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Preface

These notes started in the Spring of 2004, but contain material that I have used in previous years.

I would appreciate any comments, suggestions, corrections, etc., which can be addressed at the email below.

David A. Santos
dsantos@ccp.edu

Things to do:

• Weave functions into counting,à la twelfold way. . .
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GNU Free Documentation License

Version 1.2, November 2002
Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either

commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the samesense. It complements the GNU General Public License, whichis a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not

limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Sucha notice grants a world-wide, royalty-free license, unlimited

in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or distribute the
work in a way requiring permission under copyright law.

A “ Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “ Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains

nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection withthe subject or
with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then thereare none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-CoverText may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “ Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, orabsence of markup, has been arranged to thwart or discouragesubsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats includeproprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works informats which do not have any title page as such,
“Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body ofthe text.

A section “Entitled XYZ ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands fora specific section name
mentioned below, such as “Acknowledgements”, “ Dedications”, “ Endorsements”, or “History ”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document.These Warranty Disclaimers are considered to be included byreference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies,

and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct orcontrol the reading or further copying of the copies you makeor distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copiesyou must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly

and legibly, all these Cover Texts: Front-Cover Texts on thefront cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all
words of the title equally prominent and visible. You may addother material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title ofthe Document and satisfy these conditions, can be treated asverbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or statein or with each Opaque copy a computer-network location

from which the general network-using public has access to download using public-standard network protocols a completeTransparent copy of the Document, free of added material. Ifyou use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, toensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Documentunder the conditions of sections 2 and 3 above, provided thatyou release the Modified Version under precisely this License, with the Modified Version filling the role of the

Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

v
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A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that versiongives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if ithas
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in theAddendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, newauthors, and publisher of the Modified Version as given on theTitle Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in
the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in thesection all the substance and tone of each of the contributoracknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and containno material copied from the Document, you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version byvarious parties–for example, statements of peer review or that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end ofthe list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any oneentity. If the Document already includes a cover text for thesame cover, previously added by you or by arrangement made bythe same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by thisLicense give permission to use their names for publicity foror to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original

documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License,and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each

such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that sectionif known, or else a unique number. Make the same adjustment tothe section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents witha single copy that is included in the collection, provided that

you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, anddistribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim

copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volumeof a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used
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Chapter 1
Pseudocode

In this chapter we study pseudocode, which will allow us to mimic computer language in writing algorithms.

1.1 Operators

1 Definition (Operator) An operatoris a character, or string of characters, used to perform an action on some entities. These
entities are called theoperands.

2 Definition (Unary Operators) A unary operatoris an operator acting on a single operand.

Common arithmetical unary operators are+ (plus) which indicates a positive number, and− (minus) which indicates a negative
number.

3 Definition (Binary Operators) A binary operatoris an operator acting on two operands.

Common arithmetical binary operators that we will use are+ (plus) to indicate the sum of two numbers and− (minus) to
indicate a difference of two numbers. We will also use∗ (asterisk) to denote multiplication and/ (slash) to denote division.

There is a further arithmetical binary operator that we willuse.

4 Definition (mod Operator) The operator mod is defined as follows: fora≥ 0, b > 0,

a modb

is the integral non-negative remainder whena is divided byb. Observe that this remainder is one of theb numbers

0, 1, 2, . . . , b−1.

In the case when at least one ofa or b is negative, we will leavea modb undefined.

5 Example We have
38 mod 15= 8,

15 mod 38= 15,

1961 mod 37= 0,

and
1966 mod 37= 5,

for example.
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2 Chapter 1

6 Definition (Precedence of Operators) The priority orprecedenceof an operator is the order by which it is applied to its
operands. Parentheses ( ) are usually used to coerce precedence among operators. When two or more operators of the same
precedence are in an expression, we define theassociativityto be the order which determines which of the operators will be
executed first.Left-associativeoperators are executed from left to right andright-associativeoperators are executed from right
to left.

Recall from algebra that multiplication and division have the same precedence, and their precedence is higher than addition and
subtraction. The mod operator has the same precedence as multiplication and addition. The arithmetical binary operators are
all left associative whilst the arithmetical unary operators are all right associative.

7 Example 15−3∗4= 3 but(15−3)∗4= 48.

8 Example 12∗ (5 mod 3) = 24 but(12∗5) mod 3= 0.

9 Example 12 mod 5+3∗3= 11 but 12 mod(5+3)∗3= 12 mod 8∗3= 4∗3= 12.

1.2 Algorithms

In pseudocode parlance analgorithmis a set of instructions that accomplishes a task in a finite amount of time. If the algorithm
produces a single output that we might need afterwards, we will use the wordreturn to indicate this output.

10 Example (Area of a Trapezoid) Write an algorithm that gives the area of a trapezoid whose height ish and bases area and
b.

Solution: One possible solution is

�

�

�



Algorithm 1.2.1: AREATRAPEZOID(a,b,h)

return (h∗
�

a+b
2

�
)

11 Example (Heron’s Formula) Write an algorithm that will give the area of a triangle with sidesa, b, andc.

Solution: A possible solution is

�

�

�



Algorithm 1.2.2: AREAOFTRIANGLE(a,b,c)

return (.25∗
È

(a+b+c)∗ (b+c−a)∗ (c+a−b)∗ (a+b−c))

We have used Heron’s formula

Area =
È

s(s−a)(s−b)(s−c) =
1
4

È
(a+b+c)(b+c−a)(c+a−b)(a+b−c),

where

s=
a+b+c

2

is the semi-perimeter of the triangle.

12 Definition The symbol← is read “gets” and it is used to denote assignments of value.

2



Arrays 3

13 Example (Swapping variables) Write an algorithm that will interchange the values of two variablesx andy, that is, the
contents ofx becomes that ofy and viceversa.

Solution: We introduce a temporary variablet in order to store the contents ofx in y without erasing the contents ofy:

�

�

�



Algorithm 1.2.3: SWAP(x,y)8><>:t← x comment:First storex in temporary place

x← y comment:x has a new value.

y← t comment:y now receives the original value ofx.

If we approached the problem in the following manner

Algorithm 1.2.4: SWAPWRONG(x,y)8>><>>:x← 5
y← 6
x← y comment:x = 6 now.

y← x comment:y takes the current value ofx, i.e., 6.

we do not obtain a swap.

14 Example (Swapping variables 2) Write an algorithm that will interchange the values of two variablesx andy, that is, the
contents ofx becomes that ofy and viceversa,without introducing a third variable.

Solution: The idea is to use sums and differences to store thevariables. Assume that initiallyx = a andy = b.

�

�

�



Algorithm 1.2.5: SWAP2(x,y)8><>:x← x+y comment:x = a+b andy = b.

y← x−y comment:y = a+b−b= a andx = a+b.

x← x−y comment:y = a andx = a+b−a= b.

1.3 Arrays

15 Definition An array is an aggregate of homogeneous types. Thelength of the arrayis the number of entries it has.

A 1-dimensional array is akin to a mathematical vector. Thusif X is 1-dimensional array of lengthn then

X = (X[0],X[1], . . . ,X[n−1])

and all then coordinatesX[k] belong to the same set. We will follow the C-C++-Java convention of indexing the arrays from 0.
We will always declare the length of the array at the beginning of a code fragment by means of a comment.

A 2-dimensional array is akin to a mathematical matrix. Thusif Y is a 2-dimensional array with 2 rows and 3 columns then

Y =

�
Y[0][0] Y[0][1] Y[0][2]
Y[1][0] Y[1][1] Y[1][2]

�
.
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4 Chapter 1

1.4 If-then-else Statements

16 Definition TheIf-then-elsecontrol statement has the following syntax:
if expression

then

8<:statementA−1
...
statementA− I

else

8<:statementB−1
...
statementB−J

and evaluates as follows. Ifexpression is true then allstatementA ’s are executed. Otherwise allstatementB’s are executed.

17 Example (Maximum of 2 Numbers) Write an algorithm that will determine the maximum of two numbers.

Solution: Here is a possible approach.

�

�

�



Algorithm 1.4.2: MAX (x,y)

if x≥ y
then return (x)
else return (y)

18 Example (Maximum of 3 Numbers) Write an algorithm that will determine the maximum of three numbers.

Solution: Here is a possible approach using the preceding function.

�

�

�



Algorithm 1.4.3: MAX 3(x,y,z)

if MAX(x,y)≥ z
then return (MAX(x,y))
else return (z)

19 Example (Compound Test) Write an algorithm that prints “Hello” if one enters a numberbetween 4 and 6 (inclusive) and
“Goodbye” otherwise. You are not allowed to use any boolean operators likeand, or, etc.

Solution: Here is a possible answer.

�

�

�



Algorithm 1.4.4: HELLOGOODBYE(x)

if x >= 4

then

8<:if x <= 6
then output (Hello.)
else output(Goodbye.)

else output(Goodbye.)

4
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1.5 Thefor loop

20 Definition Thefor loop has either of the following syntaxes:1

for indexvariable← lowervalueto uppervalue
do statements

or
for indexvariable← uppervaluedownto lowervalue

do statements
Here lower value and upper value must be non-negative integers with uppervalue≥ lowervalue.

21 Example (Factorial Integers) Recall that for a non-negative integern the quantityn! (read “n factorial”) is defined as
follows. 0!= 1 and ifn > 0 thenn! is the product of all the integers from 1 ton inclusive:

n! = 1 ·2· · ·n.

For example 5!= 1 ·2 ·3 ·4 ·5= 120. Write an algorithm that given an arbitrary non-negative integern outputsn!.

Solution: Here is a possible answer.

�

�
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Algorithm 1.5.3: FACTORIAL(n)

comment:Must input an integern≥ 0.

f ← 1
if n = 0

then return ( f )

else
§

for i← 1 to n
do f ← f ∗ i

return ( f )

22 Example (Positive Integral Powers 1) Write an algorithm that will computexn, wherex is a given real number andn is a
given positive integer.

Solution: We can approach this problem as we did the factorial function in example21. Thus a possible answer would be

�

�

�



Algorithm 1.5.4: POWER1(x,n)

power← 1
for i← 1 to n

do power← x∗power
return (power)

In example34we shall examine a different approach.

23 Example (Reversing an Array) An array(X[0], . . .X[n−1]) is given. Without introducing another array, put its entries in
reverse order.

Solution: Observe that we exchange
X[0]↔ X[n−1],

X[1]↔ X[n−2],

1The syntax in C, C++, and Java is slightly different and makesthe for loop much more powerful than the one we are presenting here.
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6 Chapter 1

and in general
X[i]↔ X[n− i−1].

This holds as long asi < n− i−1, that is 2i < n−1, which happens if and only if 2i ≤ n−2, which happens if and only if
i ≤ b(n−2)/2c. We now use a swapping algorithm, say the one of example13.Thus a possible answer is

�

�

�



Algorithm 1.5.5: REVERSEARRAY(n,X)

comment:X is an array of lengthn.

for i← 0 to b(n−2)/2c
do Swap(X[i],X[n− i−1])

24 Definition The commandbreak stops the present control statement and jumps to the next control statement. The command
output(. . . ) prints whatever is enclosed in the parentheses.

☞ Many a programmer considers using thebreak command an ugly practice. We will use it here and will
abandon it once we study thewhile loop.

25 Example What will the following algorithm print?

�

�
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Algorithm 1.5.6: PRINTING(·)

for i← 3 to 11

do

8<:if i = 7
then break
else output(i)

Solution: We have, in sequence,

➊ i = 3. Since 36= 7, the programme prints 3.

➋ i = 4. Since 46= 7, the programme prints 4.

➌ i = 5. Since 56= 7, the programme prints 5.

➍ i = 6. Since 66= 7, the programme prints 6.

➎ i = 7. Since 7= 7, the programme halts and nothing else is printed.

The programme ends up printing 3456.

26 Example (Maximum of n Numbers) Write an algorithm that determines the maximum element of a 1-dimensional array
of n elements.

Solution: We declare the first value of the array (the 0-th entry) to be the maximum (asentinel value). Then we successively
compare it to othern−1 entries. If an entry is found to be larger than it, that entryis declared the maximum.

�

�

�



Algorithm 1.5.7: MAX ENTRYINARRAY(n,X)

comment:X is an array of lengthn.

max← X[0]
for i← 1 to n−1

do
§

if X[i] > max
then max= X[i]

return (max)

6
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Recall that a positive integerp > 1 is aprime if its only positive factors ofp are either 1 orp. An integer greater than 1
which is not prime is said to becomposite.2 To determine whether an integer is prime we rely on the following result.

27 Theorem Let n > 1 be a positive integer. Eithern is prime orn has a prime factor≤√n.

Proof: If n is prime there is nothing to prove. Assume then than n is composite. Then n can be written as the
product n= ab with1< a≤ b. If every prime factor of n were>

√
n then we would have both a>

√
n and b>

√
n

then we would have n= ab>
√

n
√

n = n, which is a contradiction. Thus n must have a prime factor≤√n. ❑

28 Example To determine whether 103 is prime we proceed as follows. Observe thatb
√

103c = 10.3 We now divide 103 by
every prime≤ 10. If one of these primes divides 103 then 103 is not a prime. Otherwise, 103 is a prime. A quick division finds

103 mod 2= 1,

103 mod 3= 1,

103 mod 5= 3,

103 mod 7= 5,

whence 103 is prime since none of these remainders is 0.

29 Definition (Boolean Variable) A boolean variableis a variable that only accepts one of two possible values:true or false.

Thenot unary operator changes the status of a boolean variable fromtrue to falseand viceversa.

30 Example (Eratosthenes’ Primality Testing) Given a positive integern write an algorithm to determine whether it is prime.

Solution: Here is a possible approach. The special casesn = 1, n = 2, n = 3 are necessary because in our version of thefor
loop we need the lower index to be at most the upper index.

�

�

�



Algorithm 1.5.8: ISPRIME1(n)

comment:n is a positive integer.

if n = 1
then output (n is a unit.)

if n = 2
then output (n is prime.)

if n = 3
then output (n is prime.)

comment: If n≥ 4, thenb√nc ≥ 2.

if n > 3

then

8>>>>>>>>>><>>>>>>>>>>:
if n mod 2= 0

then output (n is even. Its smallest factor is 2.)

else

8>>>>>>><>>>>>>>:
flag← true
for i← 2 to b√nc

do

8<:if n modi = 0

then
§

flag← false
break

if flag= true
then output (n is prime.)
else output(Not prime. n smallest factor isi.)

2Thus 1 is neither prime nor composite.
3Herebxc denotes the floor ofx, that is, the integer just to the left ofx if x is not an integer andx otherwise.
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8 Chapter 1

☞ From a stylistic point of view, this algorithm is unsatisfactory, as it uses thebreak statement. We will see in
example35how to avoid it.

31 Example (The Locker-room Problem) A locker room containsn lockers, numbered 1 throughn. Initially all doors are
open. Person number 1 enters and closes all the doors. Personnumber 2 enters and opens all the doors whose numbers are
multiples of 2. Person number 3 enters and if a door whose number is a multiple of 3 is open then he closes it; otherwise
he opens it. Person number 4 enters and changes the status (from open to closed and viceversa) of all doors whose numbers
are multiples of 4, and so forth till person numbern enters and changes the status of door numbern. Write an algorithm to
determine which lockers are closed.

Solution: Here is one possible approach. We use an arrayLocker of size n+ 1 to denote the lockers (we will ignore
Locker[0]). The valuetrue will denote an open locker and the valuefalsewill denote a closed locker.4

�

�

�



Algorithm 1.5.9: LOCKERROOMPROBLEM(n,Locker)

comment:Lockeris an array of sizen+1.

comment:Closing all lockers in the first for loop.

for i← 1 to n
do Locker[i]← false

comment:From open to closed and vice-versa in the second loop .

for j ← 2 to n

do

8<:for k← j to n
do if k mod j = 0
then Locker[k] = not Locker[k]

for l ← 1 to n

do
§

if Locker[l ] = false
then output (Lockerl is closed.)

1.6 Thewhile loop

32 Definition Thewhile loop has syntax:
while test

do
¦

body of loop
The commands in the body of the loop will be executed as long astest evaluates to true.

33 Example (Different Elements in an Array) An arrayX satisfiesX[0] ≤ X[1] ≤ ·· · ≤ X[n− 1]. Write an algorithm that
finds the number of entries which are different.

Solution: Here is one possible approach.

�

�
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Algorithm 1.6.2: DIFFERENT(n,X)

comment:X is an array of lengthn.

i← 0
different← 1
while i 6= n−1

do

8<:i← i +1
if x[i] 6= x[i−1]

then different← different+1
return (different)

4We will later see that those locker doors whose numbers are squares are the ones which are closed.
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34 Example (Positive Integral Powers 2) Write an algorithm that will computean, wherea is a given real number andn is a
given positive integer.

Solution: We have already examined this problem in example22. From the point of view of computing time, that solution
is unsatisfactory, as it would incur inton multiplications, which could tax the computer memory ifn is very large. A more
efficient approach is the following. Basically it consists of writing n in binary. We successively squarex getting a sequence

x→ x2→ x4→ x8→ ··· → x2k
,

and we stop when 2k≤ n < 2k+1. For example, ifn = 11 we computex→ x2→ x4→ x8. We now write 11= 8+2+1 and so
x11 = x8x2x.

�

�

�



Algorithm 1.6.3: POWER2(x,n)

power← 1
c← x
k← n
while k 6= 0

do

8>>>><>>>>:if k mod 2= 0

then
§

k← k/2
c← c∗ c

else
§

k← k−1
power← power∗ c

return (power)

Thewhile loop can be used to replace thefor loop, and in fact, it is more efficient than it. For, the codefor i← k to n
do something

is equivalent to

i← k
while i <= n

do
§

i← i +1
something

But more can be achieved from thewhile loop. For instance, instead of jumping the index one-step-at-a-time, we could
jump t steps at a time by declaringi← i + t. Also, we do not need to use thebreak command if we incorporate the conditions
for breaking in the test of the loop.

35 Example Here is the ISPRIME1 programme from example30 with while loops replacing thefor loops. Ifn > 3, thenn is
divided successively by odd integers, as it is not necessaryto divide it by even integers.
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�
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Algorithm 1.6.6: ISPRIME2(n)

comment:n is a positive integer.

if n = 1
then output (n is a unit.)

if n = 2
then output (n is prime.)

if n = 3
then output (n is prime.)

if n > 3

then

8>>>>>>>>>>><>>>>>>>>>>>:
if n mod 2= 0

then output (n is even. Its smallest factor is 2.)

else

8>>>>>>>><>>>>>>>>:
flag← true
i← 1
while i <= b√nc and flag= true

do

8<:i← i +2
if n modi = 0

then
¦

flag← false
if flag= true

then output (n is prime.)
else output(Not prime. n smallest factor isi.)

Homework

36 Problem What will the following algorithm return forn = 5? You must trace the algorithm carefully, outlining all your steps.

�

�
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Algorithm 1.6.7: MYSTERY(n)

x← 0
i← 1
while n > 1

do

8>><>>:if n∗ i > 4
then x← x+2n
elsex← x+n

n← n−2
i← i +1

return (x)

37 Problem What will the following algorithm return forn = 3?

�

�
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Algorithm 1.6.8: MYSTERY(n)

x← 0
while n > 0

do

8>><>>:for i← 1 to n

do
§

for j← i to n
do
�

x← i j +x
n← n−1

return (x)

10
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38 Problem Assume that the division operator/ acts as follows on the integers: if the division is not even,a/b truncates the decimal part
of the quotient. For example 5/2 = 2, 5/3 = 1. Assuming this write an algorithm that reverses the digitsof a given integer. For example, if
123476 is the input, the output should be 674321. Use only onewhile loop, one mod operation, one multiplication by 10 and one division
by 10.

39 Problem Given is an array of lengthm+n, which is sorted in increasing order:

X[0] < X[1] < .. . < X[m−1] < X[m] < .. . < X[m+n−1].

Without using another arrayreorder the array in the form

X[m]→ X[m+1]→ . . .→ X[m+n−1]→ X[0]→ X[1]→ . . .→ X[m−1].

Do this using algorithm REVERSEARRAY from example23a few times.

40 Problem TheFibonacci Sequenceis defined recursively as follows:

f0 = 0; f1 = 1, f2 = 1, fn+1 = fn + fn−1,n≥ 1.

Write an algorithm that finds then-th Fibonacci number.

41 Problem Write an algorithm which reads a sequence of real numbers anddetermines the length of the longest non-decreasing subse-
quence. For instance, in the sequence

7,8,7,8,9,2,1,8,7,9,9,10,10,9,

the longest non-decreasing subsequence is 7,9,9,10,10, of length 5.

42 Problem Write an algorithm that reads an array ofn integers and finds the second smallest entry.

43 Problem A partition of the strictly positive integern is the number of writingn as the sum of strictly positive summands, without taking
the order of the summands into account. For example, the partitions of 4 are (in “alphabetic order” and with the summands written in
decreasing order)

1+1+1+1;2+1+1;3+1;2+2;4.

Write an algorithm to generate all the partitions of a given integern.

Answers
36 In the first turn around the loop,n = 5, i = 1, n∗ i > 4 and thusx = 10. Now n = 3, i = 2, and we go a second turn around the loop. Since
n∗ i > 4, x = 10+2∗3 = 16. Finally,n = 1, i = 3, and the loop stops. Hencex = 16 is returned.

38 Here is a possible approach.

�

�

�



Algorithm 1.6.9: REVERSE(n)

comment:n is a positive integer.

x← 0
while n 6= 0

do

8>><>>:comment:x accumulates truncated digit.

x← x∗10+n mod 10
comment:We now truncate a digit of the input.

n← n/10

return (x)

39 Reverse the array first as
X[m+n−1] > X[m+n−2] > .. . > X[m] > X[m−1] > .. . > X[0].

Then reverse each one of the two segments:

X[m]→ X[m+1]→ . . .→ X[m+n−1]→ X[0]→ X[1]→ . . .→ X[m−1].
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40 Here is a possible solution.

�
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Algorithm 1.6.10: FIBONACCI(n)

if n = 0
then return (0)

else
§

last← 0
current← 1

for i← 2 to n(
temp← last+current
last← current
current← temp

return (current)

41 Assume that the data is read from some filef . eof means “end of file.”newElandoldEl are the current and the previous elements.d is
the length of the current run of non-decreasing numbers.dMax is the length of the longest run.

�

�
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Algorithm 1.6.11: LARGESTINCREASINGSEQUENCE( f )

1← d
1← dMax
while not eof

do

8>>><>>>:if newEl>= oldEl

then

8>><>>:d← d+1

else

(
if d > dMax

then dMax← d
d← 1

oldEl← newEL
if d > dMax

then dMax← d

42 Here is one possible approach.

�

�
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Algorithm 1.6.12: SECONDSMALLEST(n,X)

comment:X is an array of lengthn.

second← x[0]
minimum← second
for i← 0 to n−1

do

8>>>>>>>>>><>>>>>>>>>>:
if minimum= second

then

(
if X[i] < minimum

then minimum← X[i]
elsesecond← X[i]

else

8>>>><>>>>:if X[i] < minimum

then
§

second←minimum
minimum← X[i]

else
§

if X[i] > minimumand X[i] < second
then second← X[i]

43 We list partitions ofn in alphabetic order and with decreasing summands. We store them in an array of lengthn+1 with X[0] = 0.. The
length of the partition isk and the summands areX[1]+ · · ·+X[k]. Initially k = n andX[1] = · · · = X[n] = 1. At the end we haveX[1] = n
and the rest are 0.
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Algorithm 1.6.13: PARTITIONS(n)

s← k−1
while not ((s= 1) or (X[s−1] > X[s]))�

s← s−1
X[s]← X[s]+1
sum← 0
for i← s+1 to k�

sum← sum+X[i]
for i← 1 to sum−1�

X[s+ i]← 1
k← s+sum−1

13



Chapter 2
Proof Methods

2.1 Proofs: Direct Proofs

A direct proof is one that follows from the definitions. Factspreviously learned help many a time when making a direct proof.

