 Example Brown, Johns and Landau are charged with bank robbery. Tibeethescaped in a car that was waiting for them. At the
inquest Brown stated that the criminals had escaped in aBiigk; Johns stated that it had been a black Chevrolet, anddwasaid that it
had been a Ford Granada and by no means blue. It turned outigfahg to confuse the Court, each one of them only indicatedectly
either the make of the car or only its colour. What colour wesdar and of what make?

Solution: Consider the sentences
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the car is blue

the car is a Buick

the car is black

the car is a Chevrolet

the car is a Ford Granada

mooOw>
TR

Since each of the criminals gave one correct answer, itfslivat Brown's declaratioA+ B is true. Similarly, Johns’s declarati@D is
true, and Landau’s declaratidn+ E is true. It now follows that

(A+B)-(C+D)-(A+E)
is true. Upon multiplying this out, we obtain
(A-C-A)+(A-C-E)+(A-D-A)+(A-D-E)+(B-C-A)+(B-C-E)+(B-D-A)+(B-D-E).

From the hypothesis that each of the criminals gave one dareswer, it follows that each of the summands, except ttig fif false. Thus
B-C-Ais true, and so the criminals escaped in a black Buick.

144 Example Margie, Mimi, April, and Rachel ran a race. Asked how they madt, they replied:
Margie: “April won; Mimi was second.”

Mimi: “April was second and Rachel was third.”

April: “Rachel was last; Margie was second.”

If each of the girls made one and only one true statement, witothe race?

Solution: Consider the sentences

April was first

April was second
Mimi was second
Margie was second
Rachel was third
Rachel was last

TMoO W@ >
Inn

Since each of the girls gave one true statement we have that
(A+C)(B+E)(F+D)=1

Multiplying this out
ABF+ABD+AEF+AED+CBF+CBD+CEF+CED=1.

Now, AB= EF = BC=CD = 0 so the only surviving term iAED and so April was first, Margie was second, Rachel was third,Mimi
was last.

145 Example Having returned home, Maigret rang his office on quai deg®@es.
“Maigret here . Any news?”

“Yes Chief. The inspectors have reported. Torrence thih&sif Francois was drunk, then either Etienne is the mnder Francois is
lying. Justin is of the opinion that either Etienne is the darer or Francois was not drunk and the murder occurredrafthight. Inspector
Lucas asked me to tell you that if the murder had occurred afignight, then either Etienne is the murderer or Franigigng. Then there
was aring from....”

“That's all, thanks. That's enough!” The commissar repthtiee receiver. He knew that when Francois was sober he fiederNow
everything was clear to him. Find, with proof, the murderer.

Solution: Represent the following sentences as:

Francois was drunk,

Etienne is the murderer,

Francois is telling a lie,

the murder took place after midnight.

o0Ow>
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We then have
A = (B+C), B+AD, D = (B+C).

Using the identity
X = Y=X+Y,

we see that the output of the product of the following sergemaust be 1:
(A+B+C)(B+AD)(D+B+C).
After multiplying the above product and simplifying, we alit
B+CAD.
So, either Etienne is the murderer, or the following evertsuored simultaneously: Francois lied, Francois wasdnohk and the murder
took place after midnight. But Maigret knows th&E€ = 0, thus it follows thaE = 1, i.e., Etienne is the murderer.
Homework

146 Problem Construct the truth table fap = g) AQ.

147 Problem By means of a truth table, decide whetlipnq) vV (—p) = pV (—p). That s, you want to compare the outputg pi\q) vV (—p)
andpV (—p).

148 Problem Explain whether the following assertion is true and negatéthout using the negation symbet

vneN3ImeN (n>3 = (n+7)% > 49+ m)

149 Problem Explain whether the following assertion is true and negatdthout using the negation symbet

vneN3ImeN (n”>4n — 2" > 2"+ 10)
150 Problem Prove by means of set inclusion tHi&tuB)NC = (ANC)U(BNC).

151 Problem Obtain a sum of products for the truth table

RPRPrPRPRROOOO>
PRPOORRFROOm
RORrROROPR OO
oooon—\n—\pn—\‘N

152 Problem Use the Inclusion-Exclusion Principle to determine how yniautegers in the sefl,2,...,200} are neither divisible by 3 nor
7 but are divisible by 11.

Answers
146
p a|lp=4a (p=0gAQ
F F T F
F T T T
T F F F
T T T T
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147 The desired truth table is

p d|pAgd -p pv-p (pAQ)V(-p)
F F| F T T T
F T F T T T
T F| F F T F
T T T F T T

148 The assertion is true. We have
(N+7)2>49+m < n’+14n>m

Hence, takingn= n2 + 14n— 1 for instance (or any smaller number), will make the assettiue.

150 We have,
xe (AuB)NC xe (AUB)AxeC
(xe AvxeB)AxeC
(xe AAxeC)V(xeBAXeC)
(xe ANC)V (xe BNC)

x€ (ANC)U(BNC),

rrees

which establishes the equality.

151

152 10
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Chapter

Relations and Functions

4.1 Partitions and Equivalence Relations

153 Definition Let.” # @ be a set. Apartition of .7 is a collection of non-empty, pairwise disjoint subsets6fvhose union is”.

154 Example Let
27.={...,—6,—-4,-2,0,2,4,6,...} =0

be the set of even integers and let
ZZ+1: {"'7_57_37_17173757"'} :I

be the set of odd integers. Then
(22)U(2Z+1) =7, (2Z)N(2Z+1) =2,

and so{2Z,27Z + 1} is a partition ofZ.

155 Example Let
3Z={...—9,,-6,-3,0,3,6,9,...} =0

be the integral multiples of 3, let
SZ+1: {"'7_87_57_27174777"'} :I

be the integers leaving remainder 1 upon division by 3, ahd le
SZ+2: {"'7_77_47_17275787"'} :E
be integers leaving remainder 2 upon division by 3. Then
(32)u(3Zz+1)uU(3Z2+2) =17,
(32)N(3Z+1)=w, (3Z)N(32+2) =2,(3Z+1)N(3Z+2) = 2,
and so{3%,3Z+ 1,3Z+ 2} is a partition ofZ.

|:| Notice thatO and 1 do not mean the same in examplégl and 155 Whenever we make use of this notation, the integral
divisor must be made explicit.

156 Example Observe

R=(QU(R\Q), &= (Q)n[R\Q),
which means that the real numbers can be partitioned intati@nal and irrational numbers.

157 Definition Let A, B be sets. Aelation Ris a subset of the Cartesian prodéct B. We write the fact thatx,y) € Rasx~y.

158 Definition Let A be a set an® be a relation oA x A. ThenRis said to be
o reflexiveif (Yx e A),x~ X,
e symmetricif (V(x,y) € A%),x~y = y~X,
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e anti-symmetric if (V(x,y) € A?), (x~y) and (y~X) = x=Y,
o transitive if (V(x,y,2) € A%), (x~y)and (y~2) = (x~2).

ArelationRwhich is reflexive, symmetric and transitive is calledegjuivalence relatioon A. A relationRwhich is reflexive, anti-symmetric
and transitive is called partial order on A.

159 Example Let.” ={All Human Beingg, and define- on.#” asa ~ b if and only if a andb have the same mother. Thar- a since any
humana has the same mother as himself. Similagly, b = b~ aand(a~ b) and (b~ c) = (a~ c). Therefore~ is an equivalence
relation.

160 Example LetL be the set of all lines on the plane and wtite- I, if 11]|l2 (the linel; is parallel to the liné,). Then~ is an equivalence
relation onL.

161 Example Let X be a collection of sets. Writd ~ B if A C B. Then~ is a partial order oiX.

162 Example For (a,b) € R? define
a~bea?+b?>2

Determine, with proof, whether is reflexive, symmetric, and/or transitive.4san equivalence relation?

Solution: Since 8+ 02 # 2, we have 0¢ 0 and so~ is not reflexive. Now,
a~b & a?+b?
< b2+a?
& bra,

so~ is symmetric. Also O 3 since 6+ 32 > 2 and 3~ 1 since 3+12 > 2. But 0~ 1 since 6 + 12 ¥ 2. Thus the relation is not transitive.
The relation, therefore, is not an equivalence relation.

163 Example For (a,b) € (Q*)? define the relation- as follows:a~ b < 2 < Z. Determine whether this relation is reflexive, symmetric,
and/or transitive.

Solution:a~ asince2 = 1 € 7, and so the relation is reflexive. The relation is not symineffor 2~ 1 since% €Zbutlx?2 since% A

The relation is transitive. For assurae- b andb ~ c. Then there existm,n) € Z?2 such tha® = m, % =n. This gives
a ab
—=—-.-—=mnez,
c bec

and sca~ C.

164 Example Give an example of a relation ¢&* which is reflexive, but is neither symmetric nor transitive.

Solution: Here is one possible example: put b < az%‘ € Z. Then clearly ifa € Z* we havea ~ a since%‘fa =a+1€Z. Onthe
other hand, the relation is not symmetric, since 2 as% =15€Z but 24 5, as% = g ¢ 7Z. It is not transitive either, since
ez — 5~3and¥FR € Z — 3~ 12 but%H2 ¢ 7 and so 5+ 12.
165 Definition Let ~ be an equivalence relation on a sét Then theequivalence class ofia defined and denoted by
[ ={xe” :x~a}.

166 Lemma Let ~ be an equivalence relation on a sét Then two equivalence classes are either identical oridisjo

Proof: We prove that ifa,b) € .72, and[a] N [b] # @ then[a] = [b]. Suppose that & [a] N [b]. Now x€ [a] = x~a —

a~ X, by symmetry. Similarly,& [b] = x ~ b. By transitivity

(a~x)and (x~b) = a~h.

Now, if ye [b] then b~ y. Again by transitivity, a- y. This means that & [a]. We have shewn thatey[b] = y € [a] and so
[b] C [a]. In a similar fashion, we may prove thi@ C [b]. This establishes the resulil
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As a way of motivating the following result, let us considee following example. Suppose that a child is playing withbtigks, which
come in 3 different colours and are numbered 1 through 1@kBrl through 3 are red, bricks 4 through 7 are white and bBdksough 10
are blue.

Suppose we induce the relatian- b whenever brick numbea has the same colour as brick numbeiThe~ is clearly an equivalence
relation and the bricks are partitioned according to coldarthis partition we have 3 classes (colours): bricks witimivers in{1,2, 3}
belong to the “red” class; bricks with numbers{i# 5,6, 7} belong to the “white” class; and bricks with numbers{8)9, 10} belong to the
“blue” class.

Suppose that instead of grouping the bricks by colour wedgelcio group the bricks by the remainder given by the numb#reobrick
upon division by 4, thus = b if a andb leave the same remainder upon division by 4. Clearlis also an equivalence relation. In this
case bricks with numbers if4, 8} belong to the “0” class; bricks with numbers {i, 5,9} belong to the “1” class; bricks with numbers in
{2,4,10} belong to the “2” class; and bricks with numbers{B) 7} belong to the “3” class.

Notice on the same set we constructed two different pamstiand that classes need not have the same number of elements

167 Theorem Let. # & be a set. Any equivalence relation sfiinduces a partition of”. Conversely, given a partition of into disjoint,
non-empty subsets, we can define an equivalence relatiofi miose equivalence classes are precisely these subsets.

Proof: By Lemmal66, if ~ is an equivalence relation o’ then

7 =Jal,

acsS

and[a]N[b] = @ if a = b. This proves the first half of the theorem.

Conversely, let
s =S sang=oitazp
a

be a partition of.”. We define the relatior: on .7 by letting a~ b if and only if they belong to the samg.SSince the & are
mutually disjoint, it is clear thatz is an equivalence relation o’ and that for ac Sy, we havda] = &. O

4.2 Functions

168 Definition By afunction f: Dom(f) — Target (f) we mean the collection of the following ingredients:
O anamefor the function. Usually we use the lettér
a set of inputs called thdomainof the function. The domain of is denoted bypom(f).
aninput parameter, also calledndependent variabler dummy variableWe usually denote a typical input by the letker

a set of possible outputs of the function, calledtdget setof the function. The target set dfis denoted byrarget(f).

O 0o o O

anassignment ruler formula assigning teevery input aunique output. This assignment rule fdris usually denoted by +— f(x).
The output ofk underf is also referred to as thmage of x under fand is denoted by (x).

target set

Figure 4.1: The main ingredients of a function.
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The notation
. Dom(f) — Target(f)
f:
X > f(x)
read “the functiorf, with domainDom( f), target seTarget ( f ), and assignment rulemappingx to f (x)” conveys all the above ingredients.

See figuret. 1

169 Definition Theimagelm (f) of a functionf is its set of actual outputs. In other words,
Im (f) ={f(a):acDom(f)}.

Observe that we always haima (f) C Target (f).

It must be emphasised that the uniqueness of the image oéarent of the domain is crucial. For example, the diagram urrdig.2 does not

represent a function. The element 1 in the domain is assiggnere than one element of the target set. Also importarterdefinition of

a function is the fact thall the elementsf the domain must be operated on. For example, the diagrandoioes notrepresent a function.
The element 3 in the domain is not assigned to any elemenedétiget set.

W N

o PN B

Figure 4.2: Not a function. Figure 4.3: Not a function.

170 Example Consider the sets = {1,2,3}, B= {1,4,9}, and the rulef given byf (x) = x?, which means that takes an input and squares
it. Figures4.4through4.5 give three ways of representing the functibnA — B.

y (1 2 3> ;: 411
' X — NG
Figure 4.4: Examplé70. Figure 4.5: Examplé.70.

Figure 4.6: Examplé70.

171 Example Find all functions with domaida, b} and target sefc,d}.

Solution: There are®= 4 such functions, namely:
O f1 given byfi(a) = f1(b) = c. Observe thatm (1) = {c}.
O fp given byfa(a) = fp(b) = d. Observe thatm (f,) = {d}.
O fzgiven byfz(a) = c, f3(b) = d. Observe thatm (f3) = {c,d}.

INotice the difference in the arrows. The straight arrew is used to mean that a certain set is associated with anathewisereas the arrow: (read
“maps to”) is used to denote that an input becomes a certapubu
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O f4given byfs(a) =d, f4(b) = c. Observe thatm (f4) = {c,d}.

172 Definition A function isinjectiveor one-to-onewvhenever two different values of its domain generate twfedéht values in its image.
A function issurjectiveor ontoif every element of its target set is hit, that is, the targ¢isthe same as the image of the function. A function
is bijectiveif it is both injective and surjective.

Figure 4.7: An injection. tion

a T A e\ Y[ 4 T A A
1 2 2 2 5 5 20 2
L O 3 g
Qe 4 8

Figure 4.10: Not a surjec-
tion

Figure 4.8: Not an injec- Figure 4.9: A surjection

173 Example The functiona in the diagram4.7 is an injective function. The function represented by thegdim4.8, however is not
injective, sinceB(3) = B(1) = 4, but 3# 1. The functiony represented by diagram9is surjective. The functiod represented by diagram
4.10is not surjective since 8 is part of the target set but not efitiiage of the function.

174 Theorem Let f : A — B be a function, and leA andB be finite. If f is injective, then car@@) < card(B). If f is surjective then
card(B) < card(A). If f is bijective, then car@@) = card(B).

Proof: Putn=card(A), A= {x1,%y,...,%n} and m= card(B), B= {y1,y2,...,Ym}
If f were injective then (x1), f(x2),..., f(xn) are all distinct, and among thg.yHence n< m.

If f were surjective then each ys hit, and for each, there is an with f(x;) = yk. Thus there are at least m different images,
andson>m. O

175 Definition A permutationis a function from a finite set to itself which reorders thenedaits of the set.

|:| By necessity then, permutations are bijective.

176 Example The following are permutations d¢f, b, c}:

The following arenot permutations ofa, b, c}:

f_abc f.abc
5'la a ¢ “\b b a

177 Theorem LetA, B be finite sets with car@) = nand cardB) = m. Then

e the number of functions frorA to B is m".
e if n < m, the number of injective functions frodto B is m(m—1)(m—2)--- (m—n+1). If n> mthere are no injective functions

fromAtoB.

Proof: Each of the n elements of A must be assigned an element of Beand there are nm- --m= m" possibilities, and

n factors
thus n? functions.If a function from A to B is injective then we mustehn< m in view of Theoremi74. If to different inputs
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we must assign different outputs then to the first elementveé Aay assign any of the m elements of B, to the second any of
the m— 1 remaining ones, to the third any of the-n2 remaining ones, etc., and so we havgm- 1)---(m—n+ 1) injective
functions.O

178 Example LetA= {a b,c} andB = {1,2,3,4}. Then according to Theoref¥7, there are = 64 functions fromA to B and of these,
4.3.2 = 24 are injective. Similarly, there aré 3- 81 functions fronB to A, and none are injective.