44 Example Recall that

• an even number is one of the form 2k, wherek is an integer.

• an odd integer is one of the form 2l +1 wherel is an integer.

• an integera is divisible by an integerb if there exists an integerc such thata = bc.

Prove that

➊ the sum of two even integers is even,

➋ the sum of two odd integers is even,

➌ the sum of an even integer with and odd integer is odd,

➍ the product of two even integers is divisible by 4,

➎ the product of two odd integers is odd,

➏ the product of an even integer and an odd integer is even.

Solution: We argue from the definitions. We assume as known that the sum of two integers is an integer.

➊ If 2a and 2b are even integers, then 2a+2b = 2(a+b), Now a+b is an integer, so 2(a+b) is an even integer.

➋ If 2c+1 and 2d+1 are odd integers, then 2c+1+2d+1 = 2(c+d+1), Now c+d+1 is an integer, so 2(c+d+1) is an even integer.

➌ Let 2f be an even integer and 2g+1 be an odd integer. Then 2f +2g+1 = 2( f +g)+1. Sincef +g is an integer, 2( f +g)+1 is an
odd integer.

➍ Let 2h 2k be even integers. Then(2h)(2k) = 4(hk). Sincehk is an integer, 4(hk) is divisible by 4.

➎ Let 2l +1 and 2m+1 be odd integers. Then

(2l +1)(2m+1) = 4ml+2l +2m+1 = 2(2ml+ l +m)+1.

Since 2ml+ l +n is an integer, 2(2ml+m+ l)+1 is an odd integer.

➏ Let 2n be an even integer and let 2o+1 be an odd integer. Then(2n)(2o+1) = 4no+2n = 2(2no+1). Since 2no+1 is an integer,
2(2no+1) is an even integer.

45 Example Prove that ifn is an integer, thenn3−n is always divisible by 6.

Solution: We haven3−n = (n−1)n(n+1), the product of three consecutive integers. Among three consecutive integers there is at least an
even one, and exactly one of them which is divisible by 3. Since 2 and 3 do not have common factors, 6 divides the quantity(n−1)n(n+1),
and son3−n is divisible by 6.

14
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46 Example Use the fact that the square of any real number is non-negative in order to prove theArithmetic Mean-Geometric Mean Inequal-
ity: ∀x≥ 0,∀y≥ 0

√
xy≤ x+y

2
.

Solution: First observe that
√

x−√y is a real number, since we are taking the square roots of non-negative real numbers. Since the square of
any real number is greater than or equal to 0 we have

(
√

x−√y)2≥ 0.

Expanding

x−2
√

xy+y≥ 0 =⇒ x+y
2
≥√xy,

yielding the result.

47 Example Prove that a sum of two squares of integers leaves remainder 0, 1 or 2 when divided by 4.

Solution: An integer is either even (of the form 2k) or odd (of the form 2k+1). We have

(2k)2 = 4k2,
(2k+1)2 = 4(k2 +k)+1.

Thus squares leave remainder 0 or 1 when divided by 4 and hencetheir sum leave remainder 0, 1, or 2.

2.2 Proofs: Mathematical Induction
The Principle of Mathematical Induction is based on the following fairly intuitive observation. Suppose that we are to perform a task that
involves a certain number of steps. Suppose that these stepsmust be followed in strict numerical order. Finally, suppose that we know how
to perform then-th task provided we have accomplished then−1-th task. Thus if we are ever able to start the job (that is, ifwe have a base
case), then we should be able to finish it (because starting with the base case we go to the next case, and then to the case following that, etc.).

Thus in the Principle of Mathematical Induction, we try to verify that some assertionP(n) concerning natural numbers is true for some
base casek0 (usuallyk0 = 1). Then we try to settle whether information onP(n−1) leads to favourable information onP(n).

48 Theorem Principle of Mathematical Induction If a setS of positive integers contains the integer 1, and also contains the integern+1
whenever it contains the integern, thenS = N.

The following versions of the Principle of Mathematical Induction should now be obvious.

49 Corollary If a setA of positive integers contains the integerm and also containsn+ 1 whenever it containsn, wheren > m, thenA

contains all the positive integers greater than or equal tom.

50 Corollary (Strong Induction) If a setA of positive integers contains the integerm and also containsn+ 1 whenever it containsm+
1,m+2, . . . ,n, wheren > m, thenA contains all the positive integers greater than or equal tom.

We shall now give some examples of the use of induction.

51 Example Prove that the expression
33n+3−26n−27

is a multiple of 169 for all natural numbersn.

Solution: LetP(n) be the assertion “∃T ∈N with 33n+3−26n−27= 169T .” We will prove thatP(1) is true and thatP(n−1) =⇒ P(n). For
n = 1 we are asserting that 36−53= 676= 169·4 is divisible by 169, which is evident.

Now, P(n−1) means there isN ∈ N such that 33(n−1)+3−26(n−1)−27 = 169N, i.e., forn > 1,

33n−26n−1 = 169N

for some integerN. Then
33n+3−26n−27= 27·33n−26n−27= 27(33n−26n−1)+676n

which reduces to
27·169N +169·4n,

which is divisible by 169. The assertion is thus establishedby induction.

15



16 Chapter 2

52 Example Prove that 2n > n, ∀n∈N.

Solution: The assertion is true forn = 0, as 20 > 0. Assume that 2n−1 > n−1 for n > 1. Now,

2n = 2(2n−1) > 2(n−1) = 2n−2 = n+n−2.

Now, n−1 > 0 =⇒ n−2≥ 0, we haven+n−2≥ n+0 = n, and so,

2n > n.

This establishes the validity of then-th step from the preceding step and finishes the proof.

53 Example Prove that
(1+
√

2)2n +(1−
√

2)2n

is an even integer and that
(1+
√

2)2n− (1−
√

2)2n = b
√

2

for some positive integerb, for all integersn≥ 1.

Solution: We proceed by induction onn. Let P(n) be the proposition: “(1+
√

2)2n +(1−
√

2)2n is even and(1+
√

2)2n− (1−
√

2)2n = b
√

2
for someb∈ N.” If n = 1, then we see that

(1+
√

2)2 +(1−
√

2)2 = 6,

an even integer, and
(1+
√

2)2− (1−
√

2)2 = 4
√

2.

ThereforeP(1) is true. Assume thatP(n−1) is true forn > 1, i.e., assume that

(1+
√

2)2(n−1) +(1−
√

2)2(n−1) = 2N

for some integerN and that
(1+
√

2)2(n−1)− (1−
√

2)2(n−1) = a
√

2

for some positive integera.
Consider now the quantity

(1+
√

2)2n +(1−
√

2)2n = (1+
√

2)2(1+
√

2)2n−2 +(1−
√

2)2(1−
√

2)2n−2.

This simplifies to
(3+2

√
2)(1+

√
2)2n−2 +(3−2

√
2)(1−

√
2)2n−2.

UsingP(n−1), the above simplifies to
12N+2

√
2a
√

2 = 2(6N+2a),

an even integer and similarly
(1+
√

2)2n− (1−
√

2)2n = 3a
√

2+2
√

2(2N) = (3a+4N)
√

2,

and soP(n) is true. The assertion is thus established by induction.

54 Example Prove that ifk is odd, then 2n+2 divides
k2n−1

for all natural numbersn.

Solution: The statement is evident forn = 1, as k2− 1 = (k− 1)(k + 1) is divisible by 8 for any odd natural numberk because both
(k− 1) and (k+ 1) are divisible by 2 and one of them is divisible by 4. Assume that 2n+2|k2n − 1, and let us prove that 2n+3|k2n+1 − 1.

As k2n+1 −1 = (k2n −1)(k2n
+1), we see that 2n+2 divides(k2n−1), so the problem reduces to proving that 2|(k2n +1). This is obviously

true sincek2n odd makesk2n +1 even.

55 Example TheFibonacci Numbersare given by

f0 = 0, f1 = 1, fn+1 = fn + fn−1, n≥ 1,

that is every number after the second one is the sum of the preceding two. Thus the Fibonacci sequence then goes like

0,1,1,2,3,5,8,13,21, . . . .

Prove using the Principle of Mathematical Induction, that for integern≥ 1,

fn−1 fn+1 = f 2
n +(−1)n.

16



Proofs: Reductio ad Absurdum 17

Solution: Forn = 1, we have
0·1 = f0 f1 = 12− (1)1 = f 2

1 − (1)1,

and so the assertion is true forn = 1. Supposen > 1, and that the assertion is true forn, that is

fn−1 fn+1 = f 2
n +(−1)n.

Using the Fibonacci recursion,fn+2 = fn+1 + fn, and by the induction hypothesis,f 2
n = fn−1 fn+1− (−1)n. This means that

fn fn+2 = fn( fn+1 + fn)
= fn fn+1 + f 2

n
= fn fn+1 + fn−1 fn+1− (−1)n

= fn+1( fn + fn−1)+(−1)n+1

= fn+1 fn+1 +(−1)n+1,

and so the assertion follows by induction.

56 Example Prove that a given square can be decomposed inton squares, not necessarily of the same size, for alln = 4,6,7,8, . . ..

Solution: A quartering of a subsquare increases the number of squares by three (four new squares are gained but the original square is lost).
Figure2.1 thatn = 4 is achievable. Ifn were achievable, a quartering would make{n,n+3,n+6,n+9, . . .} also achievable. We will shew

Figure 2.1: Example56. Figure 2.2: Example56. Figure 2.3: Example56.

now thatn = 6 andn = 8 are achievable. But this is easily seen from the figures2.2and2.3, and this finishes the proof.

57 Example In the country of SmallPesia coins only come in values of 3 and5 pesos. Shew that any quantity of pesos greater than or equal
to 8 can be paid using the available coins.

Solution: We use Strong Induction. Observe that 8= 3+ 5,9 = 3+ 3+ 3,10 = 5+ 5, so, we can pay 8,9, or 10 pesos with the available
coinage. Assume that we are able to payn−3,n−2, andn−1 pesos, that is, that 3x+5y = k has non-negative solutions fork = n−3,n−2
andn−1. We will shew that we may also obtain solutions for 3x+5y = k for k = n,n+1 andn+2. Now

3x+5y = n−3 =⇒ 3(x+1)+5y = n,

3x1 +5y1 = n−2 =⇒ 3(x1 +1)+5y1 = n+1,

3x2 +5y2 = n−1 =⇒ 3(x2 +1)+5y2 = n+2,

and so if the amountsn−3,n−2,n−1 can be paid so cann,n+1,n+2. The statement of the problem now follows from Strong Induction.

2.3 Proofs: Reductio ad Absurdum
In this section we will see examples of proofs by contradiction. That is, in trying to prove a premise, we assume that its negation is true and
deduce incompatible statements from this.

58 Example Prove that 2003 is not the sum of two squares by proving that the sum of any two squares cannot leave remainder 3 upon
division by 4.

Solution: 2003 leaves remainder 3 upon division by 4. But we know from example47 that sums of squares do not leave remainder 3 upon
division by 4, so it is impossible to write 2003 as the sum of squares.

17
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59 Example Shew, without using a calculator, that 6−
√

35<
1
10

.

Solution: Assume that 6−
√

35≥ 1
10

. Then 6− 1
10
≥
√

35 or 59≥ 10
√

35. Squaring both sides we obtain 3481≥ 3500, which is clearly

nonsense. Thus it must be the case that 6−
√

35<
1
10

.

60 Example Let a1,a2, . . . ,an be an arbitrary permutation of the numbers 1,2, . . . ,n, wheren is an odd number. Prove that the product

(a1−1)(a2−2) · · · (an−n)

is even.

Solution: First observe that the sum of an odd number of odd integers is odd. It is enough to prove that some differenceak− k is even.
Assume contrariwise that all the differencesak−k are odd. Clearly

S= (a1−1)+(a2−2)+ · · ·+(an−n) = 0,

since theak’s are a reordering of 1,2, . . . ,n. S is an odd number of summands of odd integers adding to the eveninteger 0. This is impossible.
Our initial assumption that all theak−k are odd is wrong, so one of these is even and hence the product is even.

61 Example Prove that
√

2 is irrational.

Solution: For this proof, we will accept as fact that any positive integer greater than 1 can be factorised uniquely as theproduct of primes (up
to the order of the factors).

Assume that
√

2 =
a
b
, with positive integersa,b. This yields 2b2 = a2. Now botha2 andb2 have an even number of prime factors. So

2b2 has an odd numbers of primes in its factorisation anda2 has an even number of primes in its factorisation. This is a contradiction.

62 Example Let a,b be real numbers and assume that for all numbersε > 0 the following inequality holds:

a < b+ ε.

Prove thata≤ b.

Solution: Assume contrariwise thata > b. Hence
a−b

2
> 0. Since the inequalitya < b+ ε holds for everyε > 0 in particular it holds for

ε =
a−b

2
. This implies that

a < b+
a−b

2
or a < b.

Thus starting with the assumption thata > b we reach the incompatible conclusion thata < b. The original assumption must be wrong. We
therefore conclude thata≤ b.

63 Example (Euclid) Shew that there are infinitely many prime numbers.

Solution: We need to assume for this proof that any integer greater than 1 is either a prime or a product of primes. The following beautiful
proof goes back to Euclid.

Assume that{p1, p2, . . . , pn} is a list that exhausts all the primes. Consider the number

N = p1p2 · · · pn +1.

This is a positive integer, clearly greater than 1. Observe that none of the primes on the list{p1, p2, . . . , pn} dividesN, since division by any
of these primes leaves a remainder of 1. SinceN is larger than any of the primes on this list, it is either a prime or divisible by a prime outside
this list. Thus we have shewn that the assumption that any finite list of primes leads to the existence of a prime outside this list. This implies
that the number of primes is infinite.

64 Example If a,b,c are odd integers, prove thatax2 +bx+c = 0 does not have a rational number solution.

18



Proofs: Pigeonhole Principle 19

Solution: Suppose
p
q

is a rational solution to the equation. We may assume thatp andq have no prime factors in common, so eitherp andq

are both odd, or one is odd and the other even. Now

a

�
p
q

�2

+b

�
p
q

�
+c = 0 =⇒ ap2 +bpq+cq2 = 0.

If both p and p were odd, thenap2 + bpq+ cq2 is also odd and hence6= 0. Similarly if one of them is even and the other odd then either
ap2 +bpqor bpq+cq2 is even andap2 +bpq+cq2 is odd. This contradiction proves that the equation cannot have a rational root.

2.4 Proofs: Pigeonhole Principle
The Pigeonhole Principle states that ifn+1 pigeons fly ton holes, there must be a pigeonhole containing at least two pigeons. This apparently
trivial principle is very powerful. Thus in any group of 13 people, there are always two who have their birthday on the samemonth, and if the
average human head has two million hairs, there are at least three people in NYC with the same number of hairs on their head.

The Pigeonhole Principle is useful in provingexistenceproblems, that is, we shew that something exists without actually identifying it
concretely.

65 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmetic progression 1,4, . . . ,100. Prove that there must
be two distinct integers inA whose sum is 104.

Solution: We partition the thirty four elements of this progression into nineteen groups

{1},{52},{4,100},{7,97},{10,94}, . . . ,{49,55}.

Since we are choosing twenty integers and we have nineteen sets, by the Pigeonhole Principle there must be two integers that belong to one
of the pairs, which add to 104.

66 Example Shew that amongst any seven distinct positive integers not exceeding 126, one can find two of them, saya andb, which satisfy

b < a≤ 2b.

Solution: Split the numbers{1,2,3, . . . ,126} into the six sets

{1,2},{3,4,5,6},{7,8, . . . ,13,14},{15,16, . . . ,29,30},

{31,32, . . . ,61,62} and{63,64, . . . ,126}.
By the Pigeonhole Principle, two of the seven numbers must lie in one of the six sets, and obviously, any such two will satisfy the stated
inequality.

67 Example Given any 9 integers whose prime factors lie in the set{3,7,11} prove that there must be two whose product is a square.

Solution: For an integer to be a square, all the exponents of its prime factorisation must be even. Any integer in the givenset has a prime
factorisation of the form 3a7b11c. Now each triplet(a,b,c) has one of the following 8 parity patterns: (even, even, even), (even, even, odd),
(even, odd, even), (even, odd, odd), (odd, even, even), (odd, even, odd), (odd, odd, even), (odd, odd, odd). In a group of 9such integers, there
must be two with the same parity patterns in the exponents. Take these two. Their product is a square, since the sum of each corresponding
exponent will be even.

Figure 2.4: Example68. Figure 2.5: Example69.

68 Example Prove that if five points are taken on or inside a unit square, there must always be two whose distance is≤
√

2
2

.

19
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Solution: Split the square into four congruent squares as shewn in figure2.4. Two of the points must fall into one of the smaller squares, and

the longest distance there is, by the Pythagorean Theorem,
È

( 1
2)2 +( 1

2)2 =

√
2

2
.

69 Example Fifty one points are placed on and inside a square of side 1. Demonstrate that there must be three of them that fit inside a circle

of radius
1
7

.

Solution: Divide the square into 25 congruent squares, as infigure2.5. At least three of the points must fall into one of these mini-squares.

Form the circle with centre at the minisquare, and radius of the diagonal of the square, that is,
1
5
·
√

2
2

>
1
7

, proving the statement.

Homework
70 Problem Prove that ifn > 4 is composite, thenn divides(n−1)!.

71 Problem Prove that there is no primes triplep, p+2, p+4 except for 3,4,5.

72 Problem If x is an integer and 7 divides 3x+2 prove that 7 also divides 15x2−11x−14.

73 Problem An urn has 900 chips, numbered 100 through 999. Chips are drawn at random and without replacement from the urn, and the
sum of their digits is noted. What is the smallest number of chips that must be drawn in order to guarantee that at least three of these digital
sums be equal?

74 Problem Let s be a positive integer. Prove that the closed interval[s;2s] contains a power of 2.

75 Problem Let p< q be twoconsecutiveodd primes. Prove thatp+q is a composite number, having at least three, not necessarily distinct,
prime factors.

76 Problem The following 4×4 square has the property that for any of the 16 squares composing it, the sum of the neighbors of that square
is 1. For example, the neighbors ofa aree andb and soe+b = 1. Find the sum of all the numbers in the 16 squares.

a b c d
e f g h
i j k l
m n o p

77 Problem Prove, by arguing by contradiction, that there are no integers a,b,c,d such that

x4 +2x2 +2x+2 = (x2 +ax+b)(x2 +cx+d).

78 Problem Let a > 0. Use mathematical induction to prove thatÉ
a+

q
a+
È

a+ · · ·+
√

a <
1+
√

4a+1
2

,

where the left member contains an arbitrary number of radicals.

79 Problem Use the AM-GM Inequality:∀x≥ 0,∀y≥ 0,
√

xy≤ x+y
2

in order to prove that for all quadruplets of non-negative real numbers

a,b,c,d we have
4
√

abcd≤ a+b+c+d
4

.

Then, by choosing a special value ford above, deduce that

3
√

uvw≤ u+v+w
3

for all non-negative real numbersu,v,w.

20



Homework 21

80 Problem Let a,b,c be real numbers. Prove that ifa,b,c are real numbers then

a2 +b2 +c2−ab−bc−ca≥ 0.

By direct multiplication, or otherwise, prove that

a3 +b3 +c3−3abc= (a+b+c)(a2 +b2 +c2−ab−bc−ca).

Use the above two results to prove once again that
3
√

uvw≤ u+v+w
3

for all non-negative real numbersu,v,w.

81 Problem Use the fact that any odd number is of the form 8k±1 or 8k±3 in order to give a direct proof that the square of any odd number
leaves remainder 1 upon division by 8. Use this to prove that 2001 is not the sum of three odd squares.

82 Problem Find, and prove by induction, the sum of the firstn positive odd numbers.

83 Problem Prove by induction that ifn non-parallel straight lines on the plane intersect at a common point, they divide the plane into 2n
regions.

84 Problem Demonstrate by induction that no matter hown straight lines divide the plane, it is always possible to colour the regions produced
in two colours so that any two adjacent regions have different colours.

85 Problem Demonstrate by induction that whenever the formula makes sense one has

(cosθ )(cos2θ ) · · ·(cos2nθ ) =
sin2n+1θ
2n+1 sinθ

.

86 Problem Demonstrate by induction that whenever the formula makes sense one has

sinx+sin2x+ · · ·+sinnx=
sin n+1

2 x

sin x
2
·sin

nx
2

.

87 Problem Prove by induction that 2n > n for integern≥ 0.

88 Problem Prove, by induction onn, that

1·2+2·22 +3·23 + · · ·+n·2n = 2+(n−1)2n+1.

89 Problem An urn contains 28 blue marbles, 20 red marbles, 12 white marbles, 10 yellow marbles, and 8 magenta marbles. How many
marbles must be drawn from the urn in order to assure that there will be 15 marbles of the same color?

90 Problem The nine entries of a 3×3 grid are filled with−1, 0, or 1. Prove that among the eight resulting sums (three columns, three rows,
or two diagonals) there will always be two that add to the samenumber.

91 Problem Forty nine women and fifty one men sit around a round table. Demonstrate that there is at least a pair of men who are facing
each other.

92 Problem An eccentric widow has five cats1. These cats have 16 kittens among themselves. What is the largest integern for which one
can say that at least one of the five cats hasn kittens?

93 Problem No matter which fifty five integers may be selected from

{1,2, . . . ,100},

prove that one must select some two that differ by 10.

1Why is it always eccentric widows who have multiple cats?
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94 Problem (AHSME 1994) Label one disc “1”, two discs “2”, three discs “3”, . . . , fifty discs “50”. Put these 1+2+3+ · · ·+50= 1275
labeled discs in a box. Discs are then drawn from the box at random without replacement. What is the minimum number of discsthat must
me drawn in order to guarantee drawing at least ten discs withthe same label?

95 Problem Given any set of ten natural numbers between 1 and 99 inclusive, prove that there are two disjoint nonempty subsets of the set
with equal sums of their elements.

Answers
70 Eithern is a perfect square,n = a2 in which case 2< a < 2a≤ n−1 and hencea and 2a are among the numbers{3,4, . . . ,n−1} or n is
not a perfect square, but still composite, withn = ab, 1< a < b < n−1.

71 If p > 3 and prime,p is odd. But then one of the three consecutive odd numbersp, p+2, p+4, must be divisible by 3 and is different
from 3 and hence not a prime.

72 We have 3x+2 = 7a, with a an integer. Furthermore, 15x2−11x−14= (3x+2)(5x−7) = 7a(5x−7), whence 7 divides 15x2−11x−14.

73 There are 27 different sums. The sums 1 and 27 only appear once(in 100 and 999), each of the other 25 sums appears thrice, at least.
Thus if 27+25+1 = 53 are drawn, at least 3 chips will have the same sum.

74 If s is itself a power of 2 then we are done. Assume thats is strictly between two powers of 2: 2r−1 < s< 2r . Thens< 2r < 2s< 2r+1,
and so the interval[s;2s] contains 2r , a power of 2.

75 Sincep andq are odd, we know thatp+q is even, and so
p+q

2
is an integer. Butp< q gives 2p< p+q< 2q and sop<

p+q
2

< q, that

is, the average ofp andq lies between them. Sincep andq are consecutive primes, any number between them is composite, and so divisible

by at least two primes. Sop+q = 2
� p+q

2

�
is divisible by the prime 2 and by at least two other primes dividing

p+q
2

.

76 The neighbors of
a d
e h

n o

is exactly the sum of all the elements of the table. Hence the sum sought is 6.

77 We have
x4 +2x2 +2x+2 = (x2 +ax+b)(x2 +cx+d)

= x4 +(a+c)x3 +(d +b+ac)x2 +(ad+bc)x+bd.

Thus
bd = 2, ad+bc= 2, d+b+bc= 2, a+c = 2.

Assumea,b,c,d are integers. Sincebd = 2, bd must be of opposite parity (one odd, the other even). But thend+b must be odd, and since
d+b+bc= 2, bc must be odd, meaning that bothb andc are odd, whenced is even. Thereforead is even, and soad+bc= 2 is even plus
odd, that is, odd: a contradiction since 2 is not odd.

78 Let

P(n) :

É
a+

q
a+
È

a+ · · ·+
√

a| {z }
n radicands

<
1+
√

4a+1
2

.

Let us proveP(1), that is

∀a > 0,
√

a <
1+
√

4a+1
2

.

To get this one, let’s work backwards. Ifa >
1
4

√
a <

1+
√

4a+1
2

⇐⇒ 2
√

a < 1+
√

4a+1

⇐⇒ 2
√

a−1 <
√

4a+1
⇐⇒ (2

√
a−1)2 < (

√
4a+1)2

⇐⇒ 4a−4
√

a+1 < 4a+1
⇐⇒ −2

√
a < 0.
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all the steps are reversible and the last inequality is always true. Ifa≤ 1
4

then trivially 2
√

a−1 <
√

4a+1. ThusP(1) is true. Assume now

thatP(n) is true and let’s deriveP(n+1). FromÉ
a+

q
a+
È

a+ · · ·+
√

a| {z }
n radicands

<
1+
√

4a+1
2

=⇒
É

a+

q
a+
È

a+ · · ·+
√

a| {z }
n+1 radicands

<

r
a+

1+
√

4a+1
2

.

we see that it is enough to shew that r
a+

1+
√

4a+1
2

=
1+
√

4a+1
2

.

But observe that

(
√

4a+1+1)2 = 4a+2
√

4a+1+2 =⇒ 1+
√

4a+1
2

=

É
a+

1+
√

4a+1
2

,

proving the claim.

79 We have

4
√

abcd=

È√
ab·
√

cd≤
√

ab+
√

cd
2

≤
a+b

2
+

c+d
2

2
=

a+b+c+d
4

.

Now leta = u,b = v,c = w andd =
u+v+w

3
. Then

4

É
uvw

�u+v+w
3

�
≤

u+v+w+
u+v+w

3
4

=⇒ (uvw)1/4
�u+v+w

3

�1/4
≤ u+v+w

3

=⇒ (uvw)1/4 ≤
�u+v+w

3

�1−1/4

=⇒ (uvw)1/4 ≤
�u+v+w

3

�3/4

=⇒ (uvw)1/3 ≤ u+v+w
3

,

whence the required result follows.

80 Since squares of real numbers are non-negative, we have

(a−b)2 +(b−c)2 +(c−a)2 ≥ 0 ⇐⇒ 2a2 +2b2 +2c2−2ab−2bc−2ca≥ 0
⇐⇒ a2 +b2 +c2−ab−bc−ca≥ 0.

Now, use the identity
x3 +y3 = (x+y)3−3xy(x+y)

twice. Then
a3 +b3 +c3−3abc = (a+b)3 +c3−3ab(a+b)−3abc

= (a+b+c)3−3(a+b)c(a+b+c)−3ab(a+b+c)
= (a+b+c)((a+b+c)2−3ac−3bc−3ab)
= (a+b+c)(a2 +b2 +c2−ab−bc−ca)

If a,b,c are non-negative thena+b+c≥ 0 and alsoa2 +b2 +c2−ab−bc−ca≥ 0. This gives

a3 +b3 +c3

3
≥ abc.

The desired inequality follows upon puttingu = a3,v = b3,w = c3.

81 We have
(8k±1)2 = 64k2±16k+1 = 8(8k2±2)+1,

(8k±3)2 = 64k2±48k+9 = 8(8k2±6+1)+1,

proving that in all cases the remainder is 1 upon division by 8.

Now, a sum of three odd squares must leave remainder 3 upon division by 8. Thus if 2001 were a sum of three squares, it would leave
remainder 3= 1+ 1+ 1 upon division by 8. But 2001 leaves remainder 1 upon division by 8, a contradiction to the assumption that it is a
sum of three squares.
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82 We are required to find
1+3+ · · ·+(2n−1).

Observe that 1= 12; 1+3 = 22; 1+3+5 = 32; 1+3+5+7 = 42. We suspect that

1+3+ · · ·+(2n−1) = n2,

which we will prove by induction. We have already established this forn = 1. LetPn−1 be the proposition

1+3+ · · ·+(2n−3) = (n−1)2,

which we assume true. Now
1+3+ · · ·+(2n−1) = 1+3+ · · ·+(2n−3)+(2n−1)

= (n−1)2 +2n−1
= n2−2n+1+2n−1
= n2,

establishing the truth ofPn.

83 The assertion is clear forn = 1 since a straight line divides the plane into two regions. AssumePn−1, that is, thatn− 1 non-parallel
straight lines intersecting at a common point divide the plane into 2(n−1) = 2n−2 regions. A new line non-parallel to them but passing
through a common point will lie between two of the old lines, and divide the region between them into two more regions, producing then
2n−2+2 = 2n regions, demonstrating the assertion.

84 For n = 1 straight lines this is clear. AssumePn−1, the proposition that this is possible forn−1 > 1 lines is true. So consider the plane
split by n−1 lines into regions and coloured as required. Consider now anew line added to then−1 lines. This line splits the plane into
two regions, say I and II. We now do the following: in region I we leave the original coloration. In region II we switch the colours. We now
have a coloring of the plane in the desired manner. For, either the two regions lie completely in region I or completely in region II, and they
are coloured in the desired manner by the induction hypothesis. If one lies in region I and the other in region II, then theyare coloured in the
prescribed manner because we switched the colours in the second region.

85 Forn = 0 this is the identity sin2θ = 2sinθ cosθ . Assume the statement is true forn−1, that is, assume that

(cosθ )(cos2θ ) · · ·(cos2n−1θ ) =
sin2nθ
2n sinθ

.

Then
(cosθ )(cos2θ ) · · ·(cos2nθ ) = (cosθ )(cos2θ ) · · ·(cos2n−1θ )(cos2nθ )

=
sin2nθ
2n sinθ

(cos2nθ )

=
sin2n+1θ
2n+1 sinθ

,

as wanted.

86 The formula clearly holds forn = 1. Assume that

sinx+sin2x+ · · ·+sin(n−1)x =
sin n

2x

sin x
2
·sin

(n−1)x
2

.

Then
sinx+sin2x+ · · ·+sinnx = sinx+sin2x+ · · ·+sin(n−1)x+sinnx

=
sin n

2x

sin x
2
·sin (n−1)x

2 +sinnx

=
sin n

2x

sin x
2
·sin (n−1)x

2 +2sinnx
2 cosnx

2

=

�
sin (n−1)x

2 +2cosnx
2 sin x

2
sin x

2

�
(sin nx

2 )

=

�
sin nx

2 cosx
2 −sin x

2 cosnx
2 +2cosnx

2 sin x
2

sin x
2

�
(sin nx

2 )

=

�
sin nx

2 cosx
2 +sin x

2 cosnx
2

sin x
2

�
(sin nx

2 )

=
sin n+1

2 x

sin x
2
·sin nx

2 ,

where we have used the sum identity
sin(a±b) = sinacosb±sinbcosa.
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87 For n = 0 we have 20 = 1 > 0, and forn = 1 we have 21 = 2 > 1 so the assertion is true whenn = 0 andn = 1. Assume the assertion is
true forn−1 > 0, that is, assume that 2n−1 > n−1. Examine

2n = 2(2n−1) = 2n−1 +2n−1 > n−1+n−1≥ n−1+1 = n,

using the induction hypothesis and the fact thatn−1≥ 1.

88 Forn = 1 we have 1·2 = 2+(1−1)22, and so the statement is true forn = 1. Assume the statement is true forn, that is, assume

P(n) : 1·2+2·22 +3·23 + · · ·+n·2n = 2+(n−1)2n+1.

We would like to prove that we indeed have

P(n+1) : 1·2+2·22 +3·23 + · · ·+(n+1) ·2n+1 = 2+n2n+2.

But adding(n+1)2n+1 to both sides ofP(n) we obtain

1·2+2·22 +3·23 + · · ·+n·2n +(n+1)2n+1 = 2+(n−1)2n+1 +(n+1)2n+1 = 2+2n2n+1 = 2+n2n+2,

provingP(n+1).

89 If all the magenta, all the yellow, all the white, 14 of the redand 14 of the blue marbles are drawn, then in among these 8+ 10+ 12+
14+14= 58 there are no 15 marbles of the same color. Thus we need 59 marbles in order to insure that there will be 15 marbles of the same
color.

90 There are seven possible sums, each one a number in{−3,−2,−1,0,1,2,3}. By the Pigeonhole Principle, two of the eight sums must
add up to the same.

91 Pick a pair of different sex facing one another, that is, forming a “diameter” on the table. On either side of the diameter there must be
an equal number of people, that is, forty nine. If all the men were on one side of the diameter then we would have a total of 49+1 = 50, a
contradiction.

92 We haveV 16
5 W = 4, so there is at least one cat who has four kittens.

93 First observe that if we choosen+1 integers from any string of 2n consecutive integers, there will always be some two that differ by n.
This is because we can pair the 2n consecutive integers

{a+1,a+2,a+3, . . . ,a+2n}

into then pairs
{a+1,a+n+1},{a+2,a+n+2}, . . . ,{a+n,a+2n},

and ifn+1 integers are chosen from this, there must be two that belongto the same group.

So now group the one hundred integers as follows:

{1,2, . . .20},{21,22, . . . ,40},

{41,42, . . . ,60}, {61,62, . . . ,80}
and

{81,82, . . . ,100}.
If we select fifty five integers, we must perforce choose eleven from some group. From that group, by the above observation (let n = 10),
there must be two that differ by 10.

94 If we draw all the 1+ 2+ · · ·+ 9 = 45 labelled “1”, . . . , “9” and any nine from each of the discs “10”, . . . , “50”, we have drawn
45+9·41= 414 discs. The 415-th disc drawn will assure at least ten discs from a label.

95 There are 210−1 = 1023 non-empty subsets that one can form with a given 10-element set. To each of these subsets we associate the sum
of its elements. The maximum value that any such sum can achieve is 90+91+ · · ·+99= 945< 1023. Therefore, there must be at least two
different subsets that have the same sum.
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Chapter 3
Logic, Sets, and Boolean Algebra

3.1 Logic
96 Definition A boolean propositionis a statement which can be characterised as eithertrue or false .

Whether the statement isobviouslytrue or false does not enter in the definition. One only needs to know that its certainty can be established.

97 Example The following are boolean propositions and their values, ifknown:

➊ 72 = 49. ( true )

➋ 5 > 6. ( false)

➌ If p is a prime thenp is odd. (false)

➍ There exists infinitely many primes which are the sum of a square and 1. (unknown)

➎ There is a G-d. (unknown)

➏ There is a dog. (true )

➐ I am the Pope. (false)

➑ Every prime that leaves remainder 1 when divided by 4 is the sum of two squares. (true )

➒ Every even integer greater than 6 is the sum of two distinct primes. (unknown)

98 Example The following are not boolean propositions, since it is impossible to assign atrue or false value to them.

➊ Whenever I shampoo my camel.

➋ Sit on a potato pan, Otis!

➌ y← x.

➍ This sentence is false.

99 Definition A boolean operatoris a character used on boolean propositions. Its output is either true or false

We will consider the following boolean operators in these notes. They are listed in order of operator precedence and their evaluation rules are
given in Table3.1.

➊ ¬ (not or negation),

➋ ∧ (and or conjunction)

➌ ∨ (or or disjunction)

➍ =⇒ (implies)

➎ = (equals)

¬ has right-to-left associativity, all other operators listed have left-to-right associativity.

☞ The∨= or is inclusive, meaning that if a∨b then either a is true, or b is true, or both a and b are true.
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a b (¬a) (a∧b) (a∨b) (a =⇒ b) (a = b)
F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

Table 3.1: Evaluation Rules

100 Example Consider the propositions:

• a : I will eat my socks.

• b : It is snowing.

• c : I will go jogging.

The sentences below are represented by means of logical operators.

➊ (b∨¬b) =⇒ c: Whether or not it is snowing, I will go jogging.

➋ b =⇒ ¬c: If it is snowing, I will not go jogging.

➌ b =⇒ (a∧¬c): If it is snowing, I will eat my socks, but I will not go jogging.

101 Example ¬a =⇒ a∨b is equivalent to(¬a) =⇒ (a∨b) upon using the precedence rules.

102 Example a =⇒ b =⇒ c is equivalent to(a =⇒ b) =⇒ c upon using the associativity rules.

103 Example a∧¬b =⇒ c is equivalent to(a∧¬b) =⇒ c by the precedence rules.

104 Example Write a code fragment that accepts three numbers, decides whether they form the sides of a triangle.

Solution: First we must havea > 0,b > 0,c > 0. Sides of lengtha,b,c form a triangle if and only they satisfy the triangle inequalities::

a+b > c,

b+c > a,

c+a > b.

�

�

�



Algorithm 3.1.1: ISITATRIANGLE((a,b,c))

if ((a > 0) and (b > 0) and (c > 0)
and ((a+b > c) and (b+c > a) and (c+a > b))
then istriangle← true
elseistriangle← false

return (istriangle)

105 Definition A truth tableis a table assigning all possible combinations ofT or F to the variables in a proposition. If there aren variables,
the truth table will have 2n lines.

106 Example Construct the truth table of the propositiona∨¬b∧c.

Solution: Since there are three variables, the truth table will have 23 = 8 lines. Notice that by the precedence rules the given proposition is
equivalent toa∨ (¬b∧c), since∧ has higher precedence than∨. The truth table is in Table3.2.

107 Definition Two propositions are said to beequivalentif they have the same truth table. If propositionP is equivalent to propositionQ
we writeP = Q.
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28 Chapter 3

a b c (¬b) (¬b∧c) a∨ (¬b∧c)
F F F T F F
F F T T T T
F T F F F F
F T T F F F
T F F T F T
T F T T T T
T T F F F T
T T T F F T

Table 3.2: Example106.

a (¬a) (¬(¬a))
F T F
T F T

Table 3.3: Theorem108.

108 Theorem (Double Negation) ¬(¬a) = a.

Proof: From the truth table3.3the entries for a and¬(¬a) produce the same output, proving the assertion.❑

109 Theorem (De Morgan’s Rules) ¬(a∨b) = ¬a∧¬b and¬(a∧b) = ¬a∨¬b.

Proof: Truth table3.4proves that¬(a∨b) = ¬a∧¬b and truth table3.5proves that¬(a∧b) = ¬a∨¬b.

a b (a∨b) ¬(a∨b) (¬a) (¬b) (¬a∧¬b)
F F F T T T T
F T T F T F F
T F T F F T F
T T T F F F F

Table 3.4:¬(a∨b) = ¬a∧¬b .

a b (a∧b) ¬(a∧b) (¬a) (¬b) (¬a∨¬b)
F F F T T T T
F T F T T F T
T F F T F T T
T T T F F F F

Table 3.5:¬(a∧b) = ¬a∨¬b.

❑

110 Example NegateA∨¬B.

Solution: Using the De Morgan Rules and double negation:¬(A∨¬B) = ¬A∧¬(¬B) = ¬A∧B.

111 Example Let p andq be propositions. Translate into symbols: eitherp or q is true, but not both simultaneously.

Solution: By the conditions of the problem, ifp is true thenq must be false, which we represent asp∧¬q. Similarly if q is true,p must be
false and we must have¬p∧q. The required expression is thus

(p∧¬q)∨ (¬p∧q).

112 Definition A predicateis a sentence containing variables, whose truth or falsity depends on the values assigned to the variables.

113 Definition (Existential Quantifier) We use the symbol∃ to mean “there exists.”

114 Definition (Universal Quantifier) We use the symbol∀ to mean “for all.”
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Observe that¬∀= ∃ and¬∃= ∀.

115 Example Write the negation of(∀n∈N)(∃x∈]0;+∞[)(nx< 1).

Solution: Since¬(∀n∈N) = (∃n∈N), ¬(∃x∈]0;+∞[) = (∀x∈]0;+∞[) and¬(nx< 1) = (nx≥ 1), the required statement is

(∃n∈ N)(∀x∈]0;+∞[)(nx≥ 1).

3.2 Sets
We will consider asetnaively as a collection of objects calledelements. We use the boldface lettersN to denote the natural numbers (non-
negative integers) andZ to denote the integers. The boldface lettersR andC shall respectively denote the real numbers and the complex
numbers.

If S is a set and the elementx is in the set, then we say thatx belongs to Sand we write this asx∈ S. If x does not belong toSwe write
x 6∈ S. For example ifS= {n∈N : n is the square of an integer}, then 4∈ Sbut 2 6∈ S. We denote by card(A) thecardinality of A, that is, the
number of elements thatA has.

If a setA is totally contained in another setB, then we say thatA is a subset of Band we write this asA⊆B (some authors use the notation
A⊂ B). For example, ifS= {squares of integers}, thenA = {1,4,9,16} is a subset ofS. If ∃x∈ A such thatx 6∈ B, thenA is not a subset of
B, which we write asA 6⊆ B. Two setsA andB are equal ifA⊆ B andB⊆ A.

116 Example Find all the subsets of{a,b,c}.

Solution: They are
S1 = ∅

S2 = {a}
S3 = {b}
S4 = {c}
S5 = {a,b}
S6 = {b,c}
S7 = {c,a}
S8 = {a,b,c}

117 Example Find all the subsets of{a,b,c,d}.

Solution: The idea is the following. We use the result of example 116. Now, a subset of{a,b,c,d} either containsd or it does not. Since the
subsets of{a,b,c} do not containd, we simply list all the subsets of{a,b,c} and then to each one of them we addd. This gives

S1 = ∅ S9 = {d}
S2 = {a} S10 = {a,d}
S3 = {b} S11 = {b,d}
S4 = {c} S12 = {c,d}
S5 = {a,b} S13 = {a,b,d}
S6 = {b,c} S14 = {b,c,d}
S7 = {c,a} S15 = {c,a,d}
S8 = {a,b,c} S16 = {a,b,c,d}

118 Theorem A finite n-element set has 2n subsets.

Proof: We use induction and the idea of example117. Clearly a set A with n= 1 elements has21 = 2 subsets:∅ and A itself.
Assume every set with n−1 elements has2n−1 subsets. Let B be a set with n elements. If x∈ B then B\{x} is a set with n−1
elements and so by the induction hypothesis it has2n−1 subsets. For each subset S⊆ B\{x} we form the new subset S∪{x}.
This is a subset of B. There are2n−1 such new subsets, and so B has a total of2n−1 +2n−1 = 2n subsets.❑

119 Definition Theunionof two setsA andB, is the set

A∪B = {x : (x∈ A) ∨ (x∈ B)}.
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This is read “A unionB.” See figure3.1. Theintersectionof two setsA andB, is

A∩B = {x : (x∈ A) ∧ (x∈ B)}.

This is read “A intersectionB.” See figure3.2. Thedifferenceof two setsA andB, is

A\B = {x : (x∈ A) ∧ (x 6∈ B)}.

This is read “A set minusB.” See figure3.3.

A B

Figure 3.1:A∪B

A B

Figure 3.2:A∩B

A B

Figure 3.3:A\B

{A
A

Figure 3.4:{A

120 Definition Let A⊆ X. Thecomplementof A with respect toX is {A = X \A.

Observe that{A is all that which is outsideA. Usually we assume thatA is a subset of some universal setU which is tacitly understood.
The complement{A represents the event thatA does not occur. We represent{A pictorially as in figure3.4.

121 Example Let U = {0,1,2,3,4,5,6,7,8,9} be the universal set of the decimal digits and letA = {0,2,4,6,8} ⊂U be the set of even
digits. Then{A = {1,3,5,7,9} is the set of odd digits.

Observe that
{A∩A = ∅. (3.1)

We also have theDe Morgan Laws: if A andB share the same universal set, we have

{(A∪B) = {A∩{B, (3.2)

{(A∩B) = {A∪{B. (3.3)

We will now prove one of the De Morgan’s Rules.

122 Example Prove that{(A∪B) = {A∩{B.

Solution: Letx ∈ {(A∪B). Thenx 6∈ A∪B. Thusx 6∈ A∧ x 6∈ B, that is,x ∈ {A∧ x ∈ {B. This is the same asx ∈ {A∩ {B. Therefore
{(A∪B)⊆ {A∩{B.

Now, letx∈ {A∩{B. Thenx∈ {A∧x∈ {B. This means thatx 6∈ A∧x 6∈ B or what is the samex 6∈ A∪B. But this last statement asserts
thatx∈ {(A∪B). Hence{A∩{B⊆ {(A∪B).

Since we have shown that the two sets contain each other, it must be the case that they are equal.

123 Example Prove thatA\ (B∪C) = (A\B)∩ (A\C).

Solution: We have
x∈ A\ (B∪C) ⇐⇒ x∈ A∧x 6∈ (B∨C)

⇐⇒ (x∈ A) ∧ ((x 6∈ B) ∧ (x 6∈C))
⇐⇒ (x∈ A ∧ x 6∈ B) ∧ (x∈ A ∧ x 6∈C)
⇐⇒ (x∈ A\B) ∧ (x∈ A\C)
⇐⇒ x∈ (A\B)∩ (A\C)
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124 Example Shew how to write the unionA∪B∪C as adisjoint union of sets.

Solution: The setsA,B\A,C\ (A∪B) are clearly disjoint and

A∪B∪C = A∪ (B\A)∪ (C\ (A∪B)).

125 Example Let x1 < x2 < · · ·< xn andy1 < y2 < · · ·< ym be two strictly increasing sequences of integers. Write an algorithm to determine

{x1,x2, . . . ,xn}∩{y1,y2, . . . ,ym}.