179 Example Find the number of surjections frof= {a,b,c,d} toB = {1,2,3}.

Solution: The trick here is that we know how to count the nundfdunctions from one finite set to the other (Theoré&iiy). What we do
is over count the number of functions, and then sieve ouktlhdsch are not surjective by means of Inclusion-Exclusi®y.Theorem177,
there are 3= 81 functions fromA to B. There are(f) 2% = 48 functions fromA to B that miss one element froB. There are(g) 14=3
functions fromA to B that miss two elements frofd. There are(g)o"' = 4 functions fromA to B that miss three elements froBr By
Inclusion-Exclusion there are

81-48+3=36

surjective functions frorf to B.

In analogy to exampl&79, we may prove the following theorem, which complements Teedl. 77 by finding the number of surjections
from one set to another set.

180 Theorem LetA andB be two finite sets with cargh) = nand cardB) = m. If n < mthen there are no surjections frokto B. If n>m
then the number of surjective functions fragkto B is

m - (T) (m—1)"+ (';) (m—2)"— (g‘) (m—3)”+.-.+(—1)m*1<mrf 1) (",
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Number Theory

5.1 Division Algorithm

181 Definition If a# 0,b are integers, we say thatdivides hif there is an integec such thatac = b. We write this as|b.

If a does not dividé we writea Jb.
182 Example Since 20=4-5 we have £0. Also—4|20 since 20= (—4)(-5).

183 Theorem Leta,b,c be integers.
O If alb thenalkbfor anyk € Z.
O If albandb|a, thena = +b.
If alb andbjc thenalc.
If c dividesa andb thenc divides any linear combination efandb. That is, ifa, b,c, m, n are integers witle|a, c|b, thenc|(am+ nb).
For anyk € Z\ {0}, alb < kalkb.
If albandb # 0 then 1< |a| < |b|.

O 0o o o™

Proof: We prove the assertions in the given order.

O There is uc Z such that au= b. Then guk) = bk and so k.

O Observe that by definition, neither-40 nor b# 0 if alb and Ha. There exist integers,u with au=b and bl = a.
Hence auli= bu = a, and so uli= 1. Since yu’ are integers, then & +1,u' = F1. Hence a= +b.

O There are integers,w with au= b,bv= c. Hence auv= c, and so .

O There are integers,swith sc=a,tc=b. Thus
am+nb = c(sm+tn),

giving d(am- bn).

O There exist an integer u with ad b. Then(ak)u = kb, and so $h = kalkb. Since k% 0 we may cancel out the k's and
hence(akju=kb = au=b = alb, proving the converse.

O Since b# 0 there exists an integer# 0 with au=b. Soju| > 1 and thusla|-1 < |a| - |u| = |au] = |b]. |a] > L trivially.
184 Theorem (Division Algorithm)  Letn > 0 be an integer. Then for any integethere exist unique integecg(called thequotien) andr
(called theremaindej such tha = gn+r and 0<r < q.

Proof: In the proof of this theorem, we use the following propertyhef integers, called thevell-ordering principle any
non-empty set of non-negative integers has a smallest ateme
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Consider the set S {a—bn:be Z and a> bn}. Then S is a collection of nonnegative integers and 8 as+a—0-n€ S
and this is non-negative for one choice of sign. By the Wede@ing Principle, S has a least element, say r. Now, therstmu
be some @& Z such that = a— gn since re S. By construction, P 0. Let us prove that K n. For assume that > n. Then
r>r—n=a—-qgn—n=a-(q+1)n>0, since r—n > 0. But then a- (q+1)n € S and a- (q+ 1)n < r which contradicts
the fact that r is the smallest member of S. Thus we must Bave < n. To prove that r and q are unique, assume that
gin+ri=a=0gun+r2,0<r; <n,0<rp,<n. Thenp—ri=n(q —q2), thatis, n dividegro —r1). But|r, —r1| < n, whence

ro = r1. From this it also follows that g= q,. This completes the prodf]

185 Example If n= 5 the Division Algorithm says that we can arrange all thegats in five columns as follows:

-10 -9 -8 -7 -6
-5 -4 -3 -2 -1
0 1 2 3 4

5 6 7 8 9

The arrangement above shews that any integer comes in ondélafdbirs: those leaving remainder 0 upon division by 5, tHesging
remainder 1 upon division by 5, etc. We let

57 =1{...,—15,—10,-5,0,5,10,15...} =0,

57Z+1={..,—14-9,-4,1,6,1116,...} =1,
57+2={..,—13-8,-3,2,7,1217,...} =2,
57+3={...,~12,-7,—2,3,8,1318,...} = 3,
5Z+4={., —11,-6-1,4,91419, ..} =4

and

Zs=1{0,1,2,3,4}.
186 Example Shew than? + 23 is divisible by 24 for infinitely many values of

Solution: Observe that? +23=n% —1+24= (n—1)(n+1)+24. Therefore the families of integens=24m+1,m=0,+1,4+2 +3,...
produce infinitely many values such thét+ 23 is divisible by 24.

187 Example Shew that the square of any prime greater than 3 leaves rdardirupon division by 12

Solution: If p > 3 is prime, therp is of one of the forms 6+ 1.
Now,

(6k+1)? = 12(3k? + k) +1,
proving the assertion.

188 Example Prove that ifpis a prime, then one of@8— 1 and &+ 1 is a prime and the other is composite.

Solution: If p=3, 8p—1=23 and $+ 1 = 25, then the assertion is true far= 3. If p > 3, then eithep = 3k+1 or p = 3k+ 2. If
p=3k+1, 8p—1=24k—7 and &+ 1 = 24k — 6, which is divisible by 6 and hence not prime.g=3k+2, 8p—1=24k—15is not a
prime, .

189 Example (AHSME 1976) Letr be the common remainder when 105917 and 2312 are divided lay> 1. Findd —r.

Solution: By the division algorithm there are integgisqp, gz with 1059=dq; +r,1417=dcp +r and 2312= dgz +r. Subtracting we get
1253=d(g3 — q1),895= d(gz —gz) and 358= d(g, — q1). Notice thatd is a common divisor of 125895 and 358. As 1253- 7-179,
895=5-179 and 358= 2-179, we see that 179 is the common divisor greater than 1 dhade quantities, and stb = 179 Since
1059=179; +r, and 1059=5-179+ 164 we deduce that= 164 Finally,d —r = 15.

190 Example Shew that if 81+ 1 is a square, them+ 1 is the sum of three squares.
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Solution: Clearly 8+ 1 is not a multiple of 3, and sa3- 1 = (3k+ 1)2. Therefore

(Bk+1)2—-1

n+1=
+ 3

+1=3K%+2k+1=K+K + (k£ 1)?,

as we wanted to shew.

5.2 Greatest Common Divisor

191 Definition Leta, b be integers with one of them different from 0. The greatestroon divisord of a, b, denoted byl = gcd(a, b) is the
largest positive integer that divides batlandb.

192 Theorem (Bachet-Bezout Theorem)  The greatest common divisor of any two integans can be written as a linear combinationaof
andb, i.e., there are integersy with
gcd(a, b) = ax+ by.

Proof: Let A= {ax+byjax+by> 0,x,y € Z}. Clearly one otta,+b is in A, as both g are not zero. By the Well Ordering
Principle, A has a smallest element, say d. Therefore, therep, yp such that d= axy + byy. We prove that &= gcd(a, b). To
do this we prove that d divides a and b and that if t divides alanthen t must also divide then d.

We first prove that d divides 8y the Division Algorithm, we can find integers.@ < r < d such that a= dq+r. Then
r=a—dg=a(l-ax)—by.
If r > 0, then re A is smaller than the smaller element of A, namelg dontradiction. Thus & 0. This entails dg=a, i.e. d

divides a We can similarly prove that d divides b

Assume that t divides a and b. Thes-am,b = tn for integers mn. Hence d= axy + bxy = t(mxy + nyp), that is, t divides d
The theorem is thus proved.

Leta, b be positive integers. After using the Division Algorithnpeatedly, we find the sequence of equalities

a = boq+ry, 0<ry<h,
b = TI02+r3 O<rz<ry,
ro = I30z+r4 O0<rg<rs,
. . (5.1)
-2 = Ipo1Ono1+rn 0<rp<rp_g,
fh—1 = TInOn.

The sequence of remainders will eventually reach.a which will be zero, sincéd,ro,r3,... is @ monotonically decreasing sequence of
integers, and cannot contain more thgpositive terms.
The Euclidean Algorithm rests on the fact, to be proved betbat gcda, b) = gcd(b,r2) = gcd(ra,r3) = --- = ged(rn_1,r) = rn.

193 Theorem If ry, is the last non-zero remainder found in the process of théidean Algorithm, then

rn=gcda,b).
Proof: From equation$.1
ro = a—bg
rs = b-ra
frg = T2—r303
lh = TIh—2—TIn-10n-1

Let r=gcd(a, b). From the first equation,|rp. From the second equation|rg. Upon iterating the process, we see thatr

But starting at the last equatiof.1 and working up, we see thak|rn_1,n|rn—2,...n|r2,r|b,rmja. Thus p is @ common
divisor of a and b and sa.fgcd(a, b). This gives the desired resulil

194 Example Write pseudocode describing the Euclidean Algorithm.
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Solution: Here is one iterative way of doing this.

(AIgorithm 5.2.1: EUCLIDEANALGORITHM(X,Y)

if x<0
thenx «— —x

ify<O
theny — —y

whiley > 0

r —x mody
do {X(—y
o

ye—r

195 Example Find gcd23,29) by means of the Euclidean Algorithm.

Solution: We have

29=1.23+6,
23=3.6+5,
6=1.5+1,
5=5.1.

The last non-zero remainder is 1, thus (28/29) = 1.

An equation which requires integer solutions is calletigphantine equatianBy the Bachet-Bezout Theorei®?2, we see that the linear
diophantine equation
ax+hy=c

has a solution in integers if and only if g@b)|c. The Euclidean Algorithm is an efficient means to find a solutmthis equation.

196 Example Find integersc,y that satisfy the linear diophantine equation

23+ 2% = 1.

Solution: We work upwards, starting from the penultimataadity in the preceding problem:
1=6-1-5
5=23-3-6,
6=29-1-23
Hence,
—1-(23-3-6)
6—1-23

= 4(29-1-23)-1.23
= 4.29-5.23

6-1-5
= 6
4.

This solves the equation, with= -5y = 4.

197 Example Find integer solutions to
23429 =7.

Solution: From the preceding example(23%) 4+ 29(4) = 1. Multiplying both sides of this equality by 7,
23(—35)+29(28) =7,

which solves the problem.

198 Example Find infinitely many integer solutions to
23429 =1.
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Solution: By examplel96, the pairxg = —5,yp = 4 is a solution. We can find a family of solutions by letting

Xx=-5+42%, y=4-23, teZ.
199 Example Can you find integers X, y such that 3456246y = 73?

Solution: No.(3456246) = 2 and 2}73.

5.3 Non-decimal Scales

The fact that most people have ten fingers has fixed our scaletafion to the decimal. Given any positive integer 1, we can, however,
express any numberin baser.
If nis a positive integer, and> 1 is an integer, then has the base+epresentation

N=ag+ayr +apr’+ - +ark 0<a <r—1 a#0, r*<n<rk,

We use the convention that we shall refer to a decimal numiteout referring to its base, and to a baseamber by using the subindex

200 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 7°. We thus want to find & ag, ..., a4 < 6,a4 0 such that
5213=ay7* +ag7° + a7 + a1 7+ ao.

Dividing by 7*, we obtain 2- proper fraction= as+ proper fraction. This means tha¢ = 2. Thus 5213=2.7*+ a7 +ay7%+a;7+ag or
411=5213= a373 +ay72 + a7 + ap. Dividing by 72 this last equality we obtain- proper fraction= ag+ proper fraction, and saz = 1.
Continuing in this way we deduce that 52332112%5.

The method of successive divisions used in the precedirtggrocan be conveniently displayed as

5212
744
106
15

2

ENIIEN| IENIEN| BN
N[ | RN o

The central column contains the successive quotients andghtmost column contains the corresponding remaindeesading from
the last remainder up, we recover 52221125.

201 Example Write 562 in base-five.

Solution: 562 = 5-72+6-7+ 2 = in decimal scale, so the problem reduces to convert 289 ®fhas Doing successive divisions,

289
57
11
2

ol o o o1
N[N

Thus 562 = 289= 2124
.13 .
202 Example Express the fractloq?3 in base-six.

Solution: Write
16 6 62
Multiplying by 6, we obtain 4- proper fraction= a;+ proper fraction, s@; = 4. Hence

13 4777a2 a3 &
16 6_48_62—|r63—|r64+
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Multiply by 62 we obtain 5+ proper fraction= a,+ proper fraction, and sa, = 5. Continuing in this fashion

13 4 5 1 3
6 6 & & & %%

We may simplify this procedure of successive multiplicasidy recurring to the following display:

6|14
6|% |5
6|3 |1
6|3 |3

The third column contains the integral part of the produéthe first column and the second column. Each term of the secolumn from
the second on is the fractional part of the product obtainetié preceding row. Thus-§2 —4= £, 6-§ —5= 1, etc..

203 Example Prove that 41, is a perfect square in any scale of notation.

Solution:

4 4 1\2
441 =4+ -+ — = (24 =
L +rJrr2 (Jrr)

204 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12,13,. ..

consists of all those positive integers which are powersafsums of distinct powers or 3. Find the hundredth term ofkdguence.

Solution: If the terms of the sequence are written in baseetithey comprise the positive integers which do not conte digit 2. Thus the
terms of the sequence in ascending order are

13,103, 115,1005,1015,1105, 1115, ...

In the binary scale these numbers are, of course, the ascending natundlensi 12,3,4,.... Therefore to obtain the 100th term of the
sequence we write 100 in binary and then translate this értty: 100= 1100109 and 1100109 = 3° + 3%+ 32 = 981

5.4 Congruences

205 Definition Letn > 0 be an integer. We say thad Is congruent tdo modulon” written a=b modnif aandb leave the same remainder
upon division byn.

206 Example
—-8=6 mod7

—-8=13 mod7

By the division algorithm any integex can be written ag = gn+r with 0 <r < n. By letting q vary over the integers we obtain the
arithmetic progression

s, =30 r—=2nr—n,r,r+n,r-+2nr+3n,...,

and so all the numbers in this sequence are congruentiodulon.
207 Theorem Letn> 0 be an integer. Thea=b modn <= n|(a—Db).

Proof: Assume & b, otherwise the result is clear. By the Euclidean Algorithere are integers g# gz such that a= gyn+r
and b= qgyon+r, as a and b leave the same remainder when divided by n. Thus-a gin— g2n = (g1 — g2)n. This implies
that n(a—h).
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Conversely if a— b) then there is an integer t such that ata—b. Assume that & mn+rq and b= mpn+r, with
0<ry,rp <n. Then

nt=a—-b=(mM—-mp)n+ri1—rp = nt—m+mp)=ry1—rp = n|(ry—r).

Since|r; —r| < n we must haver—r, = 0 and so a and b leave the same remainder upon division By n.

We now provesome simple properties of congruences.

208 Theorem Leta,b,c,d,me Z,k € witha=bmodmandc=d modm. Then
a+c=b+d modm

a—c=b—d modm

ac=bd modm

ak=Dbk modm

o > w DR

If f is a polynomial with integral coefficients thdrja) = f(b) modm.

Proof: As a=b modm and c=d modm, we can find Kk, € Z with a=b+kym and c=d+ kom. Thus atc=
b+d+ m(k; £ ko) and ac= bd+ m(kob+ k;d). These equalities give (1), (2) and (3). Property (4) foBdwy successive
application of (3), and (5) follows from (4]

Congruences mod 9 can sometimes be used to check muliipfisatFor example 875962753+ 2410520633 For if this were true
then
(8+7+5+9+6+1)(2+7+5+3) =2+4+1+0+5+2+0+6+3+3 mod 9

But this says that 8 =8 mod 9, which is patently false.

209 Example Find the remainder when'87is divided by 37.

Solution: & = —1 mod 37. Thus ¥87 = 6. 61986 = 6(62)99% = 6(—1)99% = —6 = 31 mod 37.
210 Example Prove that 7 divides2+1 + 22 for all natural numbers.

Solution: Observe that3t1 =3.9"=3.2"mod 7 and 272 = 4. 2" mod 7. Hence
31 o2 =7.2"=0 mod 7

for all natural numbers.