Solution:

�

�
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Algorithm 3.2.1: INTERSECTION(n,m,X,Y)

comment:X is an array of lengthn.

comment:Y is an array of lengthm.

n1← 0
m1← 0
common← 0
while (n1 6= n) and (m1 6= m)

do

8>>>><>>>>:if X[n1+1] < Y[m1+1]
then n1← n1+1
else ifX[n1+1] > Y[m1+1]
then m1←m1+1

else

(
n1← n1+1
m1←m1+1
common← common+1

3.3 Boolean Algebras and Boolean Operations
126 Definition A boolean algebraconsists of a setX with at least two different elements 0 and 1, two binary operations+ (addition) and·
(multiplication), and a unary operation (calledcomplementation) satisfying the following axioms. (We use the juxtaposition AB to denote
the productA·B.)

1. A+B = B+A (commutativity of addition)

2. AB= BA (commutativity of multiplication)

3. A+(B+C) = (A+B)+C (associativity of addition)

4. A(BC) = (AB)C (associativity of multiplication)

5. A(B+C) = AB+AC (distributive law)

6. A+(BC) = (A+B)(A+C) (distributive law)

7. A+0 = A (0 is the additive identity)

8. A1 = A (1 is the multiplicative identity)

9. A+A = 1

10. AA= 0

127 Example If we regard 0= F , 1= T, + = ∨, ·= ∧, and = ¬, then the logic operations over{F,T} constitute a boolean algebra.

128 Example If we regard 0= ∅, 1=U (the universal set),+ =∪, ·=∩, and = {, then the set operations over the subsets ofU constitute
a boolean algebra.

129 Example Let X = {1,2,3,5,6,10,15,30}, the set of positive divisors of 30. We define+ as the least common multiple of two elements,

· as the greatest common divisor of two elements, andA =
30
A

. The additive identity is 1 and the multiplicative identityis 30. Under these

operationsX becomes a boolean algebra.
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A B A A+B AB
0 0 1 0 0
0 1 1 1 0
1 0 0 1 0
1 1 0 1 1

Table 3.6: Evaluation Rules

The operations of complementation, addition and multiplication act on 0 and 1 as shewn in table3.6.
The following properties are immediate.

130 Theorem 0 = 1 and1 = 0.

Proof: Since0 is the additive identity,0 = 0+0. But by axiom9, 0+0 = 1 and thus0 = 0+0 = 1.

Similarly, since1 is the multiplicative identity,1 = 1·1. But by axiom10, 1·1 = 0 and thus1 = 1·1 = 0. ❑

131 Theorem (Idempotent Laws) A+A = A andAA= A

Proof: We have
A = A+0 = A+A·A = (A+A)(A+A) = (A+A)(1) = A+A.

Similarly

A = A1 = A(A+A) = AA+A·A = AA+0 = AA.

❑

132 Theorem (Domination Laws) A+1 = 1 andA·0 = 0.

Proof: We have
A+1 = A+(A+A) = (A+A)+A = A+A = 1.

Also,
A·0 = A(A·A) = (AA)A = AA = 0.

❑

133 Theorem (Uniqueness of the Complement) If AB= 0 andA+B = 1 thenB = A.

Proof: We have
B = B1 = B(A+A) = BA+BA = 0+BA = BA.

Also,
A = A1 = A(A+B) = A·A+AB= AB.

Thus
B = BA = AB= A.

❑

134 Theorem (Involution Law) A = A

Proof: By axioms9 and10, we have the identities

1 = A+A and A·A = 0.

By uniqueness of the complement we must have A= A. ❑
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135 Theorem (De Morgan’s Laws) A+B = A·B andA·B = A+B.

Proof: Observe that
(A+B)+A ·B = (A+B+A)(A+B+B) = (B+1)(A+1) = 1,

and
(A+B)A·B = AA·B+BA·B = 0+0 = 0.

ThusA·B is the complement of A+B and so we must haveA·B = A+B.

To obtain the other De Morgan Law putA instead of A andB instead of B in the law just derived and use the involution law:

A+B = A·B = AB.

Taking complements once again we have

A+B = AB =⇒ A+B = AB.

❑

136 Theorem AB+AB = A.

Proof: Factoring
AB+AB = A(B+B) = A(1) = A.

❑

137 Theorem A(A+B) = ABandA+AB= A+B.

Proof: Multiplying
A(A+B) = AA+AB= 0+AB= AB.

Using the distributive law,
A+AB= (A+A)(A+B) = 1(A+B) = A+B.

❑

138 Theorem (Absorption Laws) A+AB= A andA(A+B) = A.

Proof: Factoring and using the domination laws:

A+AB= A(1+B) = A1 = A.

Expanding and using the identity just derived:

A(A+B) = AA+AB= A+AB= A.

❑

3.4 Sum of Products and Products of Sums
Given a truth table in some boolean variables, we would like to find a function whose output is that of the table. This can be done by either
finding asum of products(SOP) or aproduct of sums(POS) for the table. To find a sum of products from a truth table:

➊ identify the rows having output 1.

➋ for each such row, write the variable if the variable input is1 or write the complement of the variable if the variable input is 0, then
multiply the variables forming a term.

➌ add all such terms.

To find a product of sums from a truth table:

➊ identify the rows having output 0.

➋ for each such row, write the variable if the variable input is0 or write the complement of the variable if the variable input is 1, then
add the variables forming a sum

➌ multiply all such sums.
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139 Example Find a SOP and a POS forZ.
A B C Z
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Solution: The output (Z) 1’s occur on the rows (i)A = 0,B = 0,C = 0, so we form the term(A)(B)(C), (ii) A = 0,B = 1,C = 0, so we form
the termABC, (iii) A = 1,B = 1,C = 0, so we form the termABC, and (iv)A = B = C = 1, giving the termABC. The required SOP is

Z = (A)(B)(C)+ABC+ABC+ABC.

The output (Z) 0’s occur on the rows (i)A = 0,B = 0,C = 1, so we form the termA+B+C, (ii) A = 0,B = 1,C = 1, so we form the term
A+B+C, (iii) A = 1,B = 0,C = 0, so we form the termA+B+C, and (iv)A = 1,B = 0,C = 1, giving the termA+B+C. The required
POS is

Z = (A+B+C)(A+B+C)(A+B+C)(A+B+C).

Using the axioms of a boolean algebra and the aforementionedtheorems we may simplify a given boolean expression, or transform a
SOP into a POS or viceversa.

140 Example Convert the following POS to a SOP:
(A+BC)(A+BD).

Solution:
(A+BC)(A+BD) = AA+ABD+ABC+BCBD

= A+ABD+ABC+BCD
= A+BCD.

141 Example Convert the following SOP to a POS:
AB+CD.

Solution:
AB+CD = (AB+C)(AB+D)

= (A+C)(B+C)(A+D)(B+D).

142 Example WriteWXY+WXZ+Y +Z as a sum of two products.

Solution: We have
WXY+WXZ+Y +Z = WX(Y+Z)+Y +Z

= WX+Y +Z
= WX+Y ·Z,

where we have used the fact thatAB+B = A+B and the De Morgan laws.

3.5 Logic Puzzles
The boolean algebra identities from the preceding section may help to solve some logic puzzles.

143 Example Brown, Johns and Landau are charged with bank robbery. The thieves escaped in a car that was waiting for them. At the
inquest Brown stated that the criminals had escaped in a blueBuick; Johns stated that it had been a black Chevrolet, and Landau said that it
had been a Ford Granada and by no means blue. It turned out thatwishing to confuse the Court, each one of them only indicatedcorrectly
either the make of the car or only its colour. What colour was the car and of what make?

Solution: Consider the sentences
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A = the car is blue
B = the car is a Buick
C = the car is black
D = the car is a Chevrolet
E = the car is a Ford Granada

Since each of the criminals gave one correct answer, it follows that Brown’s declarationA+B is true. Similarly, Johns’s declarationC+D is
true, and Landau’s declarationA+E is true. It now follows that

(A+B) · (C+D) · (A+E)

is true. Upon multiplying this out, we obtain

(A·C ·A)+(A·C ·E)+(A·D ·A)+(A·D ·E)+(B·C ·A)+(B·C ·E)+(B·D ·A)+(B·D ·E).

From the hypothesis that each of the criminals gave one correct answer, it follows that each of the summands, except the fifth, is false. Thus
B·C ·A is true, and so the criminals escaped in a black Buick.

144 Example Margie, Mimi, April, and Rachel ran a race. Asked how they made out, they replied:
Margie: “April won; Mimi was second.”
Mimi: “April was second and Rachel was third.”
April: “Rachel was last; Margie was second.”

If each of the girls made one and only one true statement, who won the race?

Solution: Consider the sentences

A = April was first
B = April was second
C = Mimi was second
D = Margie was second
E = Rachel was third
F = Rachel was last

Since each of the girls gave one true statement we have that

(A+C)(B+E)(F +D) = 1.

Multiplying this out
ABF+ABD+AEF+AED+CBF+CBD+CEF+CED= 1.

Now, AB= EF = BC= CD = 0 so the only surviving term isAED and so April was first, Margie was second, Rachel was third, and Mimi
was last.

145 Example Having returned home, Maigret rang his office on quai des Orf`evres.

“Maigret here . Any news?”

“Yes Chief. The inspectors have reported. Torrence thinks that if François was drunk, then either Etienne is the murderer or François is
lying. Justin is of the opinion that either Etienne is the murderer or François was not drunk and the murder occurred after midnight. Inspector
Lucas asked me to tell you that if the murder had occurred after midnight, then either Etienne is the murderer or Françoisis lying. Then there
was a ring from . . . .”

“That’s all, thanks. That’s enough!” The commissar replaced the receiver. He knew that when François was sober he neverlied. Now
everything was clear to him. Find, with proof, the murderer.

Solution: Represent the following sentences as:

A = François was drunk,
B = Etienne is the murderer,
C = François is telling a lie,
D = the murder took place after midnight.
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We then have
A =⇒ (B+C), B+AD, D =⇒ (B+C).

Using the identity
X =⇒ Y = X +Y,

we see that the output of the product of the following sentences must be 1:

(A+B+C)(B+AD)(D+B+C).

After multiplying the above product and simplifying, we obtain

B+CAD.

So, either Etienne is the murderer, or the following events occurred simultaneously: François lied, François was notdrunk and the murder
took place after midnight. But Maigret knows thatAC= 0, thus it follows thatE = 1, i.e., Etienne is the murderer.

Homework

146 Problem Construct the truth table for(p =⇒ q)∧q.

147 Problem By means of a truth table, decide whether(p∧q)∨(¬p) = p∨(¬p). That is, you want to compare the outputs of(p∧q)∨(¬p)
andp∨ (¬p).

148 Problem Explain whether the following assertion is true and negate it without using the negation symbol¬:

∀n∈N ∃m∈N
�
n > 3 =⇒ (n+7)2 > 49+m

�
149 Problem Explain whether the following assertion is true and negate it without using the negation symbol¬:

∀n∈N ∃m∈N
�
n2 > 4n =⇒ 2n > 2m+10

�
150 Problem Prove by means of set inclusion that(A∪B)∩C = (A∩C)∪ (B∩C).

151 Problem Obtain a sum of products for the truth table

A B C Z
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

152 Problem Use the Inclusion-Exclusion Principle to determine how many integers in the set{1,2, . . . ,200} are neither divisible by 3 nor
7 but are divisible by 11.

Answers

146
p q p =⇒ q (p =⇒ q)∧q
F F T F
F T T T
T F F F
T T T T
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147 The desired truth table is
p q p∧q ¬p p∨¬p (p∧q)∨ (¬p)

F F F T T T
F T F T T T
T F F F T F
T T T F T T

148 The assertion is true. We have
(n+7)2 > 49+m ⇐⇒ n2 +14n > m.

Hence, takingm= n2 +14n−1 for instance (or any smaller number), will make the assertion true.

150 We have,
x∈ (A∪B)∩C ⇐⇒ x∈ (A∪B)∧x∈C

⇐⇒ (x∈ A∨x∈ B)∧x∈C
⇐⇒ (x∈ A∧x∈C)∨ (x∈ B∧x∈C)
⇐⇒ (x∈ A∩C)∨ (x∈ B∩C)
⇐⇒ x∈ (A∩C)∪ (B∩C),

which establishes the equality.

151
A·B·C+A ·B·C+A·B·C+A·B·C

152 10
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Chapter 4
Relations and Functions

4.1 Partitions and Equivalence Relations
153 Definition Let S 6= ∅ be a set. Apartition of S is a collection of non-empty, pairwise disjoint subsets ofS whose union isS .

154 Example Let
2Z = {. . . ,−6,−4,−2,0,2,4,6, . . .}= 0

be the set of even integers and let
2Z+1 = {. . . ,−5,−3,−1,1,3,5, . . .}= 1

be the set of odd integers. Then
(2Z)∪ (2Z+1) = Z, (2Z)∩ (2Z+1) = ∅,

and so{2Z,2Z+1} is a partition ofZ.

155 Example Let
3Z = {. . .−9, ,−6,−3,0,3,6,9, . . .}= 0

be the integral multiples of 3, let
3Z+1 = {. . . ,−8,−5,−2,1,4,7, . . .}= 1

be the integers leaving remainder 1 upon division by 3, and let

3Z+2 = {. . . ,−7,−4,−1,2,5,8, . . .}= 2

be integers leaving remainder 2 upon division by 3. Then

(3Z)∪ (3Z+1)∪ (3Z+2) = Z,

(3Z)∩ (3Z+1) = ∅, (3Z)∩ (3Z+2) = ∅,(3Z+1)∩ (3Z+2) = ∅,

and so{3Z,3Z+1,3Z+2} is a partition ofZ.

☞ Notice that0 and1 do not mean the same in examples154and155. Whenever we make use of this notation, the integral
divisor must be made explicit.

156 Example Observe
R = (Q)∪ (R\Q), ∅ = (Q)∩ (R\Q),

which means that the real numbers can be partitioned into therational and irrational numbers.

157 Definition Let A,B be sets. Arelation Ris a subset of the Cartesian productA×B. We write the fact that(x,y) ∈ Rasx∼ y.

158 Definition Let A be a set andR be a relation onA×A. ThenR is said to be

• reflexive if (∀x∈ A),x∼ x,

• symmetric if (∀(x,y) ∈ A2),x∼ y =⇒ y∼ x,
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• anti-symmetric if (∀(x,y) ∈ A2),(x∼ y) and (y∼ x) =⇒ x = y,

• transitive if (∀(x,y,z) ∈ A3),(x∼ y) and (y∼ z) =⇒ (x∼ z).

A relationRwhich is reflexive, symmetric and transitive is called anequivalence relationonA. A relationRwhich is reflexive, anti-symmetric
and transitive is called apartial order onA.

159 Example Let S ={All Human Beings}, and define∼ onS asa∼ b if and only if a andb have the same mother. Thena∼ a since any
humana has the same mother as himself. Similarly,a∼ b =⇒ b∼ a and(a∼ b) and (b∼ c) =⇒ (a∼ c). Therefore∼ is an equivalence
relation.

160 Example Let L be the set of all lines on the plane and writel1∼ l2 if l1||l2 (the linel1 is parallel to the linel2). Then∼ is an equivalence
relation onL.

161 Example Let X be a collection of sets. WriteA∼ B if A⊆ B. Then∼ is a partial order onX.

162 Example For (a,b) ∈R2 define
a∼ b⇔ a2 +b2 > 2.

Determine, with proof, whether∼ is reflexive, symmetric, and/or transitive. Is∼ an equivalence relation?

Solution: Since 02 +02 ≯ 2, we have 0� 0 and so∼ is not reflexive. Now,

a∼ b ⇔ a2 +b2

⇔ b2 +a2

⇔ b∼ a,

so∼ is symmetric. Also 0∼ 3 since 02 +32 > 2 and 3∼ 1 since 32 +12 > 2. But 0� 1 since 02 +12 ≯ 2. Thus the relation is not transitive.
The relation, therefore, is not an equivalence relation.

163 Example For (a,b) ∈ (Q∗)2 define the relation∼ as follows:a∼ b⇔ a
b ∈ Z. Determine whether this relation is reflexive, symmetric,

and/or transitive.

Solution:a∼ a sincea
a = 1∈ Z, and so the relation is reflexive. The relation is not symmetric. For 2∼ 1 since2

1 ∈ Z but 1� 2 since1
2 6∈ Z.

The relation is transitive. For assumea∼ b andb∼ c. Then there exist(m,n) ∈ Z2 such thatab = m, b
c = n. This gives

a
c

=
a
b
· b

c
= mn∈ Z,

and soa∼ c.

164 Example Give an example of a relation onZ∗ which is reflexive, but is neither symmetric nor transitive.

Solution: Here is one possible example: puta∼ b⇔ a2+a
b ∈ Z. Then clearly ifa ∈ Z∗ we havea∼ a since a2+a

a = a+ 1 ∈ Z. On the

other hand, the relation is not symmetric, since 5∼ 2 as 52+5
2 = 15∈ Z but 2 6∼ 5, as 22+2

5 = 6
5 6∈ Z. It is not transitive either, since

52+5
3 ∈ Z =⇒ 5∼ 3 and32+3

12 ∈ Z =⇒ 3∼ 12 but 52+5
12 6∈ Z and so 5� 12.

165 Definition Let∼ be an equivalence relation on a setS . Then theequivalence class of ais defined and denoted by

[a] = {x∈S : x∼ a}.

166 Lemma Let∼ be an equivalence relation on a setS . Then two equivalence classes are either identical or disjoint.

Proof: We prove that if(a,b) ∈S 2, and[a]∩ [b] 6= ∅ then[a] = [b]. Suppose that x∈ [a]∩ [b]. Now x∈ [a] =⇒ x∼ a =⇒
a∼ x, by symmetry. Similarly, x∈ [b] =⇒ x∼ b. By transitivity

(a∼ x) and (x∼ b) =⇒ a∼ b.

Now, if y∈ [b] then b∼ y. Again by transitivity, a∼ y. This means that y∈ [a]. We have shewn that y∈ [b] =⇒ y∈ [a] and so
[b]⊆ [a]. In a similar fashion, we may prove that[a]⊆ [b]. This establishes the result.❑
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As a way of motivating the following result, let us consider the following example. Suppose that a child is playing with 10bricks, which
come in 3 different colours and are numbered 1 through 10. Bricks 1 through 3 are red, bricks 4 through 7 are white and bricks8 through 10
are blue.

Suppose we induce the relationa∼ b whenever brick numbera has the same colour as brick numberb. The∼ is clearly an equivalence
relation and the bricks are partitioned according to colour. In this partition we have 3 classes (colours): bricks with numbers in{1,2,3}
belong to the “red” class; bricks with numbers in{4,5,6,7} belong to the “white” class; and bricks with numbers in{8,9,10} belong to the
“blue” class.

Suppose that instead of grouping the bricks by colour we decided to group the bricks by the remainder given by the number ofthe brick
upon division by 4, thusa≈ b if a andb leave the same remainder upon division by 4. Clearly≈ is also an equivalence relation. In this
case bricks with numbers in{4,8} belong to the “0” class; bricks with numbers in{1,5,9} belong to the “1” class; bricks with numbers in
{2,4,10} belong to the “2” class; and bricks with numbers in{3,7} belong to the “3” class.

Notice on the same set we constructed two different partitions, and that classes need not have the same number of elements.

167 Theorem LetS 6= ∅ be a set. Any equivalence relation onS induces a partition ofS . Conversely, given a partition ofS into disjoint,
non-empty subsets, we can define an equivalence relation onS whose equivalence classes are precisely these subsets.

Proof: By Lemma166, if ∼ is an equivalence relation onS then

S =
[
a∈S

[a],

and[a]∩ [b] = ∅ if a � b. This proves the first half of the theorem.

Conversely, let

S =
[
α

Sα , Sα ∩Sβ = ∅ if α 6= β ,

be a partition ofS . We define the relation≈ onS by letting a≈ b if and only if they belong to the same Sα . Since the Sα are
mutually disjoint, it is clear that≈ is an equivalence relation onS and that for a∈ Sα , we have[a] = Sα . ❑

4.2 Functions

168 Definition By a function f : Dom( f )→ Target ( f ) we mean the collection of the following ingredients:

➊ anamefor the function. Usually we use the letterf .

➋ a set of inputs called thedomainof the function. The domain off is denoted byDom( f ).

➌ an input parameter, also calledindependent variableor dummy variable. We usually denote a typical input by the letterx.

➍ a set of possible outputs of the function, called thetarget setof the function. The target set off is denoted byTarget ( f ).

➎ anassignment ruleor formula, assigning toevery input a unique output. This assignment rule forf is usually denoted byx 7→ f (x).
The output ofx under f is also referred to as theimage of x under f, and is denoted byf (x).

domain

imagerule

target setb

b

b

b

b

b

b

b

Figure 4.1: The main ingredients of a function.
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The notation1

f :
Dom( f ) → Target ( f )

x 7→ f (x)

read “the functionf , with domainDom( f ), target setTarget ( f ), and assignment rulef mappingx to f (x)” conveys all the above ingredients.
See figure4.1.

169 Definition The imageIm ( f ) of a function f is its set of actual outputs. In other words,

Im ( f ) = { f (a) : a∈Dom( f )}.

Observe that we always haveIm ( f )⊆ Target ( f ).

It must be emphasised that the uniqueness of the image of an element of the domain is crucial. For example, the diagram in figure4.2does not
represent a function. The element 1 in the domain is assignedto more than one element of the target set. Also important in the definition of
a function is the fact thatall the elementsof the domain must be operated on. For example, the diagram in4.3does notrepresent a function.
The element 3 in the domain is not assigned to any element of the target set.

3 8
1 2
2 4

16

Figure 4.2: Not a function.

1
0

3

4

8

Figure 4.3: Not a function.

170 Example Consider the setsA= {1,2,3}, B= {1,4,9}, and the rulef given by f (x) = x2, which means thatf takes an input and squares
it. Figures4.4through4.5give three ways of representing the functionf : A→ B.

f :
{1,2,3} → {1,4,9}

x 7→ x2

Figure 4.4: Example170.

f :
�

1 2 3
1 4 9

�
Figure 4.5: Example170.

3 9
2 4
1 1

Figure 4.6: Example170.

171 Example Find all functions with domain{a,b} and target set{c,d}.

Solution: There are 22 = 4 such functions, namely:

➊ f1 given by f1(a) = f1(b) = c. Observe thatIm ( f1) = {c}.
➋ f2 given by f2(a) = f2(b) = d. Observe thatIm ( f2) = {d}.
➌ f3 given by f3(a) = c, f3(b) = d. Observe thatIm ( f3) = {c,d}.

1Notice the difference in the arrows. The straight arrow−→ is used to mean that a certain set is associated with another set, whereas the arrow7→ (read
“maps to”) is used to denote that an input becomes a certain output.
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➍ f4 given by f4(a) = d, f4(b) = c. Observe thatIm ( f4) = {c,d}.

172 Definition A function is injectiveor one-to-onewhenever two different values of its domain generate two different values in its image.
A function issurjectiveor ontoif every element of its target set is hit, that is, the target set is the same as the image of the function. A function
is bijectiveif it is both injective and surjective.

α
1 2
2 8
3 4

Figure 4.7: An injection.

β

2 2
1 4

3

Figure 4.8: Not an injec-
tion

2
1

3
2
4

γ

Figure 4.9: A surjection

8

δ
2 2
1 4

Figure 4.10: Not a surjec-
tion

173 Example The functionα in the diagram4.7 is an injective function. The function represented by the diagram4.8, however is not
injective, sinceβ (3) = β (1) = 4, but 36= 1. The functionγ represented by diagram4.9 is surjective. The functionδ represented by diagram
4.10is not surjective since 8 is part of the target set but not of the image of the function.

174 Theorem Let f : A→ B be a function, and letA andB be finite. If f is injective, then card(A) ≤ card(B). If f is surjective then
card(B)≤ card(A). If f is bijective, then card(A) = card(B).

Proof: Put n= card(A), A= {x1,x2, . . . ,xn} and m= card(B), B= {y1,y2, . . . ,ym}.

If f were injective then f(x1), f (x2), . . . , f (xn) are all distinct, and among the yk. Hence n≤m.

If f were surjective then each yk is hit, and for each, there is an xi with f(xi) = yk. Thus there are at least m different images,
and so n≥m. ❑

175 Definition A permutationis a function from a finite set to itself which reorders the elements of the set.

☞ By necessity then, permutations are bijective.

176 Example The following are permutations of{a,b,c}:

f1 :

�
a b c
a b c

�
f2 :

�
a b c
b c a

�
.

The following arenot permutations of{a,b,c}:

f3 :

�
a b c
a a c

�
f4 :

�
a b c
b b a

�
.

177 Theorem Let A, B be finite sets with card(A) = n and card(B) = m. Then

• the number of functions fromA to B is mn.

• if n≤ m, the number of injective functions fromA to B is m(m−1)(m−2) · · · (m−n+1). If n > m there are no injective functions
from A to B.

Proof: Each of the n elements of A must be assigned an element of B, andhence there are m·m· · ·m| {z }
n factors

= mn possibilities, and

thus mn functions.If a function from A to B is injective then we must have n≤m in view of Theorem174. If to different inputs
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we must assign different outputs then to the first element of Awe may assign any of the m elements of B, to the second any of
the m−1 remaining ones, to the third any of the m−2 remaining ones, etc., and so we have m(m−1) · · ·(m−n+1) injective
functions.❑

178 Example Let A = {a,b,c} andB = {1,2,3,4}. Then according to Theorem177, there are 43 = 64 functions fromA to B and of these,
4·3·2 = 24 are injective. Similarly, there are 34 = 81 functions fromB to A, and none are injective.

179 Example Find the number of surjections fromA = {a,b,c,d} to B = {1,2,3}.

Solution: The trick here is that we know how to count the number of functions from one finite set to the other (Theorem177). What we do
is over count the number of functions, and then sieve out those which are not surjective by means of Inclusion-Exclusion.By Theorem177,
there are 34 = 81 functions fromA to B. There are

�3
1

�
24 = 48 functions fromA to B that miss one element fromB. There are

�3
2

�
14 = 3

functions fromA to B that miss two elements fromB. There are
�3

0

�
04 = 4 functions fromA to B that miss three elements fromB. By

Inclusion-Exclusion there are
81−48+3 = 36

surjective functions fromA to B.

In analogy to example179, we may prove the following theorem, which complements Theorem177by finding the number of surjections
from one set to another set.

180 Theorem Let A andB be two finite sets with card(A) = n and card(B) = m. If n < m then there are no surjections fromA to B. If n≥m
then the number of surjective functions fromA to B is

mn−
�

m
1

�
(m−1)n +

�
m
2

�
(m−2)n−

�
m
3

�
(m−3)n + · · ·+(−1)m−1

�
m

m−1

�
(1)n.
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Chapter 5
Number Theory

5.1 Division Algorithm
181 Definition If a 6= 0,b are integers, we say thata divides bif there is an integerc such thatac= b. We write this asa|b.

If a does not divideb we writea 6 |b.

182 Example Since 20= 4·5 we have 4|20. Also−4|20 since 20= (−4)(−5).

183 Theorem Let a,b,c be integers.

➊ If a|b thena|kb for anyk∈ Z.

➋ If a|b andb|a, thena =±b.

➌ If a|b andb|c thena|c.

➍ If c dividesa andb thenc divides any linear combination ofa andb. That is, ifa,b,c,m,n are integers withc|a,c|b, thenc|(am+nb).

➎ For anyk∈ Z\{0}, a|b ⇐⇒ ka|kb.

➏ If a|b andb 6= 0 then 1≤ |a| ≤ |b|.

Proof: We prove the assertions in the given order.

➊ There is u∈ Z such that au= b. Then a(uk) = bk and so a|bk.

➋ Observe that by definition, neither a6= 0 nor b 6= 0 if a|b and b|a. There exist integers u,u′ with au= b and bu′ = a.
Hence auu′ = bu′ = a, and so uu′ = 1. Since u,u′ are integers, then u=±1,u′ =∓1. Hence a=±b.

➌ There are integers u,v with au= b,bv= c. Hence auv= c, and so a|c.

➍ There are integers s,t with sc= a,tc = b. Thus

am+nb= c(sm+ tn),

giving c|(am+bn).

➎ There exist an integer u with au= b. Then(ak)u = kb, and so a|b =⇒ ka|kb. Since k6= 0 we may cancel out the k’s and
hence(ak)u = kb =⇒ au= b =⇒ a|b, proving the converse.

➏ Since b6= 0 there exists an integer u6= 0 with au= b. So|u| ≥ 1 and thus|a| ·1≤ |a| · |u|= |au|= |b|. |a| ≥ 1 trivially.

❑

184 Theorem (Division Algorithm) Let n > 0 be an integer. Then for any integera there exist unique integersq (called thequotient) andr
(called theremainder) such thata = qn+ r and 0≤ r < q.

Proof: In the proof of this theorem, we use the following property ofthe integers, called thewell-ordering principle: any
non-empty set of non-negative integers has a smallest element.
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Consider the set S= {a−bn : b∈ Z and a≥ bn}. Then S is a collection of nonnegative integers and S6= ∅ as±a−0 ·n∈ S
and this is non-negative for one choice of sign. By the Well-Ordering Principle, S has a least element, say r. Now, there must
be some q∈ Z such that r= a−qn since r∈ S. By construction, r≥ 0. Let us prove that r< n. For assume that r≥ n. Then
r > r−n = a−qn−n = a− (q+1)n≥ 0, since r−n≥ 0. But then a− (q+1)n ∈ S and a− (q+1)n < r which contradicts
the fact that r is the smallest member of S. Thus we must have0 ≤ r < n. To prove that r and q are unique, assume that
q1n+ r1 = a = q2n+ r2, 0≤ r1 < n, 0≤ r2 < n. Then r2− r1 = n(q1−q2), that is, n divides(r2− r1). But |r2− r1|< n, whence
r2 = r1. From this it also follows that q1 = q2. This completes the proof.❑

185 Example If n = 5 the Division Algorithm says that we can arrange all the integers in five columns as follows:

...
...

...
...

...
−10 −9 −8 −7 −6
−5 −4 −3 −2 −1

0 1 2 3 4
5 6 7 8 9
...

...
...

...
...

The arrangement above shews that any integer comes in one of 5flavours: those leaving remainder 0 upon division by 5, thoseleaving
remainder 1 upon division by 5, etc. We let

5Z = {. . . ,−15,−10,−5,0,5,10,15, . . .}= 0,

5Z+1 = {. . . ,−14,−9,−4,1,6,11,16, . . .}= 1,

5Z+2 = {. . . ,−13,−8,−3,2,7,12,17, . . .}= 2,

5Z+3 = {. . . ,−12,−7,−2,3,8,13,18, . . .}= 3,

5Z+4 = {. . . ,−11,−6,−1,4,9,14,19, . . .}= 4,

and
Z5 = {0,1,2,3,4}.

186 Example Shew thatn2 +23 is divisible by 24 for infinitely many values ofn.

Solution: Observe thatn2 +23= n2−1+24 = (n−1)(n+1)+24. Therefore the families of integersn = 24m±1,m = 0,±1,±2,±3, . . .
produce infinitely many values such thatn2 +23 is divisible by 24.

187 Example Shew that the square of any prime greater than 3 leaves remainder 1 upon division by 12.

Solution: If p > 3 is prime, thenp is of one of the forms 6k±1.
Now,

(6k±1)2 = 12(3k2±k)+1,

proving the assertion.

188 Example Prove that ifp is a prime, then one of 8p−1 and 8p+1 is a prime and the other is composite.

Solution: If p = 3, 8p− 1 = 23 and 8p+ 1 = 25, then the assertion is true forp = 3. If p > 3, then eitherp = 3k+ 1 or p = 3k+ 2. If
p = 3k+1, 8p−1 = 24k−7 and 8p+1 = 24k−6, which is divisible by 6 and hence not prime. Ifp = 3k+2, 8p−1 = 24k−15 is not a
prime, .

189 Example (AHSME 1976) Let r be the common remainder when 1059,1417 and 2312 are divided byd > 1. Findd− r.

Solution: By the division algorithm there are integersq1,q2,q3 with 1059= dq1 + r,1417= dq2 + r and 2312= dq3 + r. Subtracting we get
1253= d(q3−q1),895= d(q3−q2) and 358= d(q2−q1). Notice thatd is a common divisor of 1253,895, and 358. As 1253= 7 ·179,
895= 5 · 179, and 358= 2 · 179, we see that 179 is the common divisor greater than 1 of allthree quantities, and sod = 179. Since
1059= 179q1 + r, and 1059= 5·179+164, we deduce thatr = 164. Finally, d− r = 15.

190 Example Shew that if 3n+1 is a square, thenn+1 is the sum of three squares.
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Solution: Clearly 3n+1 is not a multiple of 3, and so 3n+1 = (3k±1)2. Therefore

n+1 =
(3k±1)2−1

3
+1 = 3k2±2k+1 = k2 +k2 +(k±1)2,

as we wanted to shew.

5.2 Greatest Common Divisor
191 Definition Let a, b be integers with one of them different from 0. The greatest common divisord of a,b, denoted byd = gcd(a,b) is the
largest positive integer that divides botha andb.

192 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integersa,b can be written as a linear combination ofa
andb, i.e., there are integersx,y with

gcd(a,b) = ax+by.

Proof: Let A= {ax+by|ax+by> 0,x,y∈ Z}. Clearly one of±a,±b is in A, as both a,b are not zero. By the Well Ordering
Principle, A has a smallest element, say d. Therefore, thereare x0,y0 such that d= ax0 +by0. We prove that d= gcd(a,b). To
do this we prove that d divides a and b and that if t divides a andb, then t must also divide then d.

We first prove that d divides a. By the Division Algorithm, we can find integers q, r,0≤ r < d such that a= dq+ r. Then

r = a−dq= a(1−qx0)−by0.

If r > 0, then r∈ A is smaller than the smaller element of A, namely d, a contradiction. Thus r= 0. This entails dq= a, i.e. d
divides a. We can similarly prove that d divides b.

Assume that t divides a and b. Then a= tm,b = tn for integers m,n. Hence d= ax0 +bx0 = t(mx0 +ny0), that is, t divides d.
The theorem is thus proved.❑

Let a,b be positive integers. After using the Division Algorithm repeatedly, we find the sequence of equalities

a = bq1 + r2, 0 < r2 < b,
b = r2q2 + r3 0 < r3 < r2,
r2 = r3q3 + r4 0 < r4 < r3,
...

...
...

...
rn−2 = rn−1qn−1 + rn 0 < rn < rn−1,
rn−1 = rnqn.

(5.1)

The sequence of remainders will eventually reach arn+1 which will be zero, sinceb, r2, r3, . . . is a monotonically decreasing sequence of
integers, and cannot contain more thanb positive terms.

The Euclidean Algorithm rests on the fact, to be proved below, that gcd(a,b) = gcd(b, r2) = gcd(r2, r3) = · · ·= gcd(rn−1, rn) = rn.

193 Theorem If rn is the last non-zero remainder found in the process of the Euclidean Algorithm, then

rn = gcd(a,b).

Proof: From equations5.1
r2 = a−bq1
r3 = b− r2q2
r4 = r2− r3q3
...

...
...

rn = rn−2− rn−1qn−1

Let r = gcd(a,b). From the first equation, r|r2. From the second equation, r|r3. Upon iterating the process, we see that r|rn.

But starting at the last equation5.1 and working up, we see that rn|rn−1, rn|rn−2, . . . rn|r2, rn|b, rn|a. Thus rn is a common
divisor of a and b and so rn|gcd(a,b). This gives the desired result.❑

194 Example Write pseudocode describing the Euclidean Algorithm.
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Solution: Here is one iterative way of doing this.

�

�

�



Algorithm 5.2.1: EUCLIDEANALGORITHM(x,y)

if x < 0
then x←−x

if y < 0
then y←−y

while y > 0

do

(
r← x mody
x← y
y← r

195 Example Find gcd(23,29) by means of the Euclidean Algorithm.

Solution: We have
29= 1·23+6,

23= 3·6+5,

6 = 1·5+1,

5 = 5·1.

The last non-zero remainder is 1, thus gcd(23,29) = 1.

An equation which requires integer solutions is called adiophantine equation. By the Bachet-Bezout Theorem192, we see that the linear
diophantine equation

ax+by= c

has a solution in integers if and only if gcd(a,b)|c. The Euclidean Algorithm is an efficient means to find a solution to this equation.

196 Example Find integersx,y that satisfy the linear diophantine equation

23x+29y = 1.

Solution: We work upwards, starting from the penultimate equality in the preceding problem:

1 = 6−1·5,

5 = 23−3·6,

6 = 29·1−23.

Hence,
1 = 6−1·5

= 6−1· (23−3·6)
= 4·6−1·23
= 4(29·1−23)−1·23
= 4·29−5·23.

This solves the equation, withx =−5,y = 4.

197 Example Find integer solutions to
23x+29y = 7.

Solution: From the preceding example, 23(−5)+29(4) = 1. Multiplying both sides of this equality by 7,

23(−35)+29(28) = 7,

which solves the problem.

198 Example Find infinitely many integer solutions to
23x+29y = 1.
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Solution: By example196, the pairx0 =−5,y0 = 4 is a solution. We can find a family of solutions by letting

x =−5+29t, y = 4−23t, t ∈ Z.

199 Example Can you find integers x, y such that 3456x+246y = 73?

Solution: No.(3456,246) = 2 and 26 |73.

5.3 Non-decimal Scales

The fact that most people have ten fingers has fixed our scale ofnotation to the decimal. Given any positive integerr > 1, we can, however,
express any numberx in baser.

If n is a positive integer, andr > 1 is an integer, thenn has the base-r representation

n = a0 +a1r +a2r2 + · · ·+akrk, 0≤ at ≤ r−1, ak 6= 0, rk ≤ n < rk+1.

We use the convention that we shall refer to a decimal number without referring to its base, and to a base-r number by using the subindex
r .

200 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213< 75. We thus want to find 0≤ a0, . . . ,a4 ≤ 6,a4 6= 0 such that

5213= a474 +a373 +a272 +a17+a0.

Dividing by 74, we obtain 2+ proper fraction= a4+ proper fraction. This means thata4 = 2. Thus 5213= 2·74 +a373 +a272 +a17+a0 or
411= 5213= a373 +a272 +a17+a0. Dividing by 73 this last equality we obtain 1+ proper fraction= a3+ proper fraction, and soa3 = 1.
Continuing in this way we deduce that 5213= 211257.

The method of successive divisions used in the preceding problem can be conveniently displayed as

7 5212 5
7 744 2
7 106 1
7 15 1
7 2 2

The central column contains the successive quotients and the rightmost column contains the corresponding remainders.Reading from
the last remainder up, we recover 5213= 211257.

201 Example Write 5627 in base-five.

Solution: 5627 = 5·72 +6·7+2 = in decimal scale, so the problem reduces to convert 289 to base-five. Doing successive divisions,

5 289 4
5 57 2
5 11 1
5 2 2

Thus 5627 = 289= 21245.

202 Example Express the fraction
13
16

in base-six.

Solution: Write
13
16

=
a1

6
+

a2

62 +
a3

63 +
a4

64 + · · ·

Multiplying by 6, we obtain 4+ proper fraction= a1+ proper fraction, soa1 = 4. Hence

13
16
− 4

6
=

7
48

=
a2

62 +
a3

63 +
a4

64 + · · ·
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Multiply by 62 we obtain 5+ proper fraction= a2+ proper fraction, and soa2 = 5. Continuing in this fashion

13
16

=
4
6

+
5
62 +

1
63 +

3
64 = 0.45136.

We may simplify this procedure of successive multiplications by recurring to the following display:

6 13
16 4

6 7
8 5

6 1
4 1

6 1
2 3

The third column contains the integral part of the products of the first column and the second column. Each term of the second column from
the second on is the fractional part of the product obtained in the preceding row. Thus 6· 13

16−4 = 7
8 , 6· 7

8−5 = 1
4 , etc..

203 Example Prove that 4.41r is a perfect square in any scale of notation.

Solution:

4.41r = 4+
4
r

+
4
r2 =

�
2+

1
r

�2

204 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12,13, . . .

consists of all those positive integers which are powers of 3or sums of distinct powers or 3. Find the hundredth term of thesequence.

Solution: If the terms of the sequence are written in base-three, they comprise the positive integers which do not contain the digit 2. Thus the
terms of the sequence in ascending order are

13,103,113,1003,1013,1103,1113, . . .

In the binary scale these numbers are, of course, the ascending natural numbers 1,2,3,4, . . .. Therefore to obtain the 100th term of the
sequence we write 100 in binary and then translate this into ternary: 100= 11001002 and 11001003 = 36 +35 +32 = 981.

5.4 Congruences

205 Definition Let n > 0 be an integer. We say that “a is congruent tob modulon” written a≡ b modn if a andb leave the same remainder
upon division byn.

206 Example
−8≡ 6 mod 7,

−8≡ 13 mod 7.

By the division algorithm any integera can be written asa = qn+ r with 0≤ r < n. By letting q vary over the integers we obtain the
arithmetic progression

, . . . , r−3n, r−2n, r−n, r, r +n, r +2n, r +3n, . . . ,

and so all the numbers in this sequence are congruent toa modulon.

207 Theorem Let n > 0 be an integer. Thena≡ b modn ⇐⇒ n|(a−b).

Proof: Assume a6= b, otherwise the result is clear. By the Euclidean Algorithmthere are integers q1 6= q2 such that a= q1n+ r
and b= q2n+ r, as a and b leave the same remainder when divided by n. Thus a−b = q1n−q2n = (q1−q2)n. This implies
that n|(a−b).
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Conversely if n|(a− b) then there is an integer t such that nt= a− b. Assume that a= m1n+ r1 and b= m2n+ r2 with
0≤ r1, r2 < n. Then

nt = a−b = (m1−m2)n+ r1− r2 =⇒ n(t−m1 +m2) = r1− r2 =⇒ n|(r1− r2).

Since|r1− r2|< n we must have r1− r2 = 0 and so a and b leave the same remainder upon division by n.❑

We now provesome simple properties of congruences.

208 Theorem Let a,b,c,d,m∈ Z,k∈ with a≡ b modm andc≡ d modm. Then

1. a+c≡ b+d modm

2. a−c≡ b−d modm

3. ac≡ bd modm

4. ak ≡ bk modm

5. If f is a polynomial with integral coefficients thenf (a)≡ f (b) modm.

Proof: As a≡ b modm and c≡ d modm, we can find k1,k2 ∈ Z with a = b+ k1m and c= d + k2m. Thus a± c =
b± d + m(k1± k2) and ac= bd+ m(k2b+ k1d). These equalities give (1), (2) and (3). Property (4) follows by successive
application of (3), and (5) follows from (4).❑

Congruences mod 9 can sometimes be used to check multiplications. For example 875961·2753 6= 2410520633. For if this were true
then

(8+7+5+9+6+1)(2+7+5+3) ≡ 2+4+1+0+5+2+0+6+3+3 mod 9.

But this says that 0·8≡ 8 mod 9, which is patently false.

209 Example Find the remainder when 61987 is divided by 37.

Solution: 62 ≡−1 mod 37. Thus 61987≡ 6·61986≡ 6(62)993≡ 6(−1)993≡−6≡ 31 mod 37.

210 Example Prove that 7 divides 32n+1 +2n+2 for all natural numbersn.

Solution: Observe that 32n+1 ≡ 3·9n ≡ 3·2n mod 7 and 2n+2 ≡ 4·2n mod 7. Hence

32n+1 +2n+2 ≡ 7·2n ≡ 0 mod 7,

for all natural numbersn.

211 Example Prove that 7|(22225555+55552222).

Solution: 2222≡ 3 mod 7, 5555≡ 4 mod 7 and 35 ≡ 5 mod 7. Now

22225555+55552222≡ 35555+42222≡ (35)1111+(42)1111≡ 51111−51111≡ 0 mod 7.

212 Example Find the units digit of 77
7
.

Solution: We must find 77
7

mod 10. Now, 72 ≡−1 mod 10, and so 73 ≡ 72 ·7≡−7≡ 3 mod 10 and 74 ≡ (72)2 ≡ 1 mod 10. Also, 72 ≡ 1
mod 4 and so 77 ≡ (72)3 ·7≡ 3 mod 4, which means that there is an integert such that 77 = 3+4t. Upon assembling all this,

777 ≡ 74t+3 ≡ (74)t ·73 ≡ 1t ·3≡ 3 mod 10.

Thus the last digit is 3.

213 Example Prove that every year, including any leap year, has at least one Friday 13th.
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Solution: It is enough to prove that each year has a Sunday the1st. Now, the first day of a month in each year falls in one of thefollowing
days:

Month Day of the year mod 7

January 1 1

February 32 4

March 60 or 61 4 or 5

April 91 or 92 0 or 1

May 121 or122 2 or 3

June 152 or 153 5 or 6

July 182 or183 0 or 1

August 213 or 214 3 or 4

September 244 or 245 6 or 0

October 274 or 275 1 or 2

November 305 or 306 4 or 5

December 335 or 336 6 or 0

(The above table means that, depending on whether the year isa leap year or not, that March 1st is the 50th or 51st day of the year, etc.) Now,
each remainder class modulo 7 is represented in the third column, thus each year, whether leap or not, has at least one Sunday the 1st.

214 Example Find infinitely many integersn such that 2n +27 is divisible by 7.

Solution: Observe that 21≡ 2,22≡ 4,23 ≡ 1,24≡ 2,25≡ 4,26≡ 1 mod 7 and so 23k ≡ 1 mod 3 for all positive integersk. Hence 23k +27≡
1+27≡ 0 mod 7 for all positive integersk. This produces the infinitely many values sought.

215 Example Prove that 2k−5,k = 0,1,2, . . . never leaves remainder 1 when divided by 7.

Solution: 21 ≡ 2,22 ≡ 4,23 ≡ 1 mod 7, and this cycle of three repeats. Thus 2k−5 can leave only remainders 3, 4, or 6 upon division by 7.

5.5 Divisibility Criteria

216 Theorem An integern is divisible by 5 if and only if its last digit is a 0 or a 5.

Proof: We derive the result for n> 0, for if n < 0 we simply apply the result to−n > 0. Since10k ≡ 0 mod 5for integral
k≥ 1, we have

n = as10s+as−110s−1 + · · ·+a110+a0 ≡ a0 mod 5,

Thus divisibility of n by5 depends on whether a0 is divisible by5, which happens only when a0 = 0 or a0 = 5. ❑

217 Theorem Let k be a positive integer. An integern is divisible by 2k if and only if the number formed by the lastk digits of n is divisible
by 2k.