211 Example Prove that 122225551 5555222

Solution: 2222=3 mod 7,5555=4 mod 7 and 3=5 mod 7. Now

22223555+ 555@222 = 35555+ 42222E (35)llll+ (42)1111E 51111_ 51111E 0 mod?7

212 Example Find the units digit of 7.

Solution: We must find # mod 10. Now, = —1 mod 10, and so%= 72.7= —7 =3 mod 10 and ¥= (72)2 = 1 mod 10. Also, =1
mod 4 and so 7= (72)3- 7 = 3 mod 4, which means that there is an integeuch that 7 = 3+ 4t. Upon assembling all this,

77 =748 = (7. 78 =1.3=3 mod 10

Thus the last digit is 3.

213 Example Prove that every year, including any leap year, has at lessEoiday 13th.
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Solution: It is enough to prove that each year has a SundaystheNow, the first day of a month in each year falls in one offttiewing
days:

Month Day of the year, mod 7

January 1 1

February | 32 4

March 60 or 61 4or5
April 91 or 92 Oor1l
May 121 orl22 2o0r3
June 152 or 153 50r6
July 182 0or183 Oor1l

August 213 or 214 3or4

September 244 or 245 6o0r0

October 274 or 275 lor2

November| 305 or 306 4or5

December| 335 or 336 6or0

(The above table means that, depending on whether the yaégap year or not, that March 1st is the 50th or 51st day of ¢lae, wtc.) Now,
each remainder class modulo 7 is represented in the thioeglthus each year, whether leap or not, has at least onex@gthnel 1st.

214 Example Find infinitely many integera such that 2+ 27 is divisible by 7.

Solution: Observe thati2=2,22=4,28=1,24=2,25=4,25=1 mod 7 and so¥ = 1 mod 3 for all positive integets Hence 3 +27=
1+27=0 mod 7 for all positive integetls This produces the infinitely many values sought.

215 Example Prove that #— 5k =0,1,2,... never leaves remainder 1 when divided by 7.

Solution: 2 = 2,22 = 4,23 = 1 mod 7, and this cycle of three repeats. Thtis-3 can leave only remainders 3, 4, or 6 upon division by 7.

5.5 Divisibility Criteria
216 Theorem An integern is divisible by 5 if and only if its last digit is a 0 or a 5.
Proof: We derive the result for » 0, for if n < 0 we simply apply the result ten > 0. Sincel0 =0 mod 5for integral

k > 1, we have
n=asl0®+as 11051 +... +a10+ay=ay mod5

Thus divisibility of n byb depends on whethegas divisible by5, which happens only whega 0orag=5. 0O

217 Theorem Letk be a positive integer. An integeris divisible by X if and only if the number formed by the ldstligits of n is divisible
by 2.

Proof: If n = 0there is nothing to prove. If we prove the result forr then we can deduce the result forr0 by applying
itto —n=(—1)n> 0. So assume thataZ, n> 0 and let its decimal expansion be

n=asl0+as 11051+ +a;10+ ag,
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where0 < g <9, as# 0. Now, each ofl0f =2!5' =0 mod 2 fort > k. Hence

n = all+as 110514+...4+a;10+a

a 110 +a 1062+ ... +a110+ay mod X,

so n is divisible by if and only if the number formed by the last k digits of n issiblie by2k. O

218 Example The number 987654888 is divisible by 2 8 because the number formed by its last three digits, 88&isillie by 8.

219 Example The number 191919191919193216 is divisible By=216 because the number formed by its last four digits, 321#&isiblle
by 16.

220 Example By what digits may one replackso that the integer 22® be divisible by 4?

Solution: The number 23R is divisible by 4 if and only ifA2 is divisible by 4. This happens whén=1 (A2 =12),A=3 (A2=32),A=5
(A2=052),A=7 (A2=72), andA =9 (A2 = 92). Thus the five numbers

231122313223152231723192

are all divisible by 4.
221 Example Determine digitsa, b so that 238b be divisible by 40.

Solution: 23%b will be divisible by 40 if and only if it is divisible by 8 and b§. If 235ab is divisible by 8 thena fortiori, it is even and
since we also require it to be divisible by 5 we must hiave0. Thus we need a digitso that &0 be divisible by 8. Since & a < 9, a quick
trial an error gives that the desired integers are

2350023520235402356023580

222 Theorem (Casting-out 9's) An integernis divisible by 9 if and only if the sum of its digits is dividibby 9.

Proof: If n =0there is nothing to prove. If we prove the result for then we can deduce the result fokr0 by applying
itto —n= (—1)n > 0. So assume that@Z, n> 0 and let its decimal expansion be

n=asl0°+as_ 110° 1+ +a;10+ag,

where0 < g < 9, as# 0. Observe thal0=1 mod 9and sold =1' =1 mod 9 Now
n = alC+as 1105 1+...+a;10+4ag
= as+---+aj+a modQ

from where the result followsl]

|:| Sincel0=1 mod 3we can also deduce that integer n is divisible3ifand only if the sum of it digits is divisible I8/

223 Example What values should the digittake so that the number 82 be divisible by 9?

Solution: The number 315 is divisible by 9 if and only 3-2+d +5 = d + 10 is divisible by 9. Now,
0<d<9 = 10<d+10<19

The only number in the range 10 to 19 divisible by 9 is 18, tthies8. One can easily verify that 3285 is divisible by 9.

224 Example Is there a digid so that 128 be divisible by 45?
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Solution: If 125 were divisible by 45, it must be divisible by 9 and by 5. If itreaivisible by 5, themd = 0 ord = 5. If d = 0, the digital
sum is 142+ 5+ 0= 8, which is not divisible by 9. Similarly, il =5, the digital sum is 2+ 545 = 13, which is neither divisible by 9.
So 12%l is never divisible by 45.

225 Definition  If the positive integen has decimal expansion
n=asl0®+as 110° 1 +... +a;10+ag,

thealternating digital sunof nis
as—as 1+8s2—8s3+ -+ (-1 e

226 Example The alternating digital sum of 135456 is
1-3+5-4+5-6=-2
227 Theorem An integern is divisible by 11 if and only if its alternating digital sura divisible by 11.

Proof: We may assume thatnO. Let
n=asl0+as 11051 +.- +a;10+ ag,
where0 < g <9, as# 0. Observe thal0= —1 mod 15nd sol0' = (—1) mod 11 Hence
n = all+as 1105 1+...+a;10+ag
= as(—1)+as (-1 +as o(-1)2+---+—ag+ag mod1l
and the result follows from this]

228 Example 912282219 has alternating digital sum2+2—-2+8—-2+2—-1+9= 24 and so 912282219 is not divisible by 11, whereas
8924310064539 has alternating digital sum®8+2—-4+3—-1+0-0+6—-4+4—3+9 =11, and so 8924310064539 is divisible by 11.

Homework
229 Problem Prove that there are infinitely many integersuch that 42 + 1 is simultaneously divisible by 13 and 5.
230 Problem Find the least positive integer solution of the equationd3893y = 5.

231 Problem Two rods of equal length are divided into 250 and 243 equabpeespectively. If their ends be coincident, find the daris
which are the nearest together.

232 Problem Prove that any integer> 11 is the sum of two positive composite numbers.

233 Problem Letn> 1 be an integer.
1. Prove, using induction or otherwise, thaaif 1 then

1-a"
l+a+a®+---avt= .
l1-a

2. By making the substitutioa = § prove that
X'y = (x—y) (XX Py ey 2y ),

3. Deduce that ik # y are integers thefx —y) |x" — y".

4. Shew that
2903 — 803" — 464" + 261"

is divisible by 1897 for all natural numbens
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5. Prove that if 2 — 1 is prime, them must be prime.
6. Deduce that ik # y are integers, andis odd, thenx+y)|x" +y".

7. Prove that if 2+ 1 is prime, them = 2K for some integek.

234 Problem Use the preceding problem to find the prime fagtor 250000 of the integer

1002004008016032

235 Problem Write an algorithm that finds integer solutiony to the equation
gcd(a, b) = ax+ by.

Assume that at least one abr b is different from 0.

236 Problem Let A be a positive integer, andl be a number written with the aid of the same digits with araraged in some other order.
Prove that ifA+ A’ = 10'°, thenA is divisible by 10.

237 Problem A grocer sells a 1-gallon container of milk for 79 cents (coemm those were the days!) and a half gallon container of milk
for 41 cents. At the end of the day he sold $63.58 worth of nilaw many 1 gallon and half gallon containers did he sell?

238 Problem Using congruences, find the last two digits 6% Hint: 3*=1 mod 100.

Answers

229 We have # 4 1 = 4n® — 64+ 65 = 4(n—4)(n+4) + 65 so it is enough to take= 65+ 4.

230 Using the Euclidean Algorithm,

436 = 1.393+43
393 = 9.43+6
43 = 7.6+1
Hence
1 = 43-7-6

= 43-7-(393-9-43)

= —7-393+64-43

= —7-393464-(436—393

= —71-393+64-436
and so 5= 320-436— 355- 393. An infinite set of solutions can be achieved by puttirg320+ 393, y = 355+ 434&.
231 Observe that gd@43 250) = 1, and so the divisions will be nearest together when theferdify the least amount, that is, we seek
solutions of 248 — 250y = +1. By using the Euclidean Algorithm we find 24B07— 250- 104 = 1 and also 243(250— 107) — 250 (243—
104) = —1 and so the values afare 107 and 143 and thoseyoére 104 and 139.
232 If n> 11 is even them— 6 is even and at least :24 = 8 and thus it is composite. Hence= (n—6) + 6 is the sum of two even
composite numbers. > 11 is odd them — 9 is even at least 1:39 = 4, and hence composite. Therefore: (n—9) +9 of an even and an

odd composite number.

233 1. PutS=1+a+a?+---+a" 1 ThenaS=a+a?+---+a" 1+a". ThusS—aS=(1+a+a?+---+a" 1) —(a+a2+---+
a"!4a")=1-a", and from(1—a)S= S—aS= 1 a" we obtain the result.
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2. From

we obtain
2 n—-1 n
(1,5) <1+§+<§) +...+<§> ) 1 (X> ,
y y y y y
and multiplying byy" both sides gives the result.

3. This is immediate from the above result.

4. By the preceding part, 2903 803" is divisible by 2903- 803= 2100= 7-300=, and 261 — 464" is divisible by 261- 464= —203=
7-(—29). Thus the expression 2903 803" — 464" + 261" is divisible by 7. Also, 2903— 464" is divisible by 2903- 464=9-271
and 261 — 803" is divisible by—542= (—2)271. Thus the expression is also divisible by 271. Since 7Z2aidchave no prime factors
in common, we can conclude that the expression is divisiplé-271= 1897

5. We have
2 —1=220-1= (- 1((2) ()PP () D).
Sincea > 1,22 -1 > 1. Sinceb > 1,
(221 (2)P2 2 >R 41> 1

We have decomposed a prime number (the left hand side) iatprdduct of two factors, each greater than 1, a contradiclibusn
must be a prime. Primes of this form are calMdrsenne primes.

6. For everyn we have thak—y dividesx" — y". By changingy into —y we deduce that— (—y) dividesx" — (—y)", that isx+y divides
X" — (=y)". If nis odd then—(—y)" = y", which gives the result.

7. We have
4 1=22M 1= (224 1)) - (2™ 24— (22 ).

Clearly, 2+ 1> 1. Alsoif m> 3
(22k)m71 _ (sz)m72+-~.7 (22k)1+1 > (zzk)Z, (22k)1+1 S 1

and so, we have produced two factors each greater than 1efgrime 2 + 1, which is nonsense. Primes of this form are called
Fermat primes.

234 If a=10°,b=2then

ab—pd

1002004008016032 a° + a*b+ a3b? + a?b® +ab* + b° = b

This last expression factorises as

a6_b6
= (a+b)(a®+ab+b?)(a®—ab+b?)

= 10021002004 998004
= 4-4.1002 250501 K,

wherek < 250000. Therefor@ = 250501.

235 Here a possible approach. | have put semicolons insteaditifigithe algorithm strictly vertically in order to save sjga
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(AIgorithm 5.5.1: LINEARDIOPHANTINE(a,b) )
m—a, n—b, p—1 g<0; r—0; s<1,;
while =((m=0)V (h=0))

if m>

n
then {m<—m—n;p<— p—rd—g-s

—_—N———————

1
1
{ e|Se{an—m;rHrfp;sHsfq;

then {k<—n;X<—r;y<—s;

e'Se{kH mX— Py <G
N Y

236 Clearly A andA’ must have ten digits. LeA = a;oag...a; be the consecutive digits éfandA’ = a)jag...d;. Now, A+ A = 1010 if
and only if there is §,0 < j < 9 for whichay +a) =a+ay = --- =aj+aj = 0,841+ &, = 10,82 +8], , =aj3+dj 3= =
a10+ a5 = 9. Notice thatj = 0 implies that there are no sums of the faayn + a’Hk? k> 2, andj = 9 implies that there are no sums of the
forma +4a(,1<| < j. On adding all these sums, we gather

apt+aj+apt+a+---+a+aig=10+9(9—j).

Since theg,, are a permutation of thas, we see that the sinistral side of the above equality is te@ eumber 2a; +ap + -+ -+ ayp). This
implies thatj must be odd. But this implies thaf +a} = 0, which gives the result.

237 We want non-negative integer solutions to the equation
79X+ .41y = 6358 — 79x+41y = 6358
Using the Euclidean Algorithm we find, successively
79=1-41+38; 41=1-38+3; 38=3-12+2; 3=1-2+1
Hence
1 = 3-2

= 3-(38-3.12

= —-38+3-13

= —38+(41-38)-13

= 38.(—14)+41.13

= (79-41)(—14)+41-13

79(—14) +41(27)

A solution to 7%+ 41y =1 is thus(x,y) = (—14,27). Thus 79—89012 +41(171666 = 6358 and the parametrisation(789012+41t) +
41(171666- 7%) = 1 provides infinitely many solutions. We need non-negatdlations so we need, simultaneously

—890124+-41t >0 = t>2172 N 171666-7% >0 = t <2172
Thus taking = 2172 we obtaink = —89012+ 41(2172) = 40 andy = 171666— 79(2172 = 78, and indeed79(40) + .41(78) = 63.58.
238 Since 390 = (3%0)2320 = 320 mod 100, we only need to concern ourselves with the last @yaNow (all congruences mod 100)
F=81— F=81%=61— 3%=612=21

We deduce, as 28 16+ 4, that
320=3'%3*=(21)(81) =1 mod 100
and the last two digits are 01.
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Enumeration

6.1 The Multiplication and Sum Rules

We begin our study of combinatorial methods with the follegviwo fundamental principles.

239 Definition (Cardinality of a Set)  If Sis a set, then itgardinality is the number of elements it has. We denote the cardinalitylnf
card(S).

240 Rule (Sum Rule: Disjunctive Form)  LetEj,Ep,...,Ey, be pairwise finite disjoint sets. Then

card(E; UEU---UEy) = card(E;) +card(Ep) + - - - 4 card(Ey) .

241 Rule (Product Rule) LetE;,Ep,...,Ey, be finite sets. Then

card(Ey x Ex x --- x Ey) = card(E; ) - card(Ep) - - - card(Ey) .
242 Example How many ordered pairs of integefg y) are there such thatQ |xy| < 5?

Solution: PutEy = {(x,y) € Z?: |xy| =k} for k= 1,...,5. Then the desired number is

card(Ejp) +card(Ep) + - -- +card(Es) .

Then
Bt = {(-1-1,(-11),(1,-1),(1,1)}
E2 = {(-2-1,(-21),(-1,-2),(-1,2),(1,-2),(1,2),(2,-1),(2,1)}
Es = {(-3-1,(-31),(-1,-3),(-13),(1,-3),(1,3),(3 -1),(3,1)}
Es = {(-4-1,(-41),(-2-2),(-22),(-1,-4),(-1,4),(1,-4),(1,4),(2,-2),(2.2),(4,-1), (4 1)}
Es = {(-5-1,(-51),(-1,-5),(-15),(1,-5),(1,5),(5-1),(51)}

The desired number is therefore-8-+ 8+ 12+8 = 40.

243 Example The positive divisors of 400 are written in increasing order
1,2,4,5,8,...,200,400

How many integers are there in this sequence. How many ofitieods of 400 are perfect squares?

Solution: Since 406= 24. 52, any positive divisor of 400 has the forrs® where 0< a < 4 and 0< b < 2. Thus there are 5 choices far
and 3 choices fob for a total of 5 3 = 15 positive divisors.

57



58 Chapter 6

To be a perfect square, a positive divisor of 400 must be ofdha 2958 with a € {0,2,4} and € {0,2}. Thus there are 2 = 6
divisors of 400 which are also perfect squares.

By arguing as in exampl243, we obtain the following theorem.
244 Theorem Let the positive integen have the prime factorisation
n=pi'p3pg
where thep; are different primes, and tte are integers> 1. If d(n) denotes the number of positive divisorsmthen

d(n) = (@+1)(a+1)---(a+1).

245 Example (AHSME 1977) How many paths consisting of a sequence of horizontal anéftical line segments, each segment connecting
a pair of adjacent letters in figufel spell CONTEST

C C

CcC O C c O

C ON OC C O N
C ONT N OC C ONT

C ONTE S E TN OC C ONT E S

C ONTE ST S TENOTC C ONTE ST

Figure 6.1: Problen245. Figure 6.2: Problen245.

Solution: Split the diagram, as in figue2. Since every required path must use the bottom rightve count paths starting from this
and reaching up to &. Since there are six more rows that we can travel to, and siheach stage we can go either up or left, we have

2% — 64 paths. The other half of the figure will provide 64 more patince the middle column is shared by both halves, we hasledf
64+ 64— 1 =127 paths.

246 Example The integers from 1 to 1000 are written in succession. Fiedstim of all the digits.

Solution: When writing the integers from 000 to 999 (withe@rdigits), 3x 1000= 3000 digits are used. Each of the 10 digits is used an
equal number of times, so each digit is used 300 times. Theutmeof the digits in the interval 000 to 999 is thus

(0+142+43+4+5+6+7+8+9)(300) = 13500

Therefore, the sum of the digits when writing the integeosfrl to 1000 is 13508 1 = 13501.

Aliter: Pair up the integers from 0 to 999 as
(0,999, (1,9998), (2,997), (3,996), ...,(499500).
Each pair has sum of digits 27 and there are 500 such pairsngddor the sum of digits of 1000, the required total is

27-500+1=13501
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247 Example The strictly positive integers are written in succession
1,2,3,4,5,6,7,8,9,10,11, 12,13 14,15,16,17,18,19,20, ...

Which digit occupies the 3000-th position?
Solution: Upon using

9-1=9 1-digit integers,
90-2=180 2-digit integers,
900-3=2700 3-digit integers,
a total of H 180+ 2700= 2889 digits have been used, so the 3000-th digit must betoagltdigit integer. There remains to use

3000—2889= 111 digits, and 11% 4-27+ 3, so the 3000-th digit is the third digit of the 28-th 4-digiteger, that is, the third digit of
4027, namely 2.

6.2 Combinatorial Methods

Most counting problems we will be dealing with can be classifinto one of four categories. We explain such categorieadgns of an
example.

248 Example Consider the sefta, b, c,d}. Suppose we “select” two letters from these four. Dependimgur interpretation, we may obtain
the following answers.

O Permutations with repetitions. Theorder of listing the letters is important, ardpetition isallowed. In this case there are4l= 16
possible selections:

aa| ab | ac | ad

ba | bb | bc | bd

ca|cb|cc|cd

da | db | dc | dd

O Permutations without repetitions. Theorder of listing the letters is important, andpetition is notallowed. In this case there are
4.3 =12 possible selections:

ab | ac | ad

ba bc | bd

ca|cb cd

da| db| dc

0 Combinations with repetitions. Theorder of listing the letters i:mot important, andepetition is allowed. In this case there are
4.3 . .
> +4 =10 possible selections:

aa|ab| ac| ad

bb | bc | bd

cc | cd

dd
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O Combinations without repetitions. The order of listing the letters isiot important, andepetition is noallowed. In this case there

4.3 . .
areT = 6 possible selections:

ab

ac

ad

bc

bd

cd

We will now consider some examples of each situation.

6.2.1 Permutations without Repetitions

249 Definition We define the symbol ! (factorial), as follows: €!1, and for integen > 1,

n! is readn factorial.

250 Example We have

n=1.2-3---n
11 = 1
21 = 1.2=2
31 = 1.2.3=86,
41 = 1.2.3-4=24,
5" = 1.2.3-4.5=120

251 Example Write a code fragment to compubé

Solution: The following is an iterative way of solving thisgblem.

252 Definition Letxp,Xo,...,Xn ben distinct objects. Apermutationof these objects is simply a rearrangement of them.

(Algorithm 6.2.1: FACTORIAL(N)
comment: returns f

m—1
whilen>1
(
{'mgn*m

return (m)

-
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253 Example There are 24 permutations of the letterdMAT H, namely

MATH MAHT MTAH MTHA MHTA MHAT
AMTH AMHT ATMH ATHM AHTM AHMT
TAMH TAHM TMAH TMHA THMA THAM

HATM HAMT HTAM HTMA HMTA HMAT

254 Theorem LetXxy,Xo,..., Xy bendistinct objects. Then there anepermutations of them.

Proof: The first position can be chosen in n ways, the second object ihways, the third in n- 2, etc. This gives
nin—1)(n—2)---2-1=nl.

O

255 Example Write a code fragment that prints all of the set{1,2,...,n}.

Solution: The following programme prints them in lexicogfnécal order. We use exampl&8 and23.

(Algorithm 6.2.2: PERMUTATIONS(N)

k—n-1

while X[K] > X[k—1]

{k<— k-1

t—k+1

while ((t < n) and (X[t +1] > X[K]))

{t —t+1

comment:now Xk+1] > ... > X[t] > X[K > X[t+1] > ... > X[n]
SwagX[K, X[t)

comment:now Xk+1] > ... > X[n]

ReverseArragX[k+1],...,X[n])

256 Example A bookshelf contains 5 German books, 7 Spanish books andr®frlmoks. Each book is different from one another.

O How many different arrangements can be done of these O How many different arrangements can be done of these books
books? if all the French books must be next to each other?
O How many different arrangements can be done of these bpoksd How many different arrangements can be done of these books
if books of each language must be next to each other? if no two French books must be next to each other?
Solution:
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O We are permuting 5 7+ 8 = 20 objects. Thus the number
arrangements sought is 28!12432902008176640000.

0 “Glue” the books by language, this will assure that books
the same language are together. We permute the 3 langu
in 3! ways. We permute the German books in 5! ways, the

Spanish books in 7! ways and the French books in 8! way$

Hence the total number of ways is 3!5!7!8!146313216000

Align the German books and the Spanish books first. Pultt|
these 5+ 7 = 12 books creates 121 = 13 spaces (we counf
the space before the first book, the spaces between book
the space after the last book). To assure that all the Frend
books are next each other, we “glue” them together and p
them in one of these spaces. Now, the French books can
permuted in 8! ways and the non-French books can be

—

)

=

hges

>

g

and
h
it

be

permuted in 12! ways. Thus the total number of permutati

pns

(13)8112! = 251073478656000

Align the German books and the Spanish books first. Putting
these 57 = 12 books creates 121 = 13 spaces (we count
the space before the first book, the spaces between books and
the space after the last book). To assure that no two French
books are next to each other, we put them into these spaces.
The first French book can be put into any of 13 spaces, the
second into any of 12, etc., the eighth French book can be put
into any 6 spaces. Now, the non-French books can be
permuted in 12! ways. Thus the total number of permutations
is

(13)(12)(11)(10)(9)(8)(7)(6)12!,
which is 24856274386944000

257 Example Determine how many 3-digit integers written in decimal tiotado not have a 0 in their decimal expansion. Also, find the

sum of all these 3-digit numbers.

Solution: There are 9-9 = 729 3-digit integers not possessing a 0 in their decimal esipa. If 10+ 10y+ z is such an integer, then
given for every fixed choice of a variable, there ar®9- 81 choices of the other two variables. Hence the requiredisum

81(1+ 2+ +9)100+81(1+ 2+ +9)10+81(1+2+-+9)1 — 404595

258 Example Determine how many 3-digit integers written in decimal tiota possess at least one 0 in their decimal expansion. \What i

the sum of all these integers.

Solution: Using exampl@57, there are 906 729= 171 such integers. The sumalf the three digit integers is

100+ 101+--- +998+999

To obtain this sum, observe that there are 900 terms, angdhatbtain the same sum adding backwards as forwards:

S = 100 + 101 + + 999
S = 999 + 998 + + 100
2S = 1099 + 1099 + + 1099
= 9001099,
giving S= w = 494550. The required sum is 49455@04595= 89955.

6.2.2 Permutations with Repetitions

We now consider permutations with repeated objects.

259 Example In how many ways may the letters of the word

MASSACHUSETTS

be permuted?

Solution: We put subscripts on the repeats forming

MA;SiSACHUSETI LS.
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There are now 13 distinguishable objects, which can be pedrin 13! different ways by Theorefb4. For each of these 13! permutations,
A1A, can be permuted in 2! way$; S,S53$, can be permuted in 4! ways, afigl, can be permuted in 2! ways. Thus the over count 13! is
corrected by the total actual count
13!
214121
A reasoning analogous to the one of exanf{ié, we may prove

= 64864800

260 Theorem Let there bek types of objectsn; of type 1;n, of type 2; etc. Then the number of ways in which thege-ny + - - - +ng
objects can be rearranged is

(N +np+---4ny)!
nlnpt--on!

261 Example In how many ways may we permute the letters of the WaRISSACHU SET Tia such a way thatlASSis always together,
in this order?

Solution: The particléMASScan be considered as one block and the 9 lefe@& H,U, S E, T, T,S InA C,H, U, S E, T, T, Sthere are
four Ss and twoT’s and so the total number of permutations sought is

10!

262 Example In how many ways may we write the number 9 as the sum of threiéy@omteger summands? Here order counts, so, for
example, 17+ 1 is to be regarded different from71+ 1.

Solution: We first look for answers with
at+b+c=91<a<hb<c<7

and we find the permutations of each triplet. We have

(a,b,c) | Number of permutations
3!
(L17)| 5 =3
(1,2,6) | 31=6
(1,3,5) | 3l=6
3!
(1,4,4) 21— 3
3!
(2,2,5) o = 3
(2,3,4) | 3l=6
3!
(3,3,3 3= 1

Thus the number desired is
3+6+6+3+3+6+1=28

263 Example In how many ways can the letters of the wdWdURMUR be arranged without letting two letters which are alike come
together?

Solution: If we started with, sayMU then theR could be arranged as follows:

M]lU|R R )
M]lU|R R |
MU R R
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In the first case there are 2! 2 of putting the remainingyl andU, in the second there are 2!2 and in the third there is only 1!. Thus
starting the word witiMU gives 2+ 2+ 1 = 5 possible arrangements. In the general case, we can chieoBest letter of the word in 3
ways, and the second in 2 ways. Thus the number of ways saigh2i5 = 30.

264 Example In how many ways can the letters of the w&BFECTION be arranged, keeping the vowels in their natural order ahd no
letting the twoF’s come together?

|
Solution: There ar% ways of permuting the letters &FFECTION . The 4 vowels can be permuted in 4! ways, and in only one ofthes

|
will they be in their natural order. Thus there 35?94—' ways of permuting the letters 8fFFECTION in which their vowels keep their
natural order. o

Now, put the 7 letters dAFFECTION which are not the twé's. This creates 8 spaces in between them where we put thE'swdhis

. 8.7! .
means that there are 8! permutations oAFFECTION that keep the twé's together. Hence there are4l— permutations of
AFFECTION where the vowels occur in their natural order. '

In conclusion, the number of permutations sought is

o 8.7 8 (9 87.6:541 7
(3-1) = =55 —s880

241 4 4

2
6.2.3 Combinations without Repetitions

265 Definition Let n,k be non-negative integers with<0k < n. The symbol(E) (read 'h choose X is defined and denoted by

ny nl _n-(n—-1)-(n-2)---(n—k+1)
<k>_k!(nfk)! N 1.2-3---k ’

|:| Observe that in the last fraction, there are k factors in bibth numerator and denominator. Also, observe the boundary

conditions (8) _ (:) . (2) _ (nfl) —n.

266 Example We have

© - #i-2

#) - 4p-ss
GEEEE - e
(o9 = 110

) = 1

|:| Since n- (n—k) =k, we have for integer,k, 0 < k < n, the symmetry identity

<E> B k!(nnik)! B (n—k)!(nni (n—K) <nik> '

This can be interpreted as follows: if there are n differéckets in a hat, choosing k of them out of the hat is the same as
choosing n- k of them to remain in the hat.

267 Example
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268 Definition Let there ben distinguishable objects. k-combinationis a selection ok, (0 < k < n) objects from thex made without
regards to order.

269 Example The 2-combinations from the lig,Y,Z W} are

XY, XZ,XW,Y ZYWW Z

270 Example The 3-combinations from the lig,Y,Z W} are

XYZXYWXZW.YWZ
271 Theorem Let there ben distinguishable objects, and letO < k < n. Then the numbers d¢fcombinations of these objects is(E) .

Proof: Pick any of the k objects. They can be ordered(im-a1)(n—2)--- (n—k+ 1), since there are n ways of choosing the
first, n— 1 ways of choosing theecondetc. This particular choice of k objects can be permuted iwdys. Hence the total

number of k-combinations is
nn-1)(n—-2)---(n—k+1) (n)
ki T \k/®

O

272 Example From a group of 10 people, we may choose a committee of@%) =210 ways.

273 Example Three different integers are drawn from the §&2,...,20}. In how many ways may they be drawn so that their sum is
divisible by 3?

Solution: In{1,2,...,20} there are

6 numbers leaving remainder O
7 numbers leaving remainder 1
7 numbers leaving remainder 2
The sum of three numbers will be divisible by 3 when (a) theghmumbers are divisible by 3; (b) one of the numbers is @iy 3, one

leaves remainder 1 and the third leaves remainder 2 uposiativby 3; (c) all three leave remainder 1 upon division byd}all three leave
remainder 2 upon division by 3. Hence the number of ways is

(6)+ (DD )+ () + () -

Figure 6.3: Exampl@74. Figure 6.4: Exampl@75
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274 Example To count the number of shortest routes fréro B in figure 6.3 observe that any shortest path must consist of 6 horizontal
moves and 3 vertical ones for a total o8 = 9 moves. Of these 9 moves once we choose the 6 horizontal lem&svertical ones are
determined. Thus there a(é) = 84 paths.

275 Example To count the number of shortest routes fréro B in figure 6.4 that pass through poif@ we count the number of paths from
Ato O (of which there are(g) = 20) and the number of paths froto B (of which there are(g) = 4). Thus the desired number of paths is

(3) (3) = (20(4) = 80.

6.2.4 Combinations with Repetitions
276 Theorem (De Moivre) Letn be a positive integer. The number of positive integer sohgito

X1+Xo+--+X%=n
(+-)
r—-1/)°

Proof: Write n as
n=1+1+---+1+1

where there are n 1s and-nl +s. To decompose n in r summands we only need to cheedeluses from the a 1, which
proves the theorentl

277 Example In how many ways may we write the number 9 as the sum of threidyeomteger summands? Here order counts, so, for
example, &7+ 1 is to be regarded different from71+ 1.

Solution: Notice that this is exampk52. We are seeking integral solutions to

at+b+c=9, a>0b>0,c>0.

(522)=(3)=2

278 Example In how many ways can 100 be written as the sum of four posititegier summands?

By Theorem276this is

Solution: We want the number of positive integer solutians t

a+b+c+d =100

(99> = 156849

which by Theoren276is

3

279 Corollary Letn be a positive integer. The number of non-negative integetisas to

Yi+Yy2+---+¥%=n
<n+r—1>
r-1 )°

X1—1+x—1+---+X%—1=n

Proof: Putx —1=y;. Then x> 1. The equation

is equivalent to
Xp+Xp+- X =N+,

(n+r—1>
r—1
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280 Example Find the number of quadrupléa, b, c,d) of integers satisfying

a+b+c+d=100 a>30b>21c>1d>1

Solution: Pua +29 = a, b/ + 20 = b. Then we want the number of positive integer solutions to
a+29+b' +21+c+d =100

or
a+b+c+d=50

49
< 3> =18424

By Theorem276this number is

281 Example In how many ways may 1024 be written as the product of thregip@itegers?

Solution: Observe that 1024 210. We need a decomposition of the fordf2= 222b2¢| that is, we need integers solutions to
a+b+c=10, a>0b>0,c>0.

By Corollary279there are(m;fl’l) = (122) = 66 such solutions.

282 Example Find the number of quadrupléa, b, c,d) of non-negative integers which satisfy the inequality

a+b+c+d <2001

Solution: The number of non-negative solutions to
a+b+c+d <2001

equals the number of solutions to
a+b+c+d+ f=2001

wheref is a non-negative integer. This number is the same as theemnwfipositive integer solutions to
ag—1+by—1+c—1+d;—1+f; —1=2001

which is easily seen to b(gz%os)_

6.3 Inclusion-Exclusion

The Sum Rul@40gives us the cardinality for unions of finite sets that areually disjoint. In this section we will drop the disjointrees
requirement and obtain a formula for the cardinality of msiof general finite sets.