Proof: If n = 0 there is nothing to prove. If we prove the result for n> 0 then we can deduce the result for n< 0 by applying
it to −n = (−1)n > 0. So assume that n∈ Z, n> 0 and let its decimal expansion be

n = as10s+as−110s−1 + · · ·+a110+a0,
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where0≤ ai ≤ 9, as 6= 0. Now, each of10t = 2t5t ≡ 0 mod 2t for t ≥ k. Hence

n = as10s+as−110s−1 + · · ·+a110+a0

≡ ak−110k−1 +ak−210k−2 + · · ·+a110+a0 mod 2k,

so n is divisible by2k if and only if the number formed by the last k digits of n is divisible by2k. ❑

218 Example The number 987654888 is divisible by 23 = 8 because the number formed by its last three digits, 888 is divisible by 8.

219 Example The number 191919191919193216 is divisible by 24 = 16 because the number formed by its last four digits, 3216 is divisible
by 16.

220 Example By what digits may one replaceA so that the integer 231A2 be divisible by 4?

Solution: The number 231A2 is divisible by 4 if and only ifA2 is divisible by 4. This happens whenA = 1 (A2 = 12),A= 3 (A2= 32),A= 5
(A2 = 52),A = 7 (A2 = 72), andA = 9 (A2 = 92). Thus the five numbers

23112,23132,2315223172,23192,

are all divisible by 4.

221 Example Determine digitsa,b so that 235ab be divisible by 40.

Solution: 235ab will be divisible by 40 if and only if it is divisible by 8 and by5. If 235ab is divisible by 8 then,a fortiori, it is even and
since we also require it to be divisible by 5 we must haveb = 0. Thus we need a digita so that 5a0 be divisible by 8. Since 0≤ a≤ 9, a quick
trial an error gives that the desired integers are

23500,23520,23540,23560,23580.

222 Theorem (Casting-out 9’s) An integern is divisible by 9 if and only if the sum of its digits is divisible by 9.

Proof: If n = 0 there is nothing to prove. If we prove the result for n> 0 then we can deduce the result for n< 0 by applying
it to −n = (−1)n > 0. So assume that n∈ Z, n> 0 and let its decimal expansion be

n = as10s+as−110s−1 + · · ·+a110+a0,

where0≤ ai ≤ 9, as 6= 0. Observe that10≡ 1 mod 9and so10t ≡ 1t ≡ 1 mod 9. Now

n = as10s+as−110s−1 + · · ·+a110+a0

≡ as+ · · ·+a1 +a0 mod 9,

from where the result follows.❑

☞ Since10≡ 1 mod 3we can also deduce that integer n is divisible by3 if and only if the sum of it digits is divisible by3.

223 Example What values should the digitd take so that the number 32d5 be divisible by 9?

Solution: The number 32d5 is divisible by 9 if and only 3+2+d +5 = d+10 is divisible by 9. Now,

0≤ d≤ 9 =⇒ 10≤ d+10≤ 19.

The only number in the range 10 to 19 divisible by 9 is 18, thusd = 8. One can easily verify that 3285 is divisible by 9.

224 Example Is there a digitd so that 125d be divisible by 45?
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Solution: If 125d were divisible by 45, it must be divisible by 9 and by 5. If it were divisible by 5, thend = 0 or d = 5. If d = 0, the digital
sum is 1+2+5+0 = 8, which is not divisible by 9. Similarly, ifd = 5, the digital sum is 1+2+5+5 = 13, which is neither divisible by 9.
So 125d is never divisible by 45.

225 Definition If the positive integern has decimal expansion

n = as10s+as−110s−1 + · · ·+a110+a0,

thealternating digital sumof n is
as−as−1 +as−2−as−3 + · · ·+(−1)s−1a0

226 Example The alternating digital sum of 135456 is

1−3+5−4+5−6 =−2.

227 Theorem An integern is divisible by 11 if and only if its alternating digital sum is divisible by 11.

Proof: We may assume that n> 0. Let

n = as10s+as−110s−1 + · · ·+a110+a0,

where0≤ ai ≤ 9, as 6= 0. Observe that10≡−1 mod 11and so10t ≡ (−1) mod 11. Hence

n = as10s+as−110s−1 + · · ·+a110+a0

≡ as(−1)s+as−1(−1)s−1 +as−2(−1)s−2 + · · ·+−a1 +a0 mod 11

and the result follows from this.❑

228 Example 912282219 has alternating digital sum 9−1+2−2+8−2+2−1+9 = 24 and so 912282219 is not divisible by 11, whereas
8924310064539 has alternating digital sum 8−9+2−4+3−1+0−0+6−4+4−3+9 = 11, and so 8924310064539 is divisible by 11.

Homework
229 Problem Prove that there are infinitely many integersn such that 4n2 +1 is simultaneously divisible by 13 and 5.

230 Problem Find the least positive integer solution of the equation 436x−393y = 5.

231 Problem Two rods of equal length are divided into 250 and 243 equal parts, respectively. If their ends be coincident, find the divisions
which are the nearest together.

232 Problem Prove that any integern > 11 is the sum of two positive composite numbers.

233 Problem Let n > 1 be an integer.

1. Prove, using induction or otherwise, that ifa 6= 1 then

1+a+a2 + · · ·an−1 =
1−an

1−a
.

2. By making the substitutiona = x
y prove that

xn−yn = (x−y)(xn−1 +xn−2y+ · · ·+xyn−2 +yn−1).

3. Deduce that ifx 6= y are integers then(x−y)|xn−yn.

4. Shew that
2903n−803n−464n +261n

is divisible by 1897 for all natural numbersn.
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5. Prove that if 2n−1 is prime, thenn must be prime.

6. Deduce that ifx 6= y are integers, andn is odd, then(x+y)|xn +yn.

7. Prove that if 2n +1 is prime, thenn = 2k for some integerk.

234 Problem Use the preceding problem to find the prime factorp > 250000 of the integer

1002004008016032.

235 Problem Write an algorithm that finds integer solutionsx,y to the equation

gcd(a,b) = ax+by.

Assume that at least one ofa or b is different from 0.

236 Problem Let A be a positive integer, andA′ be a number written with the aid of the same digits with are arranged in some other order.
Prove that ifA+A′ = 1010, thenA is divisible by 10.

237 Problem A grocer sells a 1-gallon container of milk for 79 cents (comment: those were the days!) and a half gallon container of milk
for 41 cents. At the end of the day he sold $63.58 worth of milk.How many 1 gallon and half gallon containers did he sell?

238 Problem Using congruences, find the last two digits of 3100. Hint: 340≡ 1 mod 100.

Answers

229 We have 4n2 +1 = 4n2−64+65= 4(n−4)(n+4)+65 so it is enough to taken = 65k±4.

230 Using the Euclidean Algorithm,

436 = 1·393+43

393 = 9·43+6

43 = 7·6+1

Hence

1 = 43−7·6

= 43−7· (393−9·43)

= −7·393+64·43

= −7·393+64· (436−393)

= −71·393+64·436,

and so 5= 320·436−355·393. An infinite set of solutions can be achieved by puttingx = 320+393t, y = 355+436t.

231 Observe that gcd(243,250) = 1, and so the divisions will be nearest together when they differ by the least amount, that is, we seek
solutions of 243x−250y =±1. By using the Euclidean Algorithm we find 243·107−250·104= 1 and also 243· (250−107)−250· (243−
104) =−1 and so the values ofx are 107 and 143 and those ofy are 104 and 139.

232 If n > 11 is even thenn− 6 is even and at least 12− 4 = 8 and thus it is composite. Hencen = (n− 6) + 6 is the sum of two even
composite numbers. Ifn > 11 is odd thenn−9 is even at least 13−9 = 4, and hence composite. Thereforen = (n−9)+9 of an even and an
odd composite number.

233 1. PutS= 1+ a+ a2 + · · ·+ an−1. ThenaS= a+ a2 + · · ·+ an−1 + an. ThusS−aS= (1+ a+ a2 + · · ·+ an−1)− (a+ a2 + · · ·+
an−1 +an) = 1−an, and from(1−a)S= S−aS= 1−an we obtain the result.
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2. From

1+
x
y

+

�
x
y

�2

+ · · ·+
�

x
y

�n−1

=
1−
�

x
y

�n

1− x
y

we obtain �
1− x

y

��
1+

x
y

+

�
x
y

�2

+ · · ·+
�

x
y

�n−1�
= 1−

�
x
y

�n

,

and multiplying byyn both sides gives the result.

3. This is immediate from the above result.

4. By the preceding part, 2903n−803n is divisible by 2903−803= 2100= 7·300=, and 261n−464n is divisible by 261−464=−203=
7 · (−29). Thus the expression 2903n−803n−464n +261n is divisible by 7. Also, 2903n−464n is divisible by 2903−464= 9 ·271
and 261n−803n is divisible by−542= (−2)271. Thus the expression is also divisible by 271. Since 7 and271 have no prime factors
in common, we can conclude that the expression is divisible by 7·271= 1897.

5. We have

2n−1 = 2ab−1 = (2a−1)((2a)b−1 +(2a)b−2 + · · ·+(2a)1 +1).

Sincea > 1,2a−1 > 1. Sinceb > 1,

(2a)b−1 +(2a)b−2 + · · ·(2a)1 +1)≥ 2a +1 > 1.

We have decomposed a prime number (the left hand side) into the product of two factors, each greater than 1, a contradiction. Thusn
must be a prime. Primes of this form are calledMersenne primes.

6. For everyn we have thatx−y dividesxn−yn. By changingy into−y we deduce thatx− (−y) dividesxn− (−y)n, that isx+y divides
xn− (−y)n. If n is odd then−(−y)n = yn, which gives the result.

7. We have

2n +1 = 22km+1 = (22k
+1)((22k

)m−1− (22k
)m−2 + · · ·− (22k

)1 +1).

Clearly, 22
k
+1 > 1. Also if m≥ 3

(22k
)m−1− (22k

)m−2 + · · ·− (22k
)1 +1≥ (22k

)2− (22k
)1 +1 > 1,

and so, we have produced two factors each greater than 1 for the prime 2n + 1, which is nonsense. Primes of this form are called
Fermat primes.

234 If a = 103,b = 2 then

1002004008016032= a5 +a4b+a3b2 +a2b3 +ab4 +b5 =
a6−b6

a−b
.

This last expression factorises as

a6−b6

a−b
= (a+b)(a2 +ab+b2)(a2−ab+b2)

= 1002·1002004·998004

= 4·4·1002·250501·k,

wherek < 250000. Thereforep = 250501.

235 Here a possible approach. I have put semicolons instead of writing the algorithm strictly vertically in order to save space.
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Algorithm 5.5.1: L INEARDIOPHANTINE(a,b)

m← a; n← b; p← 1; q← 0; r ← 0; s← 1;

while ¬((m= 0)∨ (n = 0))8>>>><>>>>:if m≥ n

then
§

m←m−n; p← p− r;q← q−s;

else
§

n← n−m; r ← r− p;s← s−q;

if m= 0

then
§

k← n;x← r;y← s;

else
§

k←m;x← p;y← q;

236 ClearlyA andA′ must have ten digits. LetA = a10a9 . . .a1 be the consecutive digits ofA andA′ = a′10a′9 . . .a′1. Now, A+A′ = 1010 if
and only if there is aj ,0≤ j ≤ 9 for which a1 + a′1 = a2 + a′2 = · · · = a j + a′j = 0,a j+1 + a′j+1 = 10,a j+2 + a′j+2 = a j+3 + a′j+3 = · · · =
a10+a′10 = 9. Notice thatj = 0 implies that there are no sums of the forma j+k +a′j+k,k≥ 2, and j = 9 implies that there are no sums of the

form al +a′l ,1≤ l ≤ j . On adding all these sums, we gather

a1 +a′1 +a2 +a′2 + · · ·+a10+a′10 = 10+9(9− j).

Since thea′s are a permutation of theas, we see that the sinistral side of the above equality is the even number 2(a1 + a2 + · · ·+ a10). This
implies thatj must be odd. But this implies thata1 +a′1 = 0, which gives the result.

237 We want non-negative integer solutions to the equation

.79x+ .41y = 63.58 =⇒ 79x+41y = 6358.

Using the Euclidean Algorithm we find, successively

79= 1·41+38; 41= 1·38+3; 38= 3·12+2; 3= 1·2+1.

Hence

1 = 3−2

= 3− (38−3·12)

= −38+3·13

= −38+(41−38) ·13

= 38· (−14)+41·13

= (79−41)(−14)+41·13

= 79(−14)+41(27)

A solution to 79x+41y = 1 is thus(x,y) = (−14,27). Thus 79(−89012)+41(171666) = 6358 and the parametrisation 79(−89012+41t)+
41(171666−79t) = 1 provides infinitely many solutions. We need non-negative solutions so we need, simultaneously

−89012+41t ≥ 0 =⇒ t ≥ 2172 ∧ 171666−79t ≥ 0 =⇒ t ≤ 2172.

Thus takingt = 2172 we obtainx =−89012+41(2172) = 40 andy = 171666−79(2172) = 78, and indeed.79(40)+ .41(78) = 63.58.

238 Since 3100≡ (340)2320≡ 320 mod 100, we only need to concern ourselves with the last quantity. Now (all congruences mod 100)

34 ≡ 81 =⇒ 38 ≡ 812 ≡ 61 =⇒ 316≡ 612 ≡ 21.

We deduce, as 20= 16+4, that
320≡ 31634 ≡ (21)(81) ≡ 1 mod 100,

and the last two digits are 01.
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Chapter 6
Enumeration

6.1 The Multiplication and Sum Rules
We begin our study of combinatorial methods with the following two fundamental principles.

239 Definition (Cardinality of a Set) If S is a set, then itscardinality is the number of elements it has. We denote the cardinality ofSby
card(S).

240 Rule (Sum Rule: Disjunctive Form) Let E1,E2, . . . ,Ek, be pairwise finite disjoint sets. Then

card(E1∪E2∪·· ·∪Ek) = card(E1)+card(E2)+ · · ·+card(Ek) .

241 Rule (Product Rule) Let E1,E2, . . . ,Ek, be finite sets. Then

card(E1×E2×·· ·×Ek) = card(E1) ·card(E2) · · ·card(Ek) .

242 Example How many ordered pairs of integers(x,y) are there such that 0< |xy| ≤ 5?

Solution: PutEk = {(x,y) ∈ Z2 : |xy|= k} for k = 1, . . . ,5. Then the desired number is

card(E1)+card(E2)+ · · ·+card(E5) .

Then

E1 = {(−1,−1),(−1,1),(1,−1),(1,1)}

E2 = {(−2,−1),(−2,1),(−1,−2),(−1,2),(1,−2),(1,2),(2,−1),(2,1)}

E3 = {(−3,−1),(−3,1),(−1,−3),(−1,3),(1,−3),(1,3),(3,−1),(3,1)}

E4 = {(−4,−1),(−4,1),(−2,−2),(−2,2),(−1,−4),(−1,4),(1,−4),(1,4),(2,−2),(2,2),(4,−1),(4,1)}

E5 = {(−5,−1),(−5,1),(−1,−5),(−1,5),(1,−5),(1,5),(5,−1),(5,1)}

The desired number is therefore 4+8+8+12+8 = 40.

243 Example The positive divisors of 400 are written in increasing order

1,2,4,5,8, . . . ,200,400.

How many integers are there in this sequence. How many of the divisors of 400 are perfect squares?

Solution: Since 400= 24 ·52, any positive divisor of 400 has the form 2a5b where 0≤ a≤ 4 and 0≤ b≤ 2. Thus there are 5 choices fora
and 3 choices forb for a total of 5·3 = 15 positive divisors.

57



58 Chapter 6

To be a perfect square, a positive divisor of 400 must be of theform 2α 5β with α ∈ {0,2,4} andβ ∈ {0,2}. Thus there are 3·2 = 6
divisors of 400 which are also perfect squares.

By arguing as in example243, we obtain the following theorem.

244 Theorem Let the positive integern have the prime factorisation

n = pa1
1 pa2

2 · · · p
ak
k ,

where thepi are different primes, and theai are integers≥ 1. If d(n) denotes the number of positive divisors ofn, then

d(n) = (a1 +1)(a2 +1) · · · (ak +1).

245 Example (AHSME 1977) How many paths consisting of a sequence of horizontal and/orvertical line segments, each segment connecting
a pair of adjacent letters in figure6.1spellCONTEST?

C

C O C

C O N O C

C O N T N O C

C O N T E T N O C

C O N T E S E T N O C

C O N T E S T S T E N O C

Figure 6.1: Problem245.

C

C O

C O N

C O N T

C O N T E

C O N T E S

C O N T E S T

Figure 6.2: Problem245.

Solution: Split the diagram, as in figure6.2. Since every required path must use the bottom rightT, we count paths starting from thisT
and reaching up to aC. Since there are six more rows that we can travel to, and sinceat each stage we can go either up or left, we have
26 = 64 paths. The other half of the figure will provide 64 more paths. Since the middle column is shared by both halves, we have a total of
64+64−1 = 127 paths.

246 Example The integers from 1 to 1000 are written in succession. Find the sum of all the digits.

Solution: When writing the integers from 000 to 999 (with three digits), 3×1000= 3000 digits are used. Each of the 10 digits is used an
equal number of times, so each digit is used 300 times. The thesum of the digits in the interval 000 to 999 is thus

(0+1+2+3+4+5+6+7+8+9)(300) = 13500.

Therefore, the sum of the digits when writing the integers from 1 to 1000 is 13500+1 = 13501.

Aliter: Pair up the integers from 0 to 999 as

(0,999), (1,998), (2,997), (3,996), . . . ,(499,500).

Each pair has sum of digits 27 and there are 500 such pairs. Adding 1 for the sum of digits of 1000, the required total is

27·500+1 = 13501.
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247 Example The strictly positive integers are written in succession

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20, . . .

Which digit occupies the 3000-th position?

Solution: Upon using

9·1 = 9 1-digit integers,

90·2 = 180 2-digit integers,

900·3 = 2700 3-digit integers,

a total of 9+180+2700= 2889 digits have been used, so the 3000-th digit must belong to a 4-digit integer. There remains to use
3000−2889= 111 digits, and 111= 4·27+3, so the 3000-th digit is the third digit of the 28-th 4-digitinteger, that is, the third digit of
4027, namely 2.

6.2 Combinatorial Methods

Most counting problems we will be dealing with can be classified into one of four categories. We explain such categories bymeans of an
example.

248 Example Consider the set{a,b,c,d}. Suppose we “select” two letters from these four. Dependingon our interpretation, we may obtain
the following answers.

➊ Permutations with repetitions. Theorder of listing the letters is important, andrepetition isallowed. In this case there are 4·4 = 16
possible selections:

aa ab ac ad

ba bb bc bd

ca cb cc cd

da db dc dd

➋ Permutations without repetitions. Theorder of listing the letters is important, andrepetition is notallowed. In this case there are
4·3 = 12 possible selections:

ab ac ad

ba bc bd

ca cb cd

da db dc

➌ Combinations with repetitions. Theorder of listing the letters isnot important, andrepetition is allowed. In this case there are
4·3
2

+4 = 10 possible selections:

aa ab ac ad

bb bc bd

cc cd

dd
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➍ Combinations without repetitions. Theorder of listing the letters isnot important, andrepetition is notallowed. In this case there

are
4·3
2

= 6 possible selections:

ab ac ad

bc bd

cd

We will now consider some examples of each situation.

6.2.1 Permutations without Repetitions

249 Definition We define the symbol ! (factorial), as follows: 0!= 1, and for integern≥ 1,

n! = 1·2·3· · ·n.

n! is readn factorial.

250 Example We have

1! = 1,

2! = 1·2 = 2,

3! = 1·2·3 = 6,

4! = 1·2·3·4 = 24,

5! = 1·2·3·4·5 = 120.

251 Example Write a code fragment to computen!.

Solution: The following is an iterative way of solving this problem.

�

�

�



Algorithm 6.2.1: FACTORIAL(n)

comment: returns n!

m← 1

while n > 18><>:m← n∗m

n← n−1

return (m)

252 Definition Let x1,x2, . . . ,xn ben distinct objects. Apermutationof these objects is simply a rearrangement of them.
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253 Example There are 24 permutations of the letters inMATH, namely

MATH MAHT MTAH MTHA MHTA MHAT

AMTH AMHT ATMH ATHM AHTM AHMT

TAMH TAHM TMAH TMHA THMA THAM

HATM HAMT HTAM HTMA HMTA HMAT

254 Theorem Let x1,x2, . . . ,xn ben distinct objects. Then there aren! permutations of them.

Proof: The first position can be chosen in n ways, the second object inn−1 ways, the third in n−2, etc. This gives

n(n−1)(n−2) · · ·2·1 = n!.

❑

255 Example Write a code fragment that prints alln! of the set{1,2, . . . ,n}.

Solution: The following programme prints them in lexicographical order. We use examples13and23.

�

�

�



Algorithm 6.2.2: PERMUTATIONS(n)

k← n−1

while X[k] > X[k−1]§
k← k−1

t← k+1

while ((t < n) and (X[t +1] > X[k]))§
t← t +1

comment:now X[k+1] > .. . > X[t] > X[k] > X[t +1] > .. . > X[n]

Swap(X[k],X[t])

comment:now X[k+1] > .. . > X[n]

ReverseArray(X[k+1], . . . ,X[n])

256 Example A bookshelf contains 5 German books, 7 Spanish books and 8 French books. Each book is different from one another.

➊ How many different arrangements can be done of these
books?

➋ How many different arrangements can be done of these books
if books of each language must be next to each other?

➌ How many different arrangements can be done of these books
if all the French books must be next to each other?

➍ How many different arrangements can be done of these books
if no two French books must be next to each other?

Solution:
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➊ We are permuting 5+7+8 = 20 objects. Thus the number of
arrangements sought is 20!= 2432902008176640000.

➋ “Glue” the books by language, this will assure that books of
the same language are together. We permute the 3 languages
in 3! ways. We permute the German books in 5! ways, the
Spanish books in 7! ways and the French books in 8! ways.
Hence the total number of ways is 3!5!7!8!= 146313216000.

➌ Align the German books and the Spanish books first. Putting
these 5+7 = 12 books creates 12+1 = 13 spaces (we count
the space before the first book, the spaces between books and
the space after the last book). To assure that all the French
books are next each other, we “glue” them together and put
them in one of these spaces. Now, the French books can be
permuted in 8! ways and the non-French books can be
permuted in 12! ways. Thus the total number of permutations

is
(13)8!12! = 251073478656000.

➍ Align the German books and the Spanish books first. Putting
these 5+7 = 12 books creates 12+1 = 13 spaces (we count
the space before the first book, the spaces between books and
the space after the last book). To assure that no two French
books are next to each other, we put them into these spaces.
The first French book can be put into any of 13 spaces, the
second into any of 12, etc., the eighth French book can be put
into any 6 spaces. Now, the non-French books can be
permuted in 12! ways. Thus the total number of permutations
is

(13)(12)(11)(10)(9)(8)(7)(6)12!,

which is 24856274386944000.

257 Example Determine how many 3-digit integers written in decimal notation do not have a 0 in their decimal expansion. Also, find the
sum of all these 3-digit numbers.

Solution: There are 9·9·9 = 729 3-digit integers not possessing a 0 in their decimal expansion. If 100x+10y+z is such an integer, then
given for every fixed choice of a variable, there are 9·9 = 81 choices of the other two variables. Hence the required sumis

81(1+2+ ·+9)100+81(1+2+ ·+9)10+81(1+2+ ·+9)1 = 404595.

258 Example Determine how many 3-digit integers written in decimal notation possess at least one 0 in their decimal expansion. What is
the sum of all these integers.

Solution: Using example257, there are 900−729= 171 such integers. The sum ofall the three digit integers is

100+101+ · · ·+998+999.

To obtain this sum, observe that there are 900 terms, and thatyou obtain the same sum adding backwards as forwards:

S = 100 + 101 + · · · + 999

S = 999 + 998 + · · · + 100

2S = 1099 + 1099 + · · · + 1099

= 900(1099),

giving S=
900(1099)

2
= 494550. The required sum is 494550−404595= 89955.

6.2.2 Permutations with Repetitions

We now consider permutations with repeated objects.

259 Example In how many ways may the letters of the word

MASSACHUSETTS

be permuted?

Solution: We put subscripts on the repeats forming

MA1S1S2A2CHUS3ET1T2S4.
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There are now 13 distinguishable objects, which can be permuted in 13! different ways by Theorem254. For each of these 13! permutations,
A1A2 can be permuted in 2! ways,S1S2S3S4 can be permuted in 4! ways, andT1T2 can be permuted in 2! ways. Thus the over count 13! is
corrected by the total actual count

13!
2!4!2!

= 64864800.

A reasoning analogous to the one of example259, we may prove

260 Theorem Let there bek types of objects:n1 of type 1;n2 of type 2; etc. Then the number of ways in which thesen1 +n2 + · · ·+nk
objects can be rearranged is

(n1 +n2 + · · ·+nk)!
n1!n2! · · ·nk!

.

261 Example In how many ways may we permute the letters of the wordMASSACHUSETTSin such a way thatMASSis always together,
in this order?

Solution: The particleMASScan be considered as one block and the 9 lettersA, C, H, U, S, E, T, T, S. In A, C, H, U, S, E, T, T, S there are
four S’s and twoT ’s and so the total number of permutations sought is

10!
2!2!

= 907200.

262 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here order counts, so, for
example, 1+7+1 is to be regarded different from 7+1+1.

Solution: We first look for answers with
a+b+c = 9,1≤ a≤ b≤ c≤ 7

and we find the permutations of each triplet. We have

(a,b,c) Number of permutations

(1,1,7)
3!
2!

= 3

(1,2,6) 3! = 6

(1,3,5) 3! = 6

(1,4,4)
3!
2!

= 3

(2,2,5)
3!
2!

= 3

(2,3,4) 3! = 6

(3,3,3)
3!
3!

= 1

Thus the number desired is
3+6+6+3+3+6+1 = 28.

263 Example In how many ways can the letters of the wordMURMUR be arranged without letting two letters which are alike come
together?

Solution: If we started with, say ,MU then theR could be arranged as follows:

M U R R ,

M U R R ,

M U R R .
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In the first case there are 2!= 2 of putting the remainingM andU, in the second there are 2!= 2 and in the third there is only 1!. Thus
starting the word withMU gives 2+2+1 = 5 possible arrangements. In the general case, we can choose the first letter of the word in 3
ways, and the second in 2 ways. Thus the number of ways sought is 3·2·5 = 30.

264 Example In how many ways can the letters of the wordAFFECTION be arranged, keeping the vowels in their natural order and not
letting the twoF’s come together?

Solution: There are
9!
2!

ways of permuting the letters ofAFFECTION . The 4 vowels can be permuted in 4! ways, and in only one of these

will they be in their natural order. Thus there are
9!

2!4!
ways of permuting the letters ofAFFECTION in which their vowels keep their

natural order.

Now, put the 7 letters ofAFFECTION which are not the twoF’s. This creates 8 spaces in between them where we put the twoF’s. This

means that there are 8·7! permutations ofAFFECTION that keep the twoF’s together. Hence there are
8·7!
4!

permutations of

AFFECTION where the vowels occur in their natural order.

In conclusion, the number of permutations sought is

9!
2!4!
− 8·7!

4!
=

8!
4!

�9
2
−1
�

=
8·7·6·5·4!

4!
· 7
2

= 5880

6.2.3 Combinations without Repetitions

265 Definition Let n,k be non-negative integers with 0≤ k≤ n. The symbol

�
n
k

�
(read “n choose k”) is defined and denoted by�

n
k

�
=

n!
k!(n−k)!

=
n· (n−1) · (n−2) · · · (n−k+1)

1·2·3· · ·k .

☞ Observe that in the last fraction, there are k factors in boththe numerator and denominator. Also, observe the boundary
conditions �

n
0

�
=

�
n
n

�
= 1,

�
n
1

�
=

�
n

n−1

�
= n.

266 Example We have �6
3

�
= 6·5·4

1·2·3 = 20,�11
2

�
= 11·10

1·2 = 55,�12
7

�
= 12·11·10·9·8·7·6

1·2·3·4·5·6·7 = 792,�110
109

�
= 110,�110

0

�
= 1.

☞ Since n− (n−k) = k, we have for integer n,k, 0≤ k≤ n, the symmetry identity�
n
k

�
=

n!
k!(n−k)!

=
n!

(n−k)!(n− (n−k))!
=

�
n

n−k

�
.

This can be interpreted as follows: if there are n different tickets in a hat, choosing k of them out of the hat is the same as
choosing n−k of them to remain in the hat.

267 Example �
11
9

�
=

�
11
2

�
= 55,�

12
5

�
=

�
12
7

�
= 792.
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268 Definition Let there ben distinguishable objects. Ak-combinationis a selection ofk, (0≤ k≤ n) objects from then made without
regards to order.

269 Example The 2-combinations from the list{X,Y,Z,W} are

XY,XZ,XW,YZ,YW,W Z.

270 Example The 3-combinations from the list{X,Y,Z,W} are

XYZ,XYW,XZW,YWZ.

271 Theorem Let there ben distinguishable objects, and letk, 0≤ k≤ n. Then the numbers ofk-combinations of thesen objects is

�
n
k

�
.

Proof: Pick any of the k objects. They can be ordered in n(n−1)(n−2) · · · (n−k+1), since there are n ways of choosing the
first, n−1 ways of choosing thesecond, etc. This particular choice of k objects can be permuted in k! ways. Hence the total
number of k-combinations is

n(n−1)(n−2) · · · (n−k+1)

k!
=

�
n
k

�
.

❑

272 Example From a group of 10 people, we may choose a committee of 4 in

�
10
4

�
= 210 ways.

273 Example Three different integers are drawn from the set{1,2, . . . ,20}. In how many ways may they be drawn so that their sum is
divisible by 3?

Solution: In{1,2, . . . ,20} there are

6 numbers leaving remainder 0

7 numbers leaving remainder 1

7 numbers leaving remainder 2

The sum of three numbers will be divisible by 3 when (a) the three numbers are divisible by 3; (b) one of the numbers is divisible by 3, one
leaves remainder 1 and the third leaves remainder 2 upon division by 3; (c) all three leave remainder 1 upon division by 3; (d) all three leave
remainder 2 upon division by 3. Hence the number of ways is�

6
3

�
+

�
6
1

��
7
1

��
7
1

�
+

�
7
3

�
+

�
7
3

�
= 384.

A

B

Figure 6.3: Example274.

b

A

O

B

Figure 6.4: Example275.
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274 Example To count the number of shortest routes fromA to B in figure6.3observe that any shortest path must consist of 6 horizontal
moves and 3 vertical ones for a total of 6+3 = 9 moves. Of these 9 moves once we choose the 6 horizontal ones the 3 vertical ones are
determined. Thus there are

�9
6

�
= 84 paths.

275 Example To count the number of shortest routes fromA to B in figure6.4that pass through pointO we count the number of paths from
A to O (of which there are

�5
3

�
= 20) and the number of paths fromO to B (of which there are

�4
3

�
= 4). Thus the desired number of paths is�5

3

��4
3

�
= (20)(4) = 80.

6.2.4 Combinations with Repetitions
276 Theorem (De Moivre) Let n be a positive integer. The number of positive integer solutions to

x1 +x2 + · · ·+xr = n

is �
n−1
r−1

�
.

Proof: Write n as
n = 1+1+ · · ·+1+1,

where there are n 1s and n−1 +s. To decompose n in r summands we only need to choose r−1 pluses from the n−1, which
proves the theorem.❑

277 Example In how many ways may we write the number 9 as the sum of three positive integer summands? Here order counts, so, for
example, 1+7+1 is to be regarded different from 7+1+1.

Solution: Notice that this is example262. We are seeking integral solutions to

a+b+c = 9, a > 0,b > 0,c > 0.

By Theorem276this is �
9−1
3−1

�
=

�
8
2

�
= 28.

278 Example In how many ways can 100 be written as the sum of four positive integer summands?

Solution: We want the number of positive integer solutions to

a+b+c+d = 100,

which by Theorem276is �
99
3

�
= 156849.

279 Corollary Let n be a positive integer. The number of non-negative integer solutions to

y1 +y2 + · · ·+yr = n

is �
n+ r−1

r−1

�
.

Proof: Put xr −1 = yr . Then xr ≥ 1. The equation

x1−1+x2−1+ · · ·+xr −1 = n

is equivalent to
x1 +x2 + · · ·+xr = n+ r,

which from Theorem276, has �
n+ r−1

r−1

�
solutions.❑
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280 Example Find the number of quadruples(a,b,c,d) of integers satisfying

a+b+c+d = 100, a≥ 30,b > 21,c≥ 1,d ≥ 1.

Solution: Puta′+29= a,b′+20= b. Then we want the number of positive integer solutions to

a′+29+b′+21+c+d = 100,

or
a′+b′+c+d = 50.

By Theorem276this number is �
49
3

�
= 18424.

281 Example In how many ways may 1024 be written as the product of three positive integers?

Solution: Observe that 1024= 210. We need a decomposition of the form 210 = 2a2b2c, that is, we need integers solutions to

a+b+c = 10, a≥ 0,b≥ 0,c≥ 0.

By Corollary279there are
�10+3−1

3−1

�
=
�12

2

�
= 66 such solutions.

282 Example Find the number of quadruples(a,b,c,d) of non-negative integers which satisfy the inequality

a+b+c+d ≤ 2001.

Solution: The number of non-negative solutions to
a+b+c+d ≤ 2001

equals the number of solutions to
a+b+c+d + f = 2001

where f is a non-negative integer. This number is the same as the number of positive integer solutions to

a1−1+b1−1+c1−1+d1−1+ f1−1 = 2001,

which is easily seen to be
�2005

4

�
.

6.3 Inclusion-Exclusion
The Sum Rule240gives us the cardinality for unions of finite sets that are mutually disjoint. In this section we will drop the disjointness
requirement and obtain a formula for the cardinality of unions of general finite sets.

The Principle of Inclusion-Exclusion is attributed to bothSylvester and to Poincaré.

283 Theorem (Two set Inclusion-Exclusion)

card(A∪B) = card(A)+card(B)−card(A∩B)

Proof: In the Venn diagram6.5, we mark by R1 the number of elements which are simultaneously in both sets(i.e., in A∩B),
by R2 the number of elements which are in A but not in B (i.e., in A\B), and by R3 the number of elements which are B but not
in A (i.e., in B\A). We have R1 +R2 +R3 = card(A∪B), which proves the theorem.❑

284 Example Of 40 people, 28 smoke and 16 chew tobacco. It is also known that 10 both smoke and chew. How many among the 40
neither smoke nor chew?

Solution: LetA denote the set of smokers andB the set of chewers. Then

card(A∪B) = card(A)+card(B)−card(A∩B) = 28+16−10= 34,
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meaning that there are 34 people that either smoke or chew (orpossibly both). Therefore the number of people that neithersmoke nor chew
is 40−34= 6.
Aliter: We fill up the Venn diagram in figure6.6as follows. Since|A∩B|= 8, we put an 10 in the intersection. Then we put a 28−10= 18
in the part thatA does not overlapB and a 16−10= 6 in the part ofB that does not overlapA. We have accounted for 10+18+6 = 34
people that are in at least one of the set. The remaining 40−34= 6 are outside the sets.

R1R2 R3

A B

Figure 6.5: Two-set Inclusion-Exclusion

818 6

6
A B

Figure 6.6: Example284.

285 Example Consider the set
A = {2,4,6, . . . ,114}.

➊ How many elements are there inA?

➋ How many are divisible by 3?

➌ How many are divisible by 5?

➍ How many are divisible by 15?

➎ How many are divisible by either 3, 5 or both?

➏ How many are neither divisible by 3 nor 5?

➐ How many are divisible by exactly one of 3 or 5?

Solution: LetA3⊂ A be the set of those integers divisible by 3 andA5⊂ A be the set of those integers divisible by 5.

➊ Notice that the elements are 2= 2(1), 4= 2(2), . . . , 114= 2(57). Thus card(A) = 57.

➋ There areb 57
3 c= 19 integers inA divisible by 3. They are

{6,12,18, . . . ,114}.

Notice that 114= 6(19). Thus card(A3) = 19.

➌ There areb 57
5 c= 11 integers inA divisible by 5. They are

{10,20,30, . . . ,110}.

Notice that 110= 10(11). Thus card(A5) = 11

➍ There areb 57
15c= 3 integers inA divisible by 15. They are{30,60,90}. Notice that 90= 30(3). Thus card(A15) = 3, and observe that

by Theorem?? we have card(A15) = card(A3∩A5).

➎ We want card(A3∪A5) = 19+11= 30.

➏ We want
card(A\ (A3∪A5)) = card(A)−card(A3∪A5) = 57−30= 27.

➐ We want

card((A3∪A5)\ (A3∩A5)) = card((A3∪A5))−card(A3∩A5)

= 30−3

= 27.
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286 Example How many integers between 1 and 1000 inclusive, do not share acommon factor with 1000, that is, are relatively prime to
1000?

Solution: Observe that 1000= 2353, and thus from the 1000 integers we must weed out those that have a factor of 2 or of 5 in their prime

factorisation. IfA2 denotes the set of those integers divisible by 2 in the interval [1;1000] then clearly card(A2) = b1000
2
c= 500. Similarly,

if A5 denotes the set of those integers divisible by 5 then card(A5) = b1000
5
c= 200. Also card(A2∩A5) = b1000

10
c= 100. This means that

there are card(A2∪A5) = 500+200−100= 600 integers in the interval[1;1000] sharing at least a factor with 1000, thus there are
1000−600= 400 integers in[1;1000] that do not share a factor prime factor with 1000.

We now derive a three-set version of the Principle of Inclusion-Exclusion.

R1R2
R3

R4

R5

R6 R7

A B

C

Figure 6.7: Three-set Inclusion-Exclusion

287 Theorem (Three set Inclusion-Exclusion)

card(A∪B∪C) = card(A)+card(B)+card(C)

−card(A∩B)−card(B∩C)−card(C∩A)

+card(A∩B∩C)

Proof: Using the associativity and distributivity of unions of sets, we see that

card(A∪B∪C) = card(A∪ (B∪C))

= card(A)+card(B∪C)−card(A∩ (B∪C))

= card(A)+card(B∪C)−card((A∩B)∪ (A∩C))

= card(A)+card(B)+card(C)−card(B∩C)

−card(A∩B)−card(A∩C)

+card((A∩B)∩ (A∩C))

= card(A)+card(B)+card(C)−card(B∩C)

−(card(A∩B)+card(A∩C)−card(A∩B∩C))

= card(A)+card(B)+card(C)

−card(A∩B)−card(B∩C)−card(C∩A)

+card(A∩B∩C) .
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This gives the Inclusion-Exclusion Formula for three sets.See also figure6.7.

❑

Observe that in the Venn diagram in figure6.7there are 8 disjoint regions (the 7 that formA∪B∪C and the outside region, devoid of any
element belonging toA∪B∪C).

288 Example How many integers between 1 and 600 inclusive are not divisible by neither 3, nor 5, nor 7?

Solution: LetAk denote the numbers in[1;600] which are divisible byk = 3,5,7. Then

card(A3) = b 600
3 c = 200,

card(A5) = b 600
5 c = 120,

card(A7) = b 600
7 c = 85,

card(A15) = b 600
15 c = 40

card(A21) = b 600
21 c = 28

card(A35) = b 600
35 c = 17

card(A105) = b 600
105c = 5

By Inclusion-Exclusion there are 200+120+85−40−28−17+5 = 325 integers in[1;600] divisible by at least one of 3, 5, or 7. Those
not divisible by these numbers are a total of 600−325= 275.

31
3

1

2

2 4

A B

C

Figure 6.8: Example289.

95509550

14406

9550

14266

14266 14266

without a 7 without an 8

without a 9

Figure 6.9: Example290.

289 Example In a group of 30 people, 8 speak English, 12 speak Spanish and 10 speak French. It is known that 5 speak English and
Spanish, 5 Spanish and French, and 7 English and French. The number of people speaking all three languages is 3. How many donot speak
any of these languages?

Solution: LetA be the set of all English speakers,B the set of Spanish speakers andC the set of French speakers in our group. We fill-up the
Venn diagram in figure6.8successively. In the intersection of all three we put 8. In the region common toA andB which is not filled up we
put 5−2 = 3. In the region common toA andC which is not already filled up we put 5−3 = 2. In the region common toB andC which is
not already filled up, we put 7−3 = 4. In the remaining part ofA we put 8−2−3−2 = 1, in the remaining part ofB we put
12−4−3−2 = 3, and in the remaining part ofC we put 10−2−3−4 = 1. Each of the mutually disjoint regions comprise a total of
1+2+3+4+1+2+3 = 16 persons. Those outside these three sets are then 30−16= 14.

290 Example Consider the set of 5-digit positive integers written in decimal notation.

1. How many are there?

2. How many do not have a 9 in their decimal representation?

3. How many have at least one 9 in their decimal representation?

4. How many have exactly one 9?

5. How many have exactly two 9’s?

6. How many have exactly three 9’s?
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7. How many have exactly four 9’s?

8. How many have exactly five 9’s?

9. How many have neither an 8 nor a 9 in their decimal
representation?

10. How many have neither a 7, nor an 8, nor a 9 in their decimal
representation?

11. How many have either a 7, an 8, or a 9 in their decimal
representation?

Solution:

1. There are 9 possible choices for the first digit and 10 possible
choices for the remaining digits. The number of choices is
thus 9·104 = 90000.

2. There are 8 possible choices for the first digit and 9 possible
choices for the remaining digits. The number of choices is
thus 8·94 = 52488.

3. The difference 90000−52488= 37512.

4. We condition on the first digit. If the first digit is a 9 then the
other four remaining digits must be different from 9, giving
94 = 6561 such numbers. If the first digit is not a 9, then there
are 8 choices for this first digit. Also, we have

�4
1

�
= 4 ways

of choosing where the 9 will be, and we have 93 ways of
filling the 3 remaining spots. Thus in this case there are
8·4·93 = 23328 such numbers. In total there are
6561+23328= 29889 five-digit positive integers with
exactly one 9 in their decimal representation.

5. We condition on the first digit. If the first digit is a 9 then one
of the remaining four must be a 9, and the choice of place can
be accomplished in

�4
1

�
= 4 ways. The other three remaining

digits must be different from 9, giving 4·93 = 2916 such
numbers. If the first digit is not a 9, then there are 8 choices
for this first digit. Also, we have

�4
2

�
= 6 ways of choosing

where the two 9’s will be, and we have 92 ways of filling the
two remaining spots. Thus in this case there are
8·6·92 = 3888 such numbers. Altogether there are
2916+3888= 6804 five-digit positive integers with exactly
two 9’s in their decimal representation.

6. Again we condition on the first digit. If the first digit is a 9
then two of the remaining four must be 9’s, and the choice of

place can be accomplished in
�4

2

�
= 6 ways. The other two

remaining digits must be different from 9, giving 6·92 = 486
such numbers. If the first digit is not a 9, then there are 8
choices for this first digit. Also, we have

�4
3

�
= 4 ways of

choosing where the three 9’s will be, and we have 9 ways of
filling the remaining spot. Thus in this case there are
8·4·9 = 288 such numbers. Altogether there are
486+288= 774 five-digit positive integers with exactly three
9’s in their decimal representation.

7. If the first digit is a 9 then three of the remaining four mustbe
9’s, and the choice of place can be accomplished in

�4
3

�
= 4

ways. The other remaining digit must be different from 9,
giving 4·9 = 36 such numbers. If the first digit is not a 9,
then there are 8 choices for this first digit. Also, we have�4

4

�
= 4 ways of choosing where the four 9’s will be, thus

filling all the spots. Thus in this case there are 8·1 = 8 such
numbers. Altogether there are 36+8 = 44 five-digit positive
integers with exactly three 9’s in their decimal representation.

8. There is obviously only 1 such positive integer.

☞Observe that
37512= 29889+6804+774+44+1.

9. We have 7 choices for the first digit and 8 choices for the
remaining 4 digits, giving 7·84 = 28672 such integers.

10. We have 6 choices for the first digit and 7 choices for the
remaining 4 digits, giving 6·74 = 14406 such integers.

11. We use inclusion-exclusion. From figure6.9, the numbers
inside the circles add up to 85854. Thus the desired number is
90000−85854= 4146.

291 Example

How many integral solutions to the equation
a+b+c+d = 100,

are there given the following constraints:
1≤ a≤ 10, b≥ 0, c≥ 2,20≤ d≤ 30?

Solution: We use Inclusion-Exclusion. There are
�80

3

�
= 82160 integral solutions to

a+b+c+d = 100, a≥ 1,b≥ 0,c≥ 2,d≥ 20.

Let A be the set of solutions with
a≥ 11,b≥ 0,c≥ 2,d≥ 20

andB be the set of solutions with
a≥ 1,b≥ 0,c≥ 2,d≥ 31.

Then card(A) =
�70

3

�
, card(B) =

�69
3

�
, card(A∩B) =

�59
3

�
and so

card(A∪B) =

�
70
3

�
+

�
69
3

�
−
�

59
3

�
= 74625.

The total number of solutions to
a+b+c+d = 100
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with
1≤ a≤ 10, b≥ 0, c≥ 2,20≤ d≤ 30

is thus �
80
3

�
−
�

70
3

�
−
�

69
3

�
+

�
59
3

�
= 7535.

Homework
292 Problem Telephone numbers inLand of the Flying Camelshave 7 digits, and the only digits available are{0,1,2,3,4,5,7,8}. No
telephone number may begin in 0, 1 or 5. Find the number of telephone numbers possible that meet the following criteria:

➊ You may repeat all digits.

➋ You may not repeat any of the digits.

➌ You may repeat the digits, but the phone number must be even.

➍ You may repeat the digits, but the phone number must be odd.

➎ You may not repeat the digits and the phone numbers must be odd.

293 Problem The number 3 can be expressed as a sum of one or more positive integers in four ways, namely, as 3, 1+2, 2+1, and
1+1+1. Shew that any positive integern can be so expressed in 2n−1 ways.

294 Problem Let n = 231319. How many positive integer divisors ofn2 are less thann but do not dividen?

295 Problem In how many ways can one decompose the set

{1,2,3, . . . ,100}

into subsetsA,B,C satisfying
A∪B∪C = {1,2,3, . . . ,100} and A∩B∩C = ∅?