The Principle of Inclusion-Exclusion is attributed to b&jlvester and to Poincaré.
283 Theorem (Two set Inclusion-Exclusion)
card(AUB) = card(A) + card(B) — card(ANB)
Proof: Inthe Venn diagrant.5, we mark by Rthe number of elements which are simultaneously in both(isetsin AN B),

by R the number of elements which are in A but not in B (i.e., B} and by B the number of elements which are B but not
in A (i.e., in B\ A). We have R+ Ry + Rs = card(AUB), which proves the theorerl

284 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also knowvirlthhoth smoke and chew. How many among the 40
neither smoke nor chew?

Solution: LetA denote the set of smokers aBdhe set of chewers. Then

card(AUB) = card(A) + card(B) — card(ANB) = 28+ 16— 10 = 34,

67



68 Chapter 6

meaning that there are 34 people that either smoke or chepoésibly both). Therefore the number of people that negh@ske nor chew
is 40— 34=6.

Aliter: We fill up the Venn diagram in figuré.6 as follows. SincéANB| = 8, we put an 10 in the intersection. Then we put a-2% = 18
in the part thaA does not overlaB and a 16- 10 = 6 in the part ofB that does not overlap. We have accounted for 1018+ 6 = 34
people that are in at least one of the set. The remaining3®= 6 are outside the sets.

A B A B

Figure 6.5: Two-set Inclusion-Exclusion Figure 6.6: Exampl@84.

285 Example Consider the set
A={2,46,...,114}.

How many elements are thereA?

How many are divisible by 3?

How many are divisible by 5?

How many are divisible by 15?

How many are divisible by either 3, 5 or both?

How many are neither divisible by 3 nor 5?

O O o0ooooodg

How many are divisible by exactly one of 3 or 5?

Solution: LetAz C A be the set of those integers divisible by 3 @adc A be the set of those integers divisible by 5.
O Notice that the elements are=22(1), 4= 2(2), ..., 114=2(57). Thus cardA) = 57.
O There are{%ﬂ =19 integers imA divisible by 3. They are

{6,1218,...,114}.

Notice that 114= 6(19). Thus cardAz) = 19.
O There are[%j = 11 integers irA divisible by 5. They are

{10,20,30,....,110}.

Notice that 110= 10(11). Thus cardAs) = 11

O There arq?—gj = 3integers inA divisible by 15. They ar¢30,60,90}. Notice that 90= 30(3). Thus cardA;5) = 3, and observe that
by Theoren?? we have cardA;5) = card(Az N As).

O We want cardAz UAs) = 19+ 11 = 30.

O We want
card(A\ (A3UAs)) = card(A) — card(AzUAs) =57—30= 27.
0 We want
card((A3UAs) \ (Ag3NAs)) = card((AzUAs)) —card(AzNAs)
= 30-3
= 27
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286 Example How many integers between 1 and 1000 inclusive, do not shemenanon factor with 1000, that is, are relatively prime to
10007

Solution: Observe that 1009 2353, and thus from the 1000 integers we must weed out those tiatshtactor of 2 or of 5 in their prime

factorisation. IfA, denotes the set of those integers divisible by 2 in the iat¢ty1000Q then clearly cardA;) = L@J = 500. Similarly,

if A5 denotes the set of those integers divisible by 5 then (@)= L?j = 200. Also cardA; NAs) = [%)j = 100. This means that

there are carP; UAs) = 500+ 200— 100 = 600 integers in the intervél; 1000 sharing at least a factor with 1000, thus there are
1000 600= 400 integers if1; 1000 that do not share a factor prime factor with 1000.

We now derive a three-set version of the Principle of IndogExclusion.

Figure 6.7: Three-set Inclusion-Exclusion

287 Theorem (Three set Inclusion-Exclusion)

cardAUBUC) = card(A)+card(B) +card(C)
—card(ANB) —card(BNC) —card(CNA)

+card ANBNC)

Proof: Using the associativity and distributivity of unions ofssete see that

card AUBUC) card(AU (BUCQC))
= card(A) +card(BUC) —card(An (BUC))
= card(A) + card(BUC) — card((ANB) U (ANC))
= card(A)+ card(B) + card(C) — card(BNC)

—card(ANB) —card(ANC)

+card((ANB) N (ANC))
= card(A)+ card(B) + card(C) — card(BNC)

— (card(ANB) +card(ANC) —card ANBNC))
= card(A)+card(B) + card(C)

—card(ANB) —card(BNC) —card(CNA)

+card(ANBNC).
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This gives the Inclusion-Exclusion Formula for three s&se also figuré.7.
a

Observe that in the Venn diagram in figuié there are 8 disjoint regions (the 7 that foArw BUC and the outside region, devoid of any
element belonging tAUBUC).

288 Example How many integers between 1 and 600 inclusive are not dleisif neither 3nor 5, nor 7?

Solution: LetAy denote the numbers {i; 600 which are divisible byk = 3,5,7. Then

cardiAs) = [%°] = 200
cardAs) = (%] = 120
cardA;) = [%9] = 85
cardAis) = |§9) = 40
card(Ap;) = (8P = 28
cardAgs) = (8P = 17
card(Aps) = (53] = 5

By Inclusion-Exclusion there are 260120+ 85— 40— 28— 17+ 5 = 325 integers iri1; 600 divisible by at least one of 3, 5, or 7. Those
not divisible by these numbers are a total of 60825= 275

withouta 9

@ @&
) N

withouta 7 withoutan 8

Figure 6.8: Exampl@89. Figure 6.9: Exampl€90.

289 Example In a group of 30 people, 8 speak English, 12 speak SpanishGsapebk French. It is known that 5 speak English and
Spanish, 5 Spanish and French, and 7 English and French.uhhigen of people speaking all three languages is 3. How mamptispeak
any of these languages?

Solution: LetA be the set of all English speakeBsthe set of Spanish speakers @the set of French speakers in our group. We fill-up the
Venn diagram in figur®.8 successively. In the intersection of all three we put 8. lnrsgion common té andB which is not filled up we
put 5—2 = 3. In the region common t& andC which is not already filled up we put-53 = 2. In the region common tB andC which is

not already filled up, we put 3 = 4. In the remaining part oA we put 82— 3—2 =1, in the remaining part oB we put

12— 4—-3-2 =3, and in the remaining part & we put 10- 2—3—4 = 1. Each of the mutually disjoint regions comprise a total of
1+2+3+4+1+2+3 =16 persons. Those outside these three sets are thed®6- 14.

290 Example Consider the set of 5-digit positive integers written inided notation.

1. How many are there? 4. How many have exactly one 9?
2. How many do not have a 9 in their decimal representationf? 5. How many have exactly two 9's?

3. How many have at least one 9 in their decimal representajio 6. How many have exactly three 9's?
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How many have exactly four 9's?
How many have exactly five 9's?

How many have neither an 8 nor a 9 in their decimal
representation?

©

Solution:

1. There are 9 possible choices for the first digit and 10 ptsdi
choices for the remaining digits. The number of choices ig
thus 9 10* = 90000.

. There are 8 possible choices for the first digit and 9 ptessilp
choices for the remaining digits. The number of choices ig

10.

11.

How many have neither a 7, nor an 8, nor a 9 in their decimal
representation?

How many have either a 7, an 8, or a 9 in their decimal
representation?

place can be accomplished @) = 6 ways. The other two
remaining digits must be different from 9, giving & = 486
such numbers. If the first digit is not a 9, then there are 8
choices for this first digit. Also, we ha éﬂ = 4 ways of
choosing where the three 9's will be, and we have 9 ways of

filling the remaining spot. Thus in this case there are

8-4-9 = 288 such numbers. Altogether there are

486+ 288= 774 five-digit positive integers with exactly three
9's in their decimal representation.

thus 8 9* = 52488.
3. The difference 90000 52488= 37512

. We condition on the first digit. If the first digit is a 9 thdret
other four remaining digits must be different from 9, giving
9* = 6561 such numbers. If the first digit is not a 9, then there
are 8 choices for this first digit. Also, we haﬁ?ﬁ: 4 ways
of choosing where the 9 will be, and we ha ys of
filling the 3 remaining spots. Thus in this case there are
8-4-9% = 23328 such numbers. In total there are
6561+ 23328= 29889 five-digit positive integers with
exactly one 9 in their decimal representation.

. Ifthe first digit is a 9 then three of the remaining four minst
9's, and the choice of place can be accomplishe@)n: 4
ways. The other remaining digit must be different from 9,
giving 4- 9 = 36 such numbers. If the first digitis nota 9,
then there are 8 choices for this first digit. Also, we have

f{ = 4 ways of choosing where the four 9's will be, thus
filling all the spots. Thus in this case there are 8 8 such
numbers. Altogether there are 3@ = 44 five-digit positive

. We condition on the first digit. If the first digit is a 9 theneo integers with exactly three 9s in their decimal represtiota

of the remaining four must be a 9, and the choice of place|can 8.
be accomplished iI@) = 4 ways. The other three remaining
digits must be different from 9, giving-4® = 2916 such
numbers. If the first digit is not a 9, then there are 8 choicq
for this first digit. Also, we have(g) = 6 ways of choosing

There is obviously only 1 such positive integer.

|:| Observe that
37512= 29889+ 6804+ 774+ 44+ 1.

(2]

where the two 9's will be, and we havé @ays of filling the 9. We have 7 choices for the gZSt digit and 8 choices for the
two remaining spots. Thus in this case there are remaining 4 digits, giving 78" = 28672 such integers.
8-6-92 = 3888 such numbers. Altogether there are 10. We have 6 choices for the first digit and 7 choices for the
2916+ 3888= 6804 five-digit positive integers with exactly remaining 4 digits, giving 674 = 14406 such integers.
two 9's in their decimal representation. 11. We use inclusion-exclusion. From figue, the numbers

. Again we condition on the first digit. If the first digitis a 9
then two of the remaining four must be 9's, and the choice|

inside the circles add up to 85854. Thus the desired humber is
90000 85854= 4146

of

291 Example

How many integral solutions to the equation
a+b+c+d =100

are there given the following constraints:
1<a<10, b>0,c>220<d<30?

Solution: We use Inclusion-Exclusion. There ié?g) = 82160 integral solutions to

a+b+c+d=100 a>1,b>0,c>2d>20.

Let A be the set of solutions with
a>11b>0,c>2,d> 20

andB be the set of solutions with
a>1b>0c>2d>31

Then cardA) = (730) card(B) = (%9), card ANB) = (539) and so
card(AUB) = <730> + (29> -

a+b+c+d=100

59
< 3> = 74625

The total number of solutions to
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with
1<a<10, b>0,¢c>220<d<30
's thus 80 70 69 59
<3>*<3>*<3>+<3> =75%
Homework

292 Problem Telephone numbers iband of the Flying Camelsave 7 digits, and the only digits available 4621,2,3,4,5,7,8}. No
telephone number may begin in 0, 1 or 5. Find the number gblelee numbers possible that meet the following criteria:

O You may repeat all digits.

O You may not repeat any of the digits.

O You may repeat the digits, but the phone number must be even.
O You may repeat the digits, but the phone number must be odd.

O You may not repeat the digits and the phone numbers must be odd

293 Problem The number 3 can be expressed as a sum of one or more posiggeris in four ways, namely, as 3+2, 2+ 1, and
1+1+1. Shew that any positive integeican be so expressed iA2 ways.

294 Problem Let n= 231319, How many positive integer divisors of are less than but do not dividen?

295 Problem In how many ways can one decompose the set
{1,2,3,...,100}
into subset#\, B, C satisfying
AUBUC={1,2,3,...,100} and ANBNC =27

296 Problem How many two or three letter initials for people are avaigiblat least one of the letters must be a D and one allows
repetitions?

297 Problem How many strictly positive integers have all their digitstitict?
298 Problem To write a book 1890 digits were utilised. How many pages dbe$ook have?

299 Problem The sequence of palindromes, starting with 1 is written ¢eading order
1,2,3,4,5,6,7,8,9,11,22,33 ...

Find the 1984-th positive palindrome.

300 Problem (AIME 1994) Given a positive integen, let p(n) be the product of the non-zero digitsrf(If n has only one digit, thep(n)
is equal to that digit.) Let
S=p(1)+p(2)+---+ p(999.

FindS.

301 Problem In each of the 6-digit numbers
333333225522118818707099

each digit in the number appears at least twice. Find the ruwitsuch 6-digit natural numbers.

302 Problem In each of the 7-digit numbers
1001011555000038383837777777

each digit in the number appears at least thrice. Find thebeuwf such 7-digit natural numbers.
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303 Problem Would you believe a market investigator that reports thdtQsfO people, 816 like candy, 723 like ice cream, 645 cakdgwhi
562 like both candy and ice cream, 463 like both candy and, @géi&both ice cream and cake, while 310 like all three? Statie geasons!

304 Problem A survey shews that 90% of high-schoolers in Philadelphia dit least one of the following activities: going to the nemsyi
playing sports, or reading. It is known that 45% like the nesyi48% like sports, and 35% like reading. Also, it is knowat t12% like both
the movies and reading, 20% like only the movies, and 15% i@@ging. What percent of high-schoolers like all threevites?

305 Problem An auto insurance company has @00 policyholders. Each policy holder is classified as

e young or old,
e male or female, and
e married or single.

Of these policyholders, 3000 are young, 4600 are male, add &@& married. The policyholders can also be classified 28 y8ung males,
3010 married males, and 1400 young married persons. FiB@fyof the policyholders are young married males.

How many of the company’s policyholders are young, femaid, single?

306 Problem In Medieval Highthere are forty students. Amongst them, fourteen like Mattés, sixteen like theology, and eleven like
alchemy. It is also known that seven like Mathematics andltdgy, eight like theology and alchemy and five like Matheiogand alchemy.
All three subjects are favoured by four students. How manglestts like neither Mathematics, nor theology, nor alchgmy

307 Problem (AHSME 1991) For a sefS, letn(S) denote the number of subsetsfif A,B,C, are sets for which
n(A)+n(B) +n(C) =n(AUBUC) and cardA) = card(B) = 100,
then what is the minimum possible value of ceédhBNC)?

308 Problem (Lewis Carrollin A Tangled Tale.) In a very hotly fought battle, at least 70% of the combatamgs n eye, at least 75% an
ear, at least 80% an arm, and at least 85% a leg. What can batsaitithe percentage who lost all four members?

Answers

292 We have

This is 5 85 = 1310720.

Thisis 57-6-5-4-3-2 = 25200.

This is 5 8% 4 = 655360.

This is 5 8°- 4 = 655360.

We condition on the last digit. If the last digit were 1 or 5thee would have 5 choices for the first digit, and so we wouldcehav

O o0ooo o

5.6-5-4-3.2.-2=7200

phone numbers. If the last digit were either 3 or 7, then welavbave 4 choices for the last digit and so we would have
4.6-5-4-3-2.2=5760

phone numbers. Thus the total number of phone numbers is

7200+ 5760= 12960

293 n=1+1+---41. One either erases or keeps a plus sign.
N————’
n—-1+'s
294 There are 589 such values. The easiest way to see this is¢ovelibat there is a bijection between the divisors?aivhich are> n

and those< n. For if n? = ab, with a > n, thenb < n, because otherwis® = ab> n-n = n?, a contradiction. Also, there is exactly one
decompositiom? = n-n. Thus the desired number is

ELaTRPRTL T TP
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295 The conditions of the problem stipulate that both the regiatside the circles in diagrat7 andR3 will be empty. We are thus left
:/;/itﬁq()% regions to distribute 100 numbers. To each of the 100bers we may thus assign one of 6 labels. The number of setsatjuired
296 (262 —2%7) + (26° — 25%) = 2002
297
9+9-9

+9-9-8+9-9-8-7

+9-9-8-7-6+9:-9-8-7-6-5

4+9-9-8.7-6-5-449-9.8-7-6-5-4-3

+9:9-8.7-6-5-4-3-2

4+9.9-8:7-6-5:4.3.2-1

= 8877690

298 A total of
1.9+2.-90=189

digits are used to write pages 1 to 99, inclusive. We have 8018189 = 1701 digits at our disposition which is enough for 178% 567
extra pages (starting from page 100). The book has 987 = 666 pages.

299 It is easy to see that there are 9 palindromes of 1-digit, Bigadmes with 2-digits, 90 with 3-digits, 90 with 4-digi00 with 5-digits
and 900 with 6-digits. The last palindrome with 6 digits, 999, constitutes the-9 9+ 90+ 90+ 900+ 900 = 1998th palindrome. Hence,
the 1997th palindrome is 998899, the 1996th palindrome 7§99, the 1995th palindrome is 996699, the 1994th is 995&89, until we
find the 1984th palindrome to be 985589.

300 If x=0, putm(x) = 1, otherwise pun(x) = x. We use three digits to label all the integers, from 000 to 920, c are digits, then
clearly p(100a+ 10b+ ¢) = m(a)m(b)m(c). Thus

p(000) + - - - + p(999) = m(0)m(0)m(0) + - - - +m(9)M(9)m(9),

which in turn
= (m(0)+m(1)+-~-+m(9))3
= (14+1+2+---49)3
= 46
= 97336
Hence
S = p(002)+ p(002) +--- + p(999)

= 97336 p(000)
—  97336-m(0)m(0)m(0)
= 97335

301 The numbers belong to the following categories: (1) all dgitd are identical; (11) there are exactly two differengits used, three of
one kind, three of the other; (l11) there are exactly twoeliént digits used, two of one kind, four of the other; (IV)rhare exactly three
different digits used, two of each kind.

There are clearly 9 numbers belonging to category (I). Tawtthe numbers in the remaining categories, we must contlidazases when
the digit 0 is used or not. If 0 is not used, then there (3}

=720 integers in category (I1)3) () - o

e ﬁ = 1080 integers in category
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| |
(11); and (g) . % = 7560 integers in category (V). If 0 is used, then the integeay not start with 0. There a(é) . % =90in

category (l1) ;(?) -( = 3240 in category (IV). Thus there are altogether

51 51
+ )2 Tiom

! B . . 9
Tiai =135 in category (Ill) ; anc(2

AL
9+ 720+ 1080+ 7560+ 90+ 135+ 3240= 12834

such integers.

302 The numbers belong to the following categories: (1) all sedigits are identical; (Il) there are exactly two differgigits used, three of
one kind, four of the other.

There are clearly 9 numbers belonging to category (I). Toitthe numbers in the remaining category (Il), we must candige cases when

|
the digit O is used or not. If 0 is not used, then there@e(f) . % = 2520 integers in category (II). If 0 is used, then the intsgaay not

| |
start with 0. There arﬁ) . % + (f) . % = 315 in category (ll). Thus there are altogether 25215+ 9 = 2844 such integers.

303 LetC denote the set of people who like cantiyhe set of people who like ice cream, adldlenote the set of people who like cake. We

are given that car(C) = 816, cardl) = 723, cardK) = 645, cardCn 1) = 562, cardCNK) = 463, cardl NK) = 470, and
card(CN1NK) = 310. By Inclusion-Exclusion we have

cardCUlUK) = card(C)+card(l)+ card(K)
—card(Cnl)—card(CNK) —card(l NC)
+card(CnlINK)
= 816+ 723+ 645—562—463—-470+310
= 999

The investigator miscounted, or probably did not report peeson who may not have liked any of the three things.

304 We make the Venn diagram in as in figus€.0. From it we gather the following system of equations

X +y + z + 20 = 45
X + z + t + u = 48
X + Y + t + 15 = 35
X +y = 12
X +y 4+ z + t + u + 15 + 20 = 90

The solution of this system is seen tosbe 5, y=7,z= 13,t = 8, u= 22. Thus the percent wanted is 5%.

305 LetY,F,S M stand for young, female, single, male, respectively, ahMkestand for married. We have

cardYNFNS) = cardYNF)—cardlYNFNMa)
= card(Y)—card(YNM)
—(card(Y "Ma) — card(Y nManM))
= 3000-— 1320 (1400 600

= 880
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306 Let A be the set of students liking MathematiBsthe set of students liking theology, aBdbe the set of students liking alchemy. We

are given that
card(A) = 14, card(B) = 16,card(C) = 11,card(ANB) = 7,card(BNC) = 8,card(ANC) = 5,

and
cardANBNC) =4.

By the Principle of Inclusion-Exclusion,
card(CANCBNCC) = 40— card(A) —card(B) — card(C) + card(ANB) + card(ANC) + card(BNC) — card(ANBNC)
Substituting the numerical values of these cardinalities
40-14—-16—-11+7+5+8-4=15
307 A set withk elements has*Xifferent subsets. We are given

2100 + 2100 + 2carc(C) _ 2carc(AuBuC).

This forces car¢C) = 101, as 1+ 2¢@dC)~101s |arger than 1 and a power of 2. Hence q@d BUC) = 102. Using the Principle
Inclusion-Exclusion, since café) + card(B) + card(C) — card AUBUC) = 199,

card ANBNC) card(ANB) +card(ANC) +card(BNC) — 199

= (card(A)+ card(B) — card(AUB)) + (card(A) + card(C) — card(AUC))
+(card(B) +card(C) — card(BUC)) — 199

403— card(AUB) — card(AUC) —card(BUC).

As AUB,AUC,BUC C AUBUC, the cardinalities of all these sets atel02 Thus
card ANBNC) = 403— card(AUB) — card(AUC) — card(BUC) > 403—3-102=97.

The example
A={12,...,100},B={3,4,...,102},

and
C=1{1,2,3,4,5,6,...,101 102}

shews that car®ANBNC) = card({4,5,6,...,100}) = 97 is attainable.

308 Let A denote the set of those who lost an eg&lenote those who lost an e@rdenote those who lost an arm addienote those losing
a leg. Suppose there aneeombatants. Then

n > cardAUB)
= card(A) +card(B) — card(ANB)

= .7n+.75n—card(ANB),

n > cardCuD)
= card(C)+card(D) —card(CND)

.8n+.85n—card(CND).

This gives
card(ANB) > .45n,

cardCnD) > .65n.
This means that

n > card((ANB)U(CND))

= card(ANB)+card(CND)—card ANBNCND)

v

450+ .65n—card(ANBNCND),
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whence

cardANBNCND) > .45+ .65n—n = .1n.

This means that at least 10% of the combatants lost all founlvees.

Sports

Movies

Figure 6.10: Probler04.

Reading
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Chapter

Sums and Recursions

7.1 Famous Sums

To obtain a closed form for
n(n+1)

1+2+---4+n=
+2+4-+ 5

we utilise Gauss’ trick: If
An=1+4243+---+n

then
An=n+(nN-1)+---4+1.

Adding these two quantities,

An = 1 + 2 e+ n
A = n + (-1 + - + 1
2An = (n+1) + (n+1) + -+ + (n+1)
= n(n+1),
since there ara summands. This give&, = n(n2+ o) , that is,
142+ +n= n(”zﬂ). (7.1)
Applying Gauss’s trick to the general arithmetic sum
(a)+(a+d)+(a+2d)+--- + (a+ (n—1)d)
we obtain
(@) +(atd)+(@r2d) - +(at(n1d) = ZTO=Dd (7.2)

2

309 Example Each element of the s¢.0,11,12,...,19,20} is multiplied by each element of the S&1,22,23,...,29 30}. If all these
products are added, what is the resulting sum?

Solution: This is asking for the produ¢t0+ 11+ - - - +20)(21+ 22+ - - - + 30) after all the terms are multiplied. But

10+11+---4+20= (20+10)(1) =165
and 30+21)(10
21422+ +30= % _ 255

The required total i$165)(255) = 42075.
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310 Example Find the sum of all integers between 1 and 100 that leave refeaR upon division by 6.

Solution: We want the sum of the integers of the form+&@,r = 0,1,...,16. But this is

16 16 16

_ ~ 16(17) B
50(6r+2) =6 Eor+ EOZ_GT+2(17) =850
r= r= r=

A geometric progressiois one of the form

aarar?,ars,...,a" 1.,

311 Example Find the following geometric sum:
1+2+4+4---4+1024

Solution: Let
S=1+2+4+---4+1024
Then
25=2+4+8+---+1024+2048
Hence

S=2S-S=(2+4+8---4+2048 — (14+2+4+--- + 1024 = 2048— 1 = 2047

312 Example Find the geometric sum

11 1 1
Solution: We have
1 1 1 1 1
Then
X = x-—3x

From which we gather
T2 239

Let us sum now the geometric series
S=a+tar+ar’+---+ar" L.
Plainly, if r = 1 thenS= na, so we may assume that: 1. We have

rS=ar+ar’+---+ar".

Hence
S—rS=a+ar+ar’+---+ar" t—ar—ar’—...—ar" =a—ar".
From this we deduce that
_a—ar"
11
that is, o
a—ar
atar+---+ar"l= T (7.3)
If [r] <1 thenr" — 0 asn — oo,
For|r| < 1, we obtain the sum of the infinite geometric series
a
a+ar+ar2+~-~:ﬁ (7.4)
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313 Example A fly starts at the origin and goes 1 unit up/2lunit right, 1/4 unit down, ¥8 unit left, 1/16 unit up, etc.ad infinitum.In
what coordinates does it end up?

Solution: Itsx coordinate is

111 3 2
2 8 32 _17%1_5
Itsy coordinate is
1 1,1 1 4
4 16 17*71_5

Therefore, the fly ends up ifZ, 2).

We now sum again of the firstpositive integers, which we have already computed usings&arick.

314 Example Find a closed formula for
An=14+2+---4n.

Solution: Observe that

From this
12 -2 = 2.1-1
22_12 = 2.2-1
3222 = 2.3-1
n—(n-12 = 2.n-1

Adding both columns,

n?—0?=2(142+3+---+n)—n.
Solving for the sum,
n(n+1)

142+43+---+n=n?/24n/2= 5

315 Example Find the sum
12422432440

Solution: Observe that
kK3 —(k—1)%=3k?—3k+1.

Hence
1303 = 3.12-3-1+1
2313 = 3.22-3.2+1
3P¥_23 = 3.32-3.3+1
m—(n-1°% = 3.nP—3.n+1

Adding both columns,
n—08=3(124+224+34...4n?) —3(1+2+3+---+n)+n.
. n(n+1
From the preceding examplef24+3+--- +n=-n?/24+n/2 = % S0

n3703:3(12+22+32+-~-+n2)7g-n(n+1)+n.
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Solving for the sum,
124224324 +n2—n3+1 n(n+1)— 1
T3 2 3
After simplifying we obtain
2421 Pp = 7”(”“)6(2””) (7.5)
316 Example Add the series
CH S —
1.2 2.3 34 99-100°
Solution: Observe that
1 1 1
k(k+1) k k+1’
Thus
1 - 1_1
12 = 172
1 - 1_1
23 = 273
i - 11
34 = 371
1 _ 11
99100 — 99 100
Adding both columns,
4ot 111 9
1.2 2.3 3.4 99-100 ~ 100 100
317 Example Add
CHP SR S
1-4 4.7 7-10 31-34°
Solution: Observe that
1 11 11
(3n+1)-(3n+4) 3 3n+1 3 3n+4
Thus
1 - 1_1
14 = 3712
1 - 1 _ 1
a7 = 12772
1 11
710 — 72130
1 1 1
1013 ~ 30 39
1 - 11
3437 — 1027 11
Summing both columns,
S S S SN SN S -
1-4 4.7 7-10 31.34 3 111 37
318 Example Sum
1 n 1 n 1 T 1
1-4.7 4.7-10 7-10-13 25.28-31°
Solution: Observe that
1 1 1 1 1

(3n+1)-(3n+4)-(3n+7) 6 (Bn+1)(3n+4) 6 (Bn+4)(Bn+7)
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Therefore
1 - 1 _ 1
T47 = ©®14 ®47
1 N N
2710 = 647 6710
1 _ 11
71013 ~— 6710 61013
1 _ 11
252831 ~ 62528 62831
Adding each column,
1 1 1 1 1 1 9

14772710 71013 7252831 614 62831 217

319 Example Find the sum
1.24+2-3+3-4+---+99-100

Solution: Observe that

1 1
k(k+1) = é(k)(k+1)(k+2)f é(kfl)(k)(kqtl).
Therefore
1.2 = %.1.2.3,%.0.1.2
2.3 = %.2.3.4_%.1.2.3
3.4 = %.3.4.5_%.2.3.4
99-100 = 1.99.100-101- 1-98-99-100

Adding each column,
1.2+2-3+3-4+---499-100= % -99-100-101— %-01-2:333300

7.2 First Order Recursions
Theorder of the recurrence is the difference between the highestranbbivest subscripts. For example
Uni2 —Unp1 =2

is of the first order, and

Unsq+ 902 = n°

is of the fourth order.
A recurrence iginear if the subscripted letters appear only to the first power.dxample

Uni2 —Unp1 =2

is a linear recurrence and
X+ n¥%,_1=1 and x,+ 21 =3

are not linear recurrences.
A recursion ishomogeneous all its terms contain the subscripted variable to the sameer. Thus
Xmt3+ 8Xmi2 —Mm =0

is homogeneous. The equation
Xm+3 + 8Xmi2 — OXm = m -3
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is not homogeneous.

A closed fornof a recurrence is a formula that permits us to findritth term of the recurrence without having to know a priori thens
preceding it.

We outline a method for solving first order linear recurrerelations of the form
Xn = a% -1+ f(n)7a5£ 17
wheref is a polynomial.

1. First solve the homogeneous recurrerge: ax,_1 by “raising the subscripts” in the forsd = ax™1. This we call thecharacteristic
equation Cancelling this giveg = a. The solution to the homogeneous equatige= ax,_1 will be of the formx, = Ad", whereA is
a constant to be determined.

2. Test a solution of the form, = Aa" +g(n), whereg is a polynomial of the same degreefas
320 Example LetXy = 7 andx, = 2x,_1,n > 1. Find a closed form foxp.

Solution: Raising subscripts we have the characteristiaggnx” = 2x"~1. Cancellingx = 2. Thus we try a solution of the formy = A2",
wereA is a constant. But % xg = A2° and soA = 7. The solution is thus, = 7(2)".
Aliter: We have

Xx =7

X1 = 2%
X2 = 2X]_
X3 = 2X2
X = X1

Multiplying both columns,
XoX1 -+ Xn = 7- 2nXOX1X2 S Xn_1.
Cancelling the common factors on both sides of the equality,

Xn=7-2".
321 Example LetXp =7 andxn = 2X,—1+1,n > 1. Find a closed form fog,.

Solution: By raising the subscripts in the homogeneoustamuae obtainx” = 2x"~1 or x = 2. A solution to the homogeneous equation
will be of the formx, = A(2)". Now f(n) = 1 is a polynomial of degree 0 (a constant) and so we test acpkaticonstant solutio@. The
general solution will have the formy = A2"+B. Now, 7= xg = A20 + B = A+B. Also, x; = 2Xg+ 7 = 15 and so 15= x; = 2A+B.
Solving the simultaneous equations
A+B=7,

2A+B =15
we findA = 8,B = —1. So the solution i, = 8(2") —1=2"3_1,
Aliter: We have:

X0 = 7

X1 = 2+1
X2 = 2x+1
X3 = 20+1
-1 = p2+1
Xn = Xp-1+1
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Multiply the kth row by 2%, We obtain

2"%g = 2n.7

21 = 2M+2n1
M2 = 21y 4202
M3y = M 2403
2%, 5 = Bx_3+22
g1 = 2% o+2

Xn = -1 +1

Adding both columns, cancelling, and adding the geometnig,s
Xn=7-2"4+(1+2+22 ... 42" =7. 242N 1 =23 _1

Aliter: Letun =Xn+1=2x3_1+2=2(X,—1+ 1) = 2u,_1. We solve the recursiomn, = 2u,_; as we did on our first example:

Un = 2" = 2"(xg+1) =2"-8 =2"3, Finally, x, =up —1=2""3 1.

322 Example LetXp = 2,X3 = W1 — 56n+63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneoustémuae obtain the characteristic equatidh= 9x"~1 or x = 9. A solution to the
homogeneous equation will be of the forn= A(9)". Now f(n) = —56n+ 63 is a polynomial of degree 1 and so we test a particular
solution of the formBn+C. The general solution will have the forrg = A9" + Bn-+C. Now

X0 = 2,%1 = 9(2) — 56+ 63 = 25 %, = 9(25) — 56(2) + 63 = 176. We thus solve the system

2=A+C,

25=9A+B+C,
176=81A+2B+C.
We findA = 2,B=7,C = 0. The general solution i&, = 2(9") + 7n.

323 Example Letxg = 1,X, = 3X,_1 — 2n +6n— 3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneoustémuae obtain the characteristic equatidh= 3x"~1 or x = 9. A solution to the
homogeneous equation will be of the formn= A(3)". Now f(n) = —2n? 4-6n— 3 is a polynomial of degree 2 and so we test a particular
solution of the formBré + Cn+ D. The general solution will have the forg = A3"+ Br? +Cn+D. Now

X0=1,% =3(1) —24+6—3=14,x = 3(4) — 2(2)% +6(2) — 3 = 13,x3 = 3(13) — 2(3)% + 6(3) — 3 = 36. We thus solve the system

1=A+D,

4=3A+B+C+D,
13=9A+4B+2C+D,
36=27A+9B+3C+D.
We findA =B =1,C = D = 0. The general solution ig, = 3" +nZ.

324 Example Find a closed form fok, = 2x,_1 + 3" 1, xg = 2.

Solution: We test a solution of the form = A2" 4+ B3". Thenxy = 2,x; = 2(2) + 3% = 5. We solve the system
2=A+B,
7=2A+3B.
We findA = 1,B = 1. The general solution ig, = 2" +3".

We now tackle the case when= 1. In this case, we simply consider a polynongadf degree 1 higher than the degreefof
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325 Example LetXy =7 andx, = X,_1 +n,n > 1. Find a closed formula fax,.

Solution: By raising the subscripts in the homogeneous témuave obtain the characteristic equatidh= x"~1 or x = 1. A solution to the
homogeneous equation will be of the foxn= A(1)" = A, a constant. Novwf (n) = nis a polynomial of degree 1 and so we test a particular
solution of the formBré +Cn+ D, one more degree than that bf The general solution will have the forg = A+ Bré +Cn+ D. SinceA
andD are constants, we may combine them to obtgia: Br? +Cn+E. Now, Xg = 7,X; = 7+ 1 = 8,x, = 8+ 2 = 10. So we solve the
system
7=E,
8=B+C+E,
10=4B+2C+E.
. 1 . .on? on
We findB=C = E,E = 7. The general solution i§, = > + 3 +7.
Aliter: We have

Xx =7

X1 = X+1
X2 = X1+2
X3 = X+3
Xn = Xp—1+N

Adding both columns,
Xo+X1+Xo+ -+ Xn=T+Xo+X2 4+ +Xn-1+(1+2+3+--- +n).

Cancelling and using the fact thar2+--- +n= n(n; Y ,

Some non-linear first order recursions maybe reduced teearifirst order recursion by a suitable transformation.
326 Example A recursion satisfiegg = 3, ”r21+1 = up,n > 1. Find a closed form for this recursion.

Solution: Letvy = logun. Thenv, = loguy = Iogurlfl = %Iogun,l = V”—2*1 As Vi = V_1/2, we havevn = Vp/2", that is,

logun = (logug)/2". Thereforep, = 3Y/2".

327 Example (Putnam 1985) Letd be a real number. For each intege> 0, define a sequeneg(j), j =0,1,2,--- by am(0) = 2%7 and
am(j+1) = (am(j +1))? +2am(j), ] > 0. Evaluate
lim an(n).

n—oo

Solution: Observe than(j +1) +1 = (am(}))*+2am(}) +1= (@m(]) +1)*. Putv; = am(j) + L Thenvj,1 =7, and Invj1 = 2Inv;;
Putyj = Inv;. Theny; 1 = 2y;; and hence 3o = yn or 2'InVo = INVn O Vi = (V0)?" = (1+ )% oram(n) +1= (1+ ). Thus
an(n) :(%+1)2nflﬂedflasnﬂoo.

7.3 Second Order Recursions

All the recursions that we have so far examined are first aetarrsions, that is, we find the next term of the sequencen ghe preceding
one. Let us now briefly examine how to solve some second oedersions.

We now outline a method for solving second order homogenkoeiar recurrence relations of the form

Xn = %1+ DX 2.
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1. Find the characteristic equation by “raising the sulpsstiin the formx" = ax™1 + bx"~2. Cancelling this gives? —ax—b = 0.
This equation has two rootg andr».

2. Ifthe roots are different, the solution will be of the foxn= A(r1)" -+ B(r2)", whereA, B are constants.
3. Ifthe roots are identical, the solution will be of the form= A(r1)" + Bn(r1)".

328 Example LetXp=1,X1 = —1, X2+ SXn11+6Xn = 0.

Solution: The characteristic equations+ 5x+6 = (x4 3)(x+2) = 0. Thus we test a solution of the fong = A(—2)" +B(—3)". Since
1=x9=A+B,—1=—2A—3B, we quickly findA = 2,B = —1. Thus the solution ig, = 2(—2)" — (-3)".

329 Example Find a closed form for the Fibonacci recursign=0, f; = 1, f, = f,_1 + fr_2.

Solution: The characteristic equationfié— f — 1 = 0, whence a solution will have the form

1+v5\" 1-v5\"
o ()

The initial conditions give

0—A+B,
1_A<1+2\/§> +B<%§> :%(A+B)+§(A—B):§’(A—B)

This givesA = = f\/ig. We thus have th€auchy-Binet Formula:

1 (14v5\" 1 (1-vB\"
(55

330 Example Solve the recursiory = 1,X; = 4, Xy = 4Xn_1 — X2 = 0.

1
—.B
V5

Solution: The characteristic equations— 4x+4 = (x—2)? = 0. There is a multiple root and so we must test a solution ofdite
Xn = A2+ Bn2". The initial conditions give
1=A,

4 =2A+2B.
This solves toA = 1,B = 1. The solution is thug, = 2" +n2".

7.4 Applications of Recursions

331 Example Find the recurrence relation for the numbemnafigit binary sequences with no pair of consecutive 1's.

Solution: It is quite easy to see that= 2,a, = 3. To forma,,n > 3, we condition on the last digit. If itis 0, the number of sequen
sought isa,_1. If itis 1, the penultimate digit must be 0, and the numberegfueences sought &,_». Thus

an=an_1+an =2 a=3

332 Example Let there be drawn ovals on the plane. If an oval intersects each of the othds @taexactly two points and no three ovals
intersect at the same point, find a recurrence relation ®ntimber of regions into which the plane is divided.

Solution: Let this number ba,. Plainlya; = 2. After then— 1th stage, thath oval intersects the previous ovals &4h2 1) points, i.e. the
nth oval is divided into 2n— 1) arcs. This adds(®&— 1) regions to thea,_1 previously existing. Thus

ah=ap-1+2(n-1), a1 =2
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333 Example Find a recurrence relation for the number of regions intocivhine plane is divided by straight lines if every pair of lines
intersect, but no three lines intersect.

Solution: Leta, be this number. Clearlsy = 2. Thenth line is cut by he previous— 1 lines atn— 1 points, addingy new regions to the
previously existinga,_1. Hence
an=ap_1+n, ag=2

334 Example (Derangementshn absent-minded secretary is fillimpenvelopes with letters. Find a recursion for the numbey of ways
in which she never stuffs the right letter into the right dape.

Solution: Number the envelopes213,--- ,n. We condition on the last envelope. Two events might happéhernandr(1<r <n-1)
trade places or they do not.

In the first case, the two lettersandn are misplaced. Our task is just to misplace the othe® letters,(1,2,--- ,r —1,r4+1,--- ,n—1) in
the slots(1,2,--- ,r —1,r+1,--- ,n—1). This can be done iD,_» ways. Since can be chosen in— 1 ways, the first case can happen in
(n—1)Dp_2 ways.

In the second case, let us say that lettdfl < r < n— 1) moves to the1-th position buth moves not to the-th position. Since has been
misplaced, we can just ignore it. Sineés not going to the-th position, we may relabel asr. We now haven— 1 numbers to misplace,
and this can be done D,,_1 ways.

Asr can be chosen in— 1 ways, the total number of ways for the second caggis1)D_1. ThusDn = (n—1)Dp_2 + (n—1)Dy_1.

335 Example There are two urns, one is full of water and the other is entythe first stage, half of the contains of urn | is passed into
urn Il. On the second stage 1/3 of the contains of urn Il isg@#asto urn |. On stage three, 1/4 of the contains of urn | isedsnto urn II.
On stage four 1/5 of the contains of urn Il is passed into uamdl so on. What fraction of water remains in urn | after the8t®%tage?

Solution: Letxn,yn,n=0,1,2, ... denote the fraction of water in urns | and Il respectivelytagen. Observe thax, +y, = 1 and that

Xo=1Yyo=0

NIl

Xo =

NI

X1 =Xo— 3X0=3y1=Y1+

1 2. 1 1
X=X1+3Y1=%5Y2=Y1—3Y1=3

Nl

1 1. 1
X3=Xo—gX2=35Y1=Y1+zX =

xa=xg+iys=2y1=y1—Ltys=£

X=X~ §Xa=3Y1=Y1+ X = 3
Xo =5+ 7Y5=7iy1=Y1— 3¥5 =5
X7 =X~ §%6=3:Y1=Y1+ §% = 3

Xe=X7+3yr =8 Y1=Y1—-3¥7=13

A pattern emerges (which may be proved by induction) thadeh@dd staga we havex, = y, = % and that at each even stage we have (if

k+1 k i 11978 990
N=2K) Xok = o7, Yok = g1 Since=5 = 989 we haveqgrs= 1ore-

Homework

336 Problem Find the sum of all the integers from 1 to 1000 inclusive, ahace not multiples of 3 or 5.

337 Problem The sum of a certain number of consecutive positive inteigek800. Find these integers. (There is more than one solutio
You must find them all.)

338 Problem Use the identity
n°—(n—1)°> =5n* — 1003+ 100> —5n+ 1.
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and the sums

51:1+2+-~~+n:n(”2+1).
n(n+1)(2n+1)
—12402 4. g2 TGS
S +2°4-+ 6 ;
2

TP NI EE£>
$=1"+2"+ +n_< > )

in order to find
s=1442% 4. 4n*

339 Problem Find the exact value of 1 1 1

1.35 357 T 997.099 1001

Answers

336 We compute the sum of all integers from 1 to 1000 and weed ewuuim of the multiples of 3 and the sum of the multiples of 5 duit
back the multiples of 15, which we have counted twice. Put

An=1+2+43+---+n,
B=3+6+4+9+ - +999= 3Az33,
C =5+410+15+-- 4-1000= 5A2qp,
D =15+30+45+--- +990= 15A¢g.
The desired sum is

A1000—B—-C+D A1000— 3A333— 5A200+ 15466

500500-3-55611-5-20100415-2211

= 266332

337 Let the the sum of integers &= (I +1) + (I +2) + (I +n). Using Gauss’ trick we obtai§ = M As S=100Q

2000= n(2l +n-+1). Now 2000= n? 4+ 2In+n > n?, whencen < |/2000| = 44. Moreovern and 2 +n+ 1 are divisors of 2000 and are of
opposite parity. Since 2008 2*52, the odd factors of 2000 are 1, 5, 25, and 125. We then seehinaroblem has the following solutions:

n=1, | =999
n=5, | =197
n=16, | =54,
n=25 | =27

338 Using the identity fom =1 ton:
n° = 554 — 10s3 + 10sp — 55, + N,

whence
n° n
% = ot2s-2%ts-g
- n—5+ n’(n+1)? n(n+1)(2n+1) N n(n+1) n
-5 2 3 2 5
" n M n

- 5273 730
339 Observe that
1 1 4

(2n-1)(2n+1) (2n+1)(2n+3) (2n—1)(2n+1)(2n+3)°
Lettingn =1 ton = 499 we deduce that

4, 4 411
1-.3.5 3.5-7 997.999-1001  1-3 999-1001

whence the desired sum is
1 1 83333

4.1.3  4.999-1001 999999
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Graph Theory

8.1 Simple Graphs

340 Definition A simple graph (network) G- (V, E) consists of a non-empty sét(called thevertex (nodeyet) and a se (possibly
empty) of unordered pairs of elements (callededgesor arcs) of V.

Vertices are usually represented by means of dots on the il the edges by means of lines connecting these dots g8essi. 1
through8.4 for some examples of graphs.

341 Definition  If vandV are vertices of a grapB which are joined by an edge we say thav is adjacentto V' and thatv andV are
neighbours and we writee = vW. We say that vertex is incidentwith an edgee if vis an endpoint oé. In this case we also say thais
incident withv.

V3
V2 Vi
[ ] o ——0
Vi V2 Vi V2 Vi
V3 V4
Figure 8.1: A graph Figure 8.2: A graph Figure 8.3: A graph Figure 8.4: A graph
with cardV) = 1 and with card(V) = 2 and with card(V) = 3 and with card(V) = 3 and
card(E) =0. card(E) = 1. card(E) = 3. card(E) =5.

342 Definition Thedegreeof a vertex is the number of edges incident to it.

Depending on whether cafd) is finite or not, the graph is finite or infinite. In these noteswill only consider finite graphs.

Our definition of a graph does not allow that two vertices legd by more than one edge. If this were allowed we would olaai
multigraph Neither does it allooops, which are edges incident to only one vertex. A graph withpfis apseudograph

343 Definition The complete graph with verticesK, is the graph where any two vertices are adjacent. mms(g) edges.

Figure8.1shewsKy, figure8.2 shewsKy, figure8.3shewsKs, and figureB.5 shewsKy, figure 8.6 shewsKs.
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344 Definition LetG = (V,E) be a graph. A subs&C V is anindependent setdf vertices ifuv ¢ E for all u,vin S(Smay be empty). A
bipartite graphwith bipartition X,Y is a graph such that = XUY, XNY = &, andX andY are independent set&.andY are called the
partsof the bipartition.

345 Definition Kmn denotes theomplete bipartite grapwith m-+n vertices. One part, withm vertices, is connected to every other vertex
of the other part, with vertices.

346 Definition A u—v walkin a graphG = (V,E) is an alternating sequence of vertices and edg&viith starting vertexu and ending
vertexv such that every edge joins the vertices immediately pregeitiand immediately following it.

347 Definition A u—v trail in a graphG = (V, E) is au— v walk that does not repeat an edge, while-av pathis a walk that which does
not repeat any vertex.

348 Definition R, denotes gathof lengthn. It is a graph witm edges, andi+ 1 verticesvgvs - - - vn, Wherey; is adjacent ta 1 for
n=01...,n—1.

349 Definition C,, denotes a&ycleof lengthn. It is a graph witm edges, and verticesv; - - - v, Wherey; is adjacent tj;; for
n=1,...,n—1, andv; is adjacent ta.

350 Definition Qp denotes th@-dimensional cubdt is a simple graph with2vertices, which we label with-tuples of 0's and 1's.
Vertices ofQp are connected by an edge if and only if they differ by exactlg ooordinate. Observe th@ hasn2"! edges.

Figure8.7 shewsK3 3, figure 8.8 shewsPs, figure8.9 shewsCs, figure8.10shewsQ,, and figure8.11shewsQs.

351 Definition A subgraph G = (V1,E;) of a graphG = (V,E) is a graph wittV; CV andE; C E.

V2 A% B A B C V2 Vi
C
A
D E

V3 V4 D E F V3 V4

Figure 8.5:Ky. Figure 8.6:Ks. Figure 8.7:Kz 3. Figure 8.8:P;.

B 010 110 A
C B
S F
000 100
Figure 8.9.Cs. Figure 8.10:Q>. Figure 8.11:Qs. Figure 8.12: Exampl&52

We will now give a few examples of problems whose solutionsobge simpler when using a graph-theoretic model.

352 Example If the points of the plane are coloured with three differasibars, red, white, and blue, say, shew that there will abwexist
two points of the same colour which are 1 unit apart.
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Solution: In figure8.12all the edges have length 1. Assume the property does nothdlthatA is coloured redB is coloured whitePp
coloured blue. Thefr must both be coloured red. SinEeandC must not be red, we also conclude tfais red. But therF andG are at
distance 1 apart and both coloured red which contradictassumption that the property did not hold.

353 Example A wolf, a goat, and a cabbage are on one bank of a river. Thenfierm wants to take them across, but his boat is too small to
accommodate more than one of them. Evidently, he can neéghee the wolf and the goat, or the cabbage and the goat bebardthe
ferryman still get all of them across the river?

Solution: Represent the position of a single item by 0 for baek of the river and 1 for the other bank. The position of tivee items can
now be given as an ordered triplet, &Y, G,C). For example(0,0,0) means that the three items are on one bank of the (g0, 0)
means that the wolf is on one bank of the river while the godttar cabbage are on the other bank. The object of the puzztsviseen to
be to move from(0,0,0) to (1,1,1), that is, traversin@z while avoiding certain edges. One answer is

000— 010— 011— 001— 101— 111

This means that the ferryman (i) takes the goat acrossetiiyms and that the lettuce over bringing back the goaxtdiies the wolf over,
(iv) returns and takes the goat over. Another one is

000— 010— 110— 100— 101— 111

This means that the ferryman (i) takes the goat acrosseiiyms and that the wolf over bringing back the goat, (iietathe lettuce over,
(iv) returns and takes the goat over. The graph depictiniy Boswers can be seen in fig@&é3 You may want to visit

http://ww. cut -t he-knot. or g/ ct k/ Goat CabbageWl f. sht m

for a pictorial representation.

011 o001

000 111

110 100

Figure 8.13: Exampl&53

354 Example (E 6tv 6s Mathematical Competition, 1947)  Prove that amongst six people in a room there are at leagt Wite know one
another, or at least three who do not know one another.

Solution: In graph-theoretic terms, we need to shew thatyezx@ouring of the edges dfg into two different colours, say red and blue,
contains a monochromatic triangle (that is, the edges dfitiegle have all the same colour). Consider an arbitrarggeof this group

(call him Peter). There are five other people, and of thetieereihree of them know Peter or else, three of them do not kPeter. Let us
assume three do know Peter, as the alternative is arguelduymif two of these three people know one another, then axela triangle
(Peter and these two, see fig@é&4 where the acquaintances are marked by solid lines). If moofithese three people know one another,
then we have three mutual strangers, giving another tréafsgle figure3.15).

355 Example Mr. and Mrs. Landau invite four other married couples fordin Some people shook hands with some others, and the
following rules were noted: (i) a person did not shake hanitls lmself, (ii) no one shook hands with his spouse, (iii)am@ shook hands
more than once with the same person. After the introductiinsLandau asks the nine people how many hands they shoak dahe
nine people asked gives a different number. How many hamt§idi. Landau shake?

Solution: The given numbers can either b @,...,8,0r12,...,9. Now, the sequence2,...,9 must be ruled out, since if a person shook
hands nine times, then he must have shaken hands with hisespshich is not allowed. The only permissible sequencetis @, 2, ..., 8.
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Figure 8.14: Exampl&54. Figure 8.15: Exampl&54.

Consider the person who shook hands 8 times, as in figji Discounting himself and his spouse, he must have shaketsheith
everybody else. This means that he is married to the persorsidok 0 hands! We now consider the person that shook 7 hasdsfigure
8.17. He didn’t shake hands with himself, his spouse, or with tspn that shook 0 hands. But the person that shook handsoedydid
so with the person shaking 8 hands. Thus the person that $tamak7 times is married to the person that shook hands oncgin@img this
argument, we see the following pai&0), (7,1), (6,2), (5,3). This leaves the person that shook hands 4 times withouttaggameaning
that this person’s partner did not give a number, hence #@isgm must be Mrs. Landau! Conclusion: Mrs. Landau shook&our times.
A graph of the situation appears in figusel8

Mr. Landau Mr. Landau Mr. Landau

Figure 8.16: Examplé55. Figure 8.17: Exampl&55. Figure 8.18: Exampl&55.

8.2 Graphic Sequences
356 Definition A sequence of non-negative integergiaphicif there exists a graph whose degree sequence is preciselgafuence.

357 Example The sequence, 1,1 is graphic, sinc&s is a graph with this degree sequence, and in general, so sethence,n,...,n,
N——

n+ln's
sinceKy;1 has this degree sequence. The degree seque® 1.,2 1 is graphic, sinc®,, 1 has this sequence. The degree sequence
N——

n twos
1,2,3,4,5,6,7,8,9 is not.

ST | A.‘/‘\.Cj o5 A ./—\. c A{_\. nCJ

A.\U ’ > b

Figure 8.19: Theorer@58 Figure 8.20: Theorer®58 Figure 8.21: Theorer@58 Figure 8.22: Theorer®58

358 Theorem (Havel-Hakimi) The two degree sequences

I a>by>by>-->ba>c1>C>-->¢n,
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are simultaneously graphic.

Proof: Assume first that the sequence Il is graphic. There is a grdphif@ degree sequence equal to sequence Il. We
construct the graph G from‘Gy adding a vertex and connecting it to the vertices whoseedsgare h —1,b, —1,--- ,by — 1.
Then G is a graph whose degree sequence is sequence |, and=so .

Assume now that sequence | is graphic. LéiAC; be vertices witllegA = a,degB; = bj, anddegC; = ¢;, respectively. If A
were adjacent to all theBour task is finished by simply removing A. So assume tha ted§ to which A is not adjacent,
and a G to which A'is adjacent. As the sequence is arranged in deicgasder, we must haveg &> ¢;. If it happens that

bi = ¢j, we then simply exchange &d Dj (see figures.19and8.20). If bj > c¢; then B has at least one more neighbour
than G. Call this neighbour D. In this case we remove the edgesaid BD and add the edges ABnd DG; to obtain a new
graph with the same degree sequence as |l. See figuedsand8.22 This process is iterated until A is adjacent to all the B
This finishes the proofl

Solution: Using the Havel-Hakimi Theorem successively aeeh
6,5,4,3,2,2,2,2 —

4321112—
4322111
2,11011—
211110—
0,0,1,1,0 —
1,1,0,0,0.
This last sequence is graphic. By the Havel-Hakimi Theotempriginal sequence is graphic.

8.3 Connectivity

360 Definition A graphG = (V, E) is connectedf for any two of its vertices there is a path connecting them.

361 Definition A graph isconnected if for any two vertices there is a path with thesgoes at its ends. Aomponent of a graph is a
maximal connected subgraph.

362 Definition A forestis a graph with no cycles (acyclic). #heeis a connected acyclic graph. panning treef a graph of a connected
graphG is a subgraph o6 which is a tree and having exactly the same of vertices.as

8.4 Traversability
We start with the following, which is valid not only for simgfraphs, but also for multigraphs and pseudographs.
363 Theorem (Handshake Lemma) LetG = (V,E) be a graph. Then

Z degv = 2cardE).

veV

Proof: If the edge connects two distinct vertices, as sum traveiseagh the vertices, each edge is counted twice. If the
edge is a loop, then every vertex having a loop contrib@testhe sum. This gives the theorelmh.

364 Corollary Every graph has an even number of vertices of odd degree.

Proof: The sum of an odd number of odd numbers is odd. Since the shmdédrees of the vertices in a simple graph is
always even, one cannot have an odd number of odd degreees:i

93



94 Chapter 8

365 Definition A trail is a walk where all the edges are distinct. Bualerian trail on a graphG is a trail that traverses every edge@fA
tour of G is a closed walk that traverses each edgé at least once. AiEuler touron G is a tour traversing each edge®fexactly once,
that is, a closed Euler trail. A graphésilerianif it contains an Euler tour.

366 Theorem A nonempty connected graph is eulerian if and only if has mogs of odd degree.

Proof: Assume first that G is eulerian, and let C be an Euler tour ofattisty and ending at vertex u. Each time a vertex v is
encountered along C, two of the edges incident to v are ateduor. Since C contains every edge of ®y)ds then even for
all v # u. Also, since C begins and ends in gupmust also be even.

Conversely, assume that G is a connected noneulerian gréthtatleast one edge and no vertices of odd degree. Let W be
the longest walk in G that traverses every edge at most once:

W = Vo, VoV, V1,V1V2, V2, ..., Vn—1,Vn—1Vn, Vn.

Then W must traverse every edge incideniytamtherwise, W could be extended into a longer walk. In paldic W traverses
two of these edges each time it passes throygind traverses y_1vy at the end of the walk. This accounts for an odd number
of edges, but the degree of i¢ even by assumption. Hence, W must also begip,dhat is, \p = v. If W were not an Euler
tour, we could find an edge not in W but incident to some vent¥¥ since G is connected. Call this edge. BBut then we can
construct a longer walk:
U, UV, Vi, ViVig1, ..., Vn—1Vn, Vn, VoV1, ..., Vi1 Vi, V.

This contradicts the definition of W, so W must be an Euler tdur

A

Figure 8.23: Exampl&67.

Figure 8.24: Theorer69

The following problem is perhaps the originator of graphotiye

367 Example (K 6nigsberg Bridge Problem)  The town of Kdnigsberg (now called Kaliningrad) was buittan island in the Pregel River.
The island sat near where two branches of the river join, hadorders of the town spreaded over to the banks of the riveell as a
nearby promontory. Between these four land masses, seidgebhad been erected. The townsfolk used to amuse thexassl\crossing
over the bridges and asked whether it was possible to findl stmeting and ending in the same location allowing one avédrse each of the
bridges exactly once. Figu&23has a graph theoretic model of the town, with the seven edgég graph representing the seven bridges.
By Theorem366, this graph is not Eulerian so it is impossible to find a traitlae townsfolk asked.

368 Definition A Hamiltonian cyclen a graph is a cycle passing through every vertgxs Hamiltonianif it contains a Hamiltonian cycle.

Unlike Theorenm366, there is no simple characterisation of all graphs with a ltaman cycle. We have the following one way result,
however.

369 Theorem (Dirac’s Theorem, 1952) LetG = (V,E) be a graph witi = card(E) > 3 edges whose every vertex has degre®. Then
G is Hamiltonian.

Proof: Arguing by contradiction, suppose G is a maximal non-Hamilin with with n> 3, and that G has more thah
vertices. Then G cannot be complete. Let a and b be two nateawlj vertices of G. By definition of GGab is
Hamiltonian, and each of its Hamiltonian cycles must cantaie edge ab. Hence, there is a Hamiltonian patpv. . v, in G
beginning at y = a and ending aty=b. Put

S={vi:av;1 €E} and  {vj:vjbeE}.
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As \y € SNT we must haveard(SUT) = n. Moreover, T = &, since if y§N T then G would have the Hamiltonian cycle
ViV2 - ViVaVp—1---Vi+1V1,
as in figure8.24 contrary to the assumption that G is non-Hamiltonian. Betrt
d(a) +d(b) = card(S) + card(T) = card(SUT) +card(SNT) < n.

. . n n , -
But since we are assuming thatad > > and db) > 50 we have arrived at a contradictioril

8.5 Planarity

370 Definition A graph isplanarif it can be drawn in a plane with no intersecting edges.

371 Example Ky is planar, as shewn in figufe25

Figure 8.25: Exampl&73

372 Definition A faceof a planar graph is a region bounded by the edges of the graph.
373 Example From figure8.25 K4 has 4 faces. Facewhich extends indefinitely, is called tloaitside face

374 Theorem (Euler’'s Formula)  For every drawing of a connected planar graph witlertices e edges, and faces the following formula
holds:
v—e+f=2

Proof: The proof is by induction on e. Le{® be the proposition that v e+ f = 2 for every drawing of a graph G with e
edges. If e= 0 and it is connected, then we must have ¥ and hence £ 1, since there is only the outside face. Therefore,
v—e+ f =1-0+1=2, establishing F0).

Assume now (@) is true, and consider a connected graph G with #edges. Either

O G has no cycles. Then there is only the outside face, and=sd.fSince there are ¢ 1 edges and G is connected, we
must have v= e+ 2. This give§e+2) —(e+1)+1=2—-1+1= 2, establishing Pe+1).

O or G has at least one cycle. Consider a spanning tree of G anebige uv in the cycle, but not in the tree. Such an edge
is guaranteed by the fact that a tree has no cycles. Deletingerges the two faces on either side of the edge and leaves
a graph G with only e edges, v vertices, and f face$igonnected since there is a path between every pair ofcestti
within the spanning tree. So-ve+ f = 2 by the induction assumption(®. But then

v—e+f=2= (V- (e+1)+(f+1) =2 = v—e+f =2,
establishing Pe+1).

This finishes the proofl
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375 Theorem Every simple planar graph with> 3 vertices has a < 3v— 6 edges. Every simple planar graph witk 3 vertices and
which does not have @ hase < 2v—4 edges.

Proof: If v =3, both statements are plainly true so assume that G is a maxyilaaar graph with v> 4. We may also
assume that G is connected, otherwise, we may add an edgeSin¢g. G is simple, every face has at le&stiges in its
boundary. If there are f faces, leg Benote the number of edges on the k-th facelferk < f. We then have
Fi+F---+Ff > 3f.
Also, every edge lies in the boundary of at most two facesceéliéf; denotes the number of faces that the j-th edge has, then

2e>E1+BEx+---+Ee.

SinceB+Ey+---+Ee=F1+F---+Ff, we deduce tha?e > 3f. By Euler’'s Formula we then havee3v — 6.

The second statement follows foev by inspecting all graphs G withx 4. Assume then thatx 5 and that G has no cycle
of length3. Then each face has at least four edges on its boundary. es2e > 4f and by Euler's Formula, &< 2v—4. O

376 Example Kg is not planar by Theore@75sinceKs has(g) =10 edges and 18 9= 3(5) — 6.
377 Example K33 is not planar by Theore®75sinceKs 3 has 33 =9 edges and 8 8 = 2(6) — 4.
378 Definition A polyhedronis a convex, three-dimensional region bounded by a finitebmurof polygonal faces.

379 Definition A Platonic solidis a polyhedron having congruent regular polygon as facdsiaming the same number of edges meeting
at each corner.

By puncturing a face of a polyhedron and spreading its sariigo the plane, we obtain a planar graph.

380 Example (Platonic Solid Problem)  How many Platonic solids are there™ifis the number of faces that meet at each corner of a
polyhedron, anah is the number of sides on each face, then, in the correspgpmpitimar graph, there amneedges incident to each of the
vertices. As each edge is incident to two vertices, we Inawve: 2e, and if each face is bounded hyedges, we also havef = 2e. It follows
from Euler’s Formula that

2e 2e 1 1 1 1
— et —=2 = —+-—=—+=.
m n m n e 2
We must haven > 3 andm > 3 for a nondegenerate polygon. Moreover, if either mwere> 6 then
1,1 1 11
-3 6 2 e 2

Thus we only need to check the finitely many cases withr8m < 5. The table below gives the existing polyhedra.

n mjiv e f | polyhedron

3 3|4 6 4 |tetrahedron

4 318 12 6 | cube

3 4|6 12 8 | octahedron

3 5|12 30 20| icosahedron

5 3|20 30 12| dodecahedror

381 Example (Regions in a Circle) ~ Prove that the chords determinedrpoints on a circle cut the interior intoﬂ(g) + (2) regions
provided no three chords have a common intersection.
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Solution: By viewing the points on the circle and the intetsm of two chords as vertices, we obtain a plane graph. Eaelsection of the
chords is determined by four points on the circle, and hencgaph hay = (2 + nvertices. Since each vertex inside the circle has degree
4 and each vertex on the circumference of the circle has degrel, the Handshake Lemma (Theor&@) we have a total of

e= % (4(2) +n(n+1)>

2

f—1:l+e7v:1+2<2> +Z - ((D +”> =1t (2) i (D

edges. Discounting the outside face, our graph has

faces or regions.

Homework

382 Problem Determine whether there is a simple graph with eight vesti@ving degree sequencé6t,3,2,2,2,2.
383 Problem Determine whether the sequencé®,b,4,4,3,2,1 is graphic.

384 Problem (IMO 1964) Seventeen people correspond by mail with one another—easelvith all the rest. In their letters only three
different topics are discussed. Each pair of corresposdéguls with only one of these topics. Prove that there at flegee people who
write to each other about the same topic.

385 Problem If a given convex polyhedron has six vertices and twelve sdgeve that every face is a triangle.

386 Problem Prove, using induction, that the sequence
nnn—-1n-1...,44332211

is always graphic.

387 Problem Seven friends go on holidays. They decide that each will sgmuktcard to three of the others. Is it possible that every
student receives postcards from precisely the three to wieaent postcards? Prove your answer!

Answers

383 Using the Havel-Hakimi Theorem, we have
7,6,54,4,32,1—

5,4,3,3,210—
3,2,2,1,0,0 —
1,1,0,0—

This last sequence is graphic. Hence the original sequsrgraphic.

384 Choose a particular person of the group, say Charlie. Hesponds with sixteen others. By the Pigeonhole Princigheri& must
write to at least six of the people of one topic, say topic arf pair of these six people corresponds on topic |, thenlgheard this pair do
the trick, and we are done. Otherwise, these six correspmthgst themselves only on topics Il or lll. Choose a paréicperson from this
group of six, say Eric. By the Pigeonhole Principle, theresting three of the five remaining that correspond with Eriaie of the topics,
say topic Il. If amongst these three there is a pair that speds with each other on topic 11, then Eric and this pairespond on topic I,
and we are done. Otherwise, these three people only cormésyith one another on topic Ill, and we are done again.

385 Let x be the average number of edges per face. Then we muskiiav@e. Hencex = % = 2_84 = 3. Since no face can have fewer

than three edges, every face must have exactly three edges.
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386 The sequence, 1 is clearly graphic. Assume that the sequence
n—1n-1,...,4,4,3,3,2,2,1,1

is graphic and add two verticas,v. Joinv to one vertex of degree— 1, one of degree ai— 2,, etc., one vertex of degree 1. Sincis
joined ton— 1 vertices, andi so far is not joined to any vertex, we have a sequence

nn-1n-1n-1n-2n-2,...,4433221,0.

Finally, join u to v to obtain the sequence
nnn—1n-1,...,44332211

387 The sequence,3,3,3,3,3,3 is not graphic, as the number of vertices of odd degree isDdds the given condition is not realisable.
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