296 Problem How many two or three letter initials for people are available if at least one of the letters must be a D and one allows
repetitions?

297 Problem How many strictly positive integers have all their digits distinct?

298 Problem To write a book 1890 digits were utilised. How many pages doesthe book have?

299 Problem The sequence of palindromes, starting with 1 is written in ascending order

1,2,3,4,5,6,7,8,9,11,22,33, . . .

Find the 1984-th positive palindrome.

300 Problem (AIME 1994) Given a positive integern, let p(n) be the product of the non-zero digits ofn. (If n has only one digit, thenp(n)
is equal to that digit.) Let

S= p(1)+ p(2)+ · · ·+ p(999).

FindS.

301 Problem In each of the 6-digit numbers
333333,225522,118818,707099,

each digit in the number appears at least twice. Find the number of such 6-digit natural numbers.

302 Problem In each of the 7-digit numbers
1001011,5550000,3838383,7777777,

each digit in the number appears at least thrice. Find the number of such 7-digit natural numbers.

72



Answers 73

303 Problem Would you believe a market investigator that reports that of1000 people, 816 like candy, 723 like ice cream, 645 cake, while
562 like both candy and ice cream, 463 like both candy and cake, 470 both ice cream and cake, while 310 like all three? State your reasons!

304 Problem A survey shews that 90% of high-schoolers in Philadelphia like at least one of the following activities: going to the movies,
playing sports, or reading. It is known that 45% like the movies, 48% like sports, and 35% like reading. Also, it is known that 12% like both
the movies and reading, 20% like only the movies, and 15% onlyreading. What percent of high-schoolers like all three activities?

305 Problem An auto insurance company has 10,000 policyholders. Each policy holder is classified as

• young or old,

• male or female, and

• married or single.

Of these policyholders, 3000 are young, 4600 are male, and 7000 are married. The policyholders can also be classified as 1320 young males,
3010 married males, and 1400 young married persons. Finally, 600 of the policyholders are young married males.

How many of the company’s policyholders are young, female, and single?

306 Problem In Medieval Highthere are forty students. Amongst them, fourteen like Mathematics, sixteen like theology, and eleven like
alchemy. It is also known that seven like Mathematics and theology, eight like theology and alchemy and five like Mathematics and alchemy.
All three subjects are favoured by four students. How many students like neither Mathematics, nor theology, nor alchemy?

307 Problem (AHSME 1991) For a setS, let n(S) denote the number of subsets ofS. If A,B,C, are sets for which

n(A)+n(B)+n(C) = n(A∪B∪C) and card(A) = card(B) = 100,

then what is the minimum possible value of card(A∩B∩C)?

308 Problem (Lewis Carroll in A Tangled Tale.) In a very hotly fought battle, at least 70% of the combatants lost an eye, at least 75% an
ear, at least 80% an arm, and at least 85% a leg. What can be saidabout the percentage who lost all four members?

Answers
292 We have

➊ This is 5·86 = 1310720.

➋ This is 5·7·6·5·4·3·2 = 25200.

➌ This is 5·85 ·4 = 655360.

➍ This is 5·85 ·4 = 655360.

➎ We condition on the last digit. If the last digit were 1 or 5 then we would have 5 choices for the first digit, and so we would have

5·6·5·4·3·2·2 = 7200

phone numbers. If the last digit were either 3 or 7, then we would have 4 choices for the last digit and so we would have

4·6·5·4·3·2·2 = 5760

phone numbers. Thus the total number of phone numbers is

7200+5760= 12960.

293 n = 1+1+ · · ·+1| {z }
n−1 +′s

. One either erases or keeps a plus sign.

294 There are 589 such values. The easiest way to see this is to observe that there is a bijection between the divisors ofn2 which are> n
and those< n. For if n2 = ab, with a > n, thenb < n, because otherwisen2 = ab> n·n = n2, a contradiction. Also, there is exactly one
decompositionn2 = n·n. Thus the desired number is

T
d(n2)

2
U+1−d(n) = T

(63)(39)
2

U+1− (32)(20) = 589.
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295 The conditions of the problem stipulate that both the regionoutside the circles in diagram6.7andR3 will be empty. We are thus left
with 6 regions to distribute 100 numbers. To each of the 100 numbers we may thus assign one of 6 labels. The number of sets thus required
is 6100.

296 (262−252)+(263−253) = 2002

297

9+9·9

+9·9·8+9·9·8·7

+9·9·8·7·6+9·9·8·7·6 ·5

+9·9·8·7·6·5·4+9·9·8 ·7 ·6 ·5 ·4·3

+9·9·8·7·6·5·4·3·2

+9·9·8·7·6·5·4·3·2 ·1

= 8877690

298 A total of
1·9+2·90= 189

digits are used to write pages 1 to 99, inclusive. We have of 1890−189= 1701 digits at our disposition which is enough for 1701/3 = 567
extra pages (starting from page 100). The book has 99+567= 666 pages.

299 It is easy to see that there are 9 palindromes of 1-digit, 9 palindromes with 2-digits, 90 with 3-digits, 90 with 4-digits,900 with 5-digits
and 900 with 6-digits. The last palindrome with 6 digits, 999999, constitutes the 9+9+90+90+900+900= 1998th palindrome. Hence,
the 1997th palindrome is 998899, the 1996th palindrome is 997799, the 1995th palindrome is 996699, the 1994th is 995599,etc., until we
find the 1984th palindrome to be 985589.

300 If x = 0, putm(x) = 1, otherwise putm(x) = x. We use three digits to label all the integers, from 000 to 999 If a,b,c are digits, then
clearly p(100a+10b+c) = m(a)m(b)m(c). Thus

p(000)+ · · ·+ p(999) = m(0)m(0)m(0)+ · · ·+m(9)m(9)m(9),

which in turn

= (m(0)+m(1)+ · · ·+m(9))3

= (1+1+2+ · · ·+9)3

= 463

= 97336.

Hence

S = p(001)+ p(002)+ · · ·+ p(999)

= 97336− p(000)

= 97336−m(0)m(0)m(0)

= 97335.

301 The numbers belong to the following categories: (I) all six digits are identical; (II) there are exactly two different digits used, three of
one kind, three of the other; (III) there are exactly two different digits used, two of one kind, four of the other; (IV) there are exactly three
different digits used, two of each kind.

There are clearly 9 numbers belonging to category (I). To count the numbers in the remaining categories, we must considerthe cases when

the digit 0 is used or not. If 0 is not used, then there are
�9

2

�
· 6!

3!3!
= 720 integers in category (II);

�9
1

��8
1

�
· 6!
2!4!

= 1080 integers in category
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(III); and
�9

3

�
· 6!
2!2!2!

= 7560 integers in category (IV). If 0 is used, then the integers may not start with 0. There are
�9

1

�
· 5!
2!3!

= 90 in

category (II) ;
�9

1

�
· ( 5!

1!4!
+

5!
3!2!

) = 135 in category (III) ; and
�9

2

�
·2· 5!

1!2!2!
= 3240 in category (IV). Thus there are altogether

9+720+1080+7560+90+135+3240= 12834

such integers.

302 The numbers belong to the following categories: (I) all seven digits are identical; (II) there are exactly two differentdigits used, three of
one kind, four of the other.

There are clearly 9 numbers belonging to category (I). To count the numbers in the remaining category (II), we must consider the cases when

the digit 0 is used or not. If 0 is not used, then there are
�9

1

��8
1

�
· 7!
3!4!

= 2520 integers in category (II). If 0 is used, then the integers may not

start with 0. There are
�9

1

�
· 6!
2!4!

+
�9

1

�
· 6!
3!3!

= 315 in category (II). Thus there are altogether 2520+315+9 = 2844 such integers.

303 Let C denote the set of people who like candy,I the set of people who like ice cream, andK denote the set of people who like cake. We
are given that card(C) = 816, card(I) = 723, card(K) = 645, card(C∩ I) = 562, card(C∩K) = 463, card(I ∩K) = 470, and
card(C∩ I ∩K) = 310. By Inclusion-Exclusion we have

card(C∪ I ∪K) = card(C)+card(I)+card(K)

−card(C∩ I)−card(C∩K)−card(I ∩C)

+card(C∩ I ∩K)

= 816+723+645−562−463−470+310

= 999.

The investigator miscounted, or probably did not report oneperson who may not have liked any of the three things.

304 We make the Venn diagram in as in figure6.10. From it we gather the following system of equations

x + y + z + 20 = 45

x + z + t + u = 48

x + y + t + 15 = 35

x + y = 12

x + y + z + t + u + 15 + 20 = 90

The solution of this system is seen to bex = 5, y = 7, z= 13, t = 8, u = 22. Thus the percent wanted is 5%.

305 Let Y,F,S,M stand for young, female, single, male, respectively, and let Ma stand for married. We have

card(Y∩F ∩S) = card(Y∩F)−card(Y∩F ∩Ma)

= card(Y)−card(Y∩M)

−(card(Y∩Ma)−card(Y∩Ma∩M))

= 3000−1320− (1400−600)

= 880.
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306 Let A be the set of students liking Mathematics,B the set of students liking theology, andC be the set of students liking alchemy. We
are given that

card(A) = 14,card(B) = 16,card(C) = 11,card(A∩B) = 7,card(B∩C) = 8,card(A∩C) = 5,

and
card(A∩B∩C) = 4.

By the Principle of Inclusion-Exclusion,

card
�
{A∩{B∩{C

�
= 40−card(A)−card(B)−card(C)+card(A∩B)+card(A∩C)+card(B∩C)−card(A∩B∩C)

Substituting the numerical values of these cardinalities

40−14−16−11+7+5+8−4 = 15.

307 A set withk elements has 2k different subsets. We are given

2100+2100+2card(C) = 2card(A∪B∪C).

This forces card(C) = 101, as 1+2card(C)−101 is larger than 1 and a power of 2. Hence card(A∪B∪C) = 102. Using the Principle
Inclusion-Exclusion, since card(A)+card(B)+card(C)−card(A∪B∪C) = 199,

card(A∩B∩C) = card(A∩B)+card(A∩C)+card(B∩C)−199

= (card(A)+card(B)−card(A∪B))+(card(A)+card(C)−card(A∪C))

+(card(B)+card(C)−card(B∪C))−199

= 403−card(A∪B)−card(A∪C)−card(B∪C) .

As A∪B,A∪C,B∪C⊆ A∪B∪C, the cardinalities of all these sets are≤ 102. Thus

card(A∩B∩C) = 403−card(A∪B)−card(A∪C)−card(B∪C)≥ 403−3·102= 97.

The example
A = {1,2, . . . ,100},B = {3,4, . . . ,102},

and
C = {1,2,3,4,5,6, . . . ,101,102}

shews that card(A∩B∩C) = card({4,5,6, . . . ,100}) = 97 is attainable.

308 Let A denote the set of those who lost an eye,B denote those who lost an ear,C denote those who lost an arm andD denote those losing
a leg. Suppose there aren combatants. Then

n ≥ card(A∪B)

= card(A)+card(B)−card(A∩B)

= .7n+ .75n−card(A∩B) ,

n ≥ card(C∪D)

= card(C)+card(D)−card(C∩D)

= .8n+ .85n−card(C∩D) .

This gives
card(A∩B)≥ .45n,

card(C∩D)≥ .65n.

This means that

n ≥ card((A∩B)∪ (C∩D))

= card(A∩B)+card(C∩D)−card(A∩B∩C∩D)

≥ .45n+ .65n−card(A∩B∩C∩D) ,
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whence
card(A∩B∩C∩D)≥ .45+ .65n−n = .1n.

This means that at least 10% of the combatants lost all four members.

1520

x

u

y

z t

Movies Reading

Sports

Figure 6.10: Problem304.
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Chapter 7
Sums and Recursions

7.1 Famous Sums
To obtain a closed form for

1+2+ · · ·+n =
n(n+1)

2
we utilise Gauss’ trick: If

An = 1+2+3+ · · ·+n

then
An = n+(n−1)+ · · ·+1.

Adding these two quantities,

An = 1 + 2 + · · · + n

An = n + (n−1) + · · · + 1

2An = (n+1) + (n+1) + · · · + (n+1)

= n(n+1),

since there aren summands. This givesAn =
n(n+1)

2
, that is,

1+2+ · · ·+n =
n(n+1)

2
. (7.1)

Applying Gauss’s trick to the general arithmetic sum

(a)+(a+d)+(a+2d)+ · · ·+(a+(n−1)d)

we obtain

(a)+(a+d)+(a+2d)+ · · ·+(a+(n−1)d) =
n(2a+(n−1)d)

2
(7.2)

309 Example Each element of the set{10,11,12, . . . ,19,20} is multiplied by each element of the set{21,22,23, . . . ,29,30}. If all these
products are added, what is the resulting sum?

Solution: This is asking for the product(10+11+ · · ·+20)(21+22+ · · ·+30) after all the terms are multiplied. But

10+11+ · · ·+20=
(20+10)(11)

2
= 165

and

21+22+ · · ·+30=
(30+21)(10)

2
= 255.

The required total is(165)(255) = 42075.
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310 Example Find the sum of all integers between 1 and 100 that leave remainder 2 upon division by 6.

Solution: We want the sum of the integers of the form 6r +2, r = 0,1, . . . ,16. But this is

16X
r=0

(6r +2) = 6
16X

r=0

r +

16X
r=0

2 = 6
16(17)

2
+2(17) = 850.

A geometric progressionis one of the form

a,ar,ar2,ar3, . . . ,arn−1, . . . ,

311 Example Find the following geometric sum:
1+2+4+ · · ·+1024.

Solution: Let
S= 1+2+4+ · · ·+1024.

Then
2S= 2+4+8+ · · ·+1024+2048.

Hence
S= 2S−S= (2+4+8· · ·+2048)− (1+2+4+ · · ·+1024) = 2048−1 = 2047.

312 Example Find the geometric sum

x =
1
3

+
1
32 +

1
33 + · · ·+ 1

399 .

Solution: We have
1
3

x =
1
32 +

1
33 + · · ·+ 1

399 +
1

3100.

Then

2
3x = x− 1

3x

= ( 1
3 + 1

32 + 1
33 + · · ·+ 1

399 )

−( 1
32 + 1

33 + · · ·+ 1
399 + 1

3100)

= 1
3− 1

3100 .

From which we gather

x =
1
2
− 1

2·399 .

Let us sum now the geometric series
S= a+ar +ar2 + · · ·+arn−1.

Plainly, if r = 1 thenS= na, so we may assume thatr 6= 1. We have

rS= ar +ar2 + · · ·+arn.

Hence
S− rS= a+ar +ar2 + · · ·+arn−1−ar−ar2−·· ·−arn = a−arn.

From this we deduce that

S=
a−arn

1− r
,

that is,

a+ar + · · ·+arn−1 =
a−arn

1− r
(7.3)

If |r|< 1 thenrn→ 0 asn→ ∞.
For |r|< 1, we obtain the sum of the infinite geometric series

a+ar +ar2 + · · ·= a
1− r

(7.4)
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313 Example A fly starts at the origin and goes 1 unit up, 1/2 unit right, 1/4 unit down, 1/8 unit left, 1/16 unit up, etc.,ad infinitum.In
what coordinates does it end up?

Solution: Itsx coordinate is
1
2
− 1

8
+

1
32
−·· ·=

1
2

1− −1
4

=
2
5
.

Its y coordinate is

1− 1
4

+
1
16
−·· ·= 1

1− −1
4

=
4
5
.

Therefore, the fly ends up in( 2
5 , 4

5).

We now sum again of the firstn positive integers, which we have already computed using Gauss’ trick.

314 Example Find a closed formula for
An = 1+2+ · · ·+n.

Solution: Observe that
k2− (k−1)2 = 2k−1.

From this

12−02 = 2·1−1

22−12 = 2·2−1

32−22 = 2·3−1

...
...

...

n2− (n−1)2 = 2·n−1

Adding both columns,
n2−02 = 2(1+2+3+ · · ·+n)−n.

Solving for the sum,

1+2+3+ · · ·+n = n2/2+n/2 =
n(n+1)

2
.

315 Example Find the sum
12 +22 +32 + · · ·+n2.

Solution: Observe that
k3− (k−1)3 = 3k2−3k+1.

Hence

13−03 = 3·12−3·1+1

23−13 = 3·22−3·2+1

33−23 = 3·32−3·3+1

...
...

...

n3− (n−1)3 = 3·n2−3·n+1

Adding both columns,
n3−03 = 3(12 +22 +32 + · · ·+n2)−3(1+2+3+ · · ·+n)+n.

From the preceding example 1+2+3+ · · ·+n = ·n2/2+n/2 =
n(n+1)

2 so

n3−03 = 3(12 +22 +32 + · · ·+n2)− 3
2
·n(n+1)+n.
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Solving for the sum,

12 +22 +32 + · · ·+n2 =
n3

3
+

1
2
·n(n+1)− n

3
.

After simplifying we obtain

12 +22 +32 + · · ·+n2 =
n(n+1)(2n+1)

6
(7.5)

316 Example Add the series
1

1·2 +
1

2·3 +
1

3·4 + · · ·+ 1
99·100

.

Solution: Observe that
1

k(k+1)
=

1
k
− 1

k+1
.

Thus

1
1·2 = 1

1− 1
2

1
2·3 = 1

2− 1
3

1
3·4 = 1

3− 1
4

...
...

...

1
99·100 = 1

99− 1
100

Adding both columns,
1

1·2 +
1

2·3 +
1

3·4 + · · ·+ 1
99·100

= 1− 1
100

=
99
100

.

317 Example Add
1

1·4 +
1

4·7 +
1

7·10
+ · · ·+ 1

31·34
.

Solution: Observe that
1

(3n+1) · (3n+4)
=

1
3
· 1
3n+1

− 1
3
· 1
3n+4

.

Thus

1
1·4 = 1

3− 1
12

1
4·7 = 1

12− 1
21

1
7·10 = 1

21− 1
30

1
10·13 = 1

30− 1
39

...
...

...

1
34·37 = 1

102− 1
111

Summing both columns,
1

1·4 +
1

4·7 +
1

7·10
+ · · ·+ 1

31·34
=

1
3
− 1

111
=

12
37

.

318 Example Sum
1

1·4·7 +
1

4·7·10
+

1
7·10·13

+ · · ·+ 1
25·28·31

.

Solution: Observe that
1

(3n+1) · (3n+4) · (3n+7)
=

1
6
· 1
(3n+1)(3n+4)

− 1
6
· 1
(3n+4)(3n+7)

.
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Therefore

1
1·4·7 = 1

6·1·4 − 1
6·4·7

1
4·7·10 = 1

6·4·7 − 1
6·7·10

1
7·10·13 = 1

6·7·10− 1
6·10·13

...
...

...

1
25·28·31 = 1

6·25·28− 1
6·28·31

Adding each column,
1

1·4·7 +
1

4·7·10
+

1
7·10·13

+ · · ·+ 1
25·28·31

=
1

6·1·4 −
1

6·28·31
=

9
217

.

319 Example Find the sum
1·2+2·3+3·4+ · · ·+99·100.

Solution: Observe that

k(k+1) =
1
3
(k)(k+1)(k+2)− 1

3
(k−1)(k)(k+1).

Therefore

1·2 = 1
3 ·1·2·3− 1

3 ·0·1·2

2·3 = 1
3 ·2·3·4− 1

3 ·1·2·3

3·4 = 1
3 ·3·4·5− 1

3 ·2·3·4
...

...
...

99·100 = 1
3 ·99·100·101− 1

3 ·98·99·100

Adding each column,

1·2+2·3+3·4+ · · ·+99·100=
1
3
·99·100·101− 1

3
·0·1·2 = 333300.

7.2 First Order Recursions
Theorder of the recurrence is the difference between the highest and the lowest subscripts. For example

un+2−un+1 = 2

is of the first order, and
un+4 +9u2

n = n5

is of the fourth order.

A recurrence islinear if the subscripted letters appear only to the first power. Forexample

un+2−un+1 = 2

is a linear recurrence and
x2

n +nxn−1 = 1 and xn +2xn−1 = 3

are not linear recurrences.

A recursion ishomogeneousif all its terms contain the subscripted variable to the samepower. Thus

xm+3 +8xm+2−9xm = 0

is homogeneous. The equation
xm+3 +8xm+2−9xm = m2−3
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is not homogeneous.

A closed formof a recurrence is a formula that permits us to find then-th term of the recurrence without having to know a priori theterms
preceding it.

We outline a method for solving first order linear recurrencerelations of the form

xn = axn−1 + f (n),a 6= 1,

where f is a polynomial.

1. First solve the homogeneous recurrencexn = axn−1 by “raising the subscripts” in the formxn = axn−1. This we call thecharacteristic
equation. Cancelling this givesx = a. The solution to the homogeneous equationxn = axn−1 will be of the formxn = Aan, whereA is
a constant to be determined.

2. Test a solution of the formxn = Aan +g(n), whereg is a polynomial of the same degree asf .

320 Example Let x0 = 7 andxn = 2xn−1,n≥ 1. Find a closed form forxn.

Solution: Raising subscripts we have the characteristic equationxn = 2xn−1. Cancelling,x = 2. Thus we try a solution of the formxn = A2n,
wereA is a constant. But 7= x0 = A20 and soA = 7. The solution is thusxn = 7(2)n.
Aliter: We have

x0 = 7

x1 = 2x0

x2 = 2x1

x3 = 2x2

...
...

...

xn = 2xn−1

Multiplying both columns,
x0x1 · · ·xn = 7·2nx0x1x2 · · ·xn−1.

Cancelling the common factors on both sides of the equality,

xn = 7·2n.

321 Example Let x0 = 7 andxn = 2xn−1 +1,n≥ 1. Find a closed form forxn.

Solution: By raising the subscripts in the homogeneous equation we obtainxn = 2xn−1 or x = 2. A solution to the homogeneous equation
will be of the formxn = A(2)n. Now f (n) = 1 is a polynomial of degree 0 (a constant) and so we test a particular constant solutionC. The
general solution will have the formxn = A2n +B. Now, 7= x0 = A20 +B = A+B. Also, x1 = 2x0 +7 = 15 and so 15= x1 = 2A+B.
Solving the simultaneous equations

A+B = 7,

2A+B = 15,

we findA = 8,B =−1. So the solution isxn = 8(2n)−1 = 2n+3−1.
Aliter: We have:

x0 = 7

x1 = 2x0 +1

x2 = 2x1 +1

x3 = 2x2 +1

...
...

...

xn−1 = 2xn−2 +1

xn = 2xn−1 +1
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Multiply the kth row by 2n−k. We obtain

2nx0 = 2n ·7

2n−1x1 = 2nx0 +2n−1

2n−2x2 = 2n−1x1 +2n−2

2n−3x3 = 2n−2x2 +2n−3

...
...

...

22xn−2 = 23xn−3 +22

2xn−1 = 22xn−2 +2

xn = 2xn−1 +1

Adding both columns, cancelling, and adding the geometric sum,

xn = 7·2n +(1+2+22 + · · ·+2n−1) = 7·2n +2n−1 = 2n+3−1.

Aliter: Let un = xn +1 = 2xn−1 +2 = 2(xn−1 +1) = 2un−1. We solve the recursionun = 2un−1 as we did on our first example:
un = 2nu0 = 2n(x0 +1) = 2n ·8 = 2n+3. Finally, xn = un−1 = 2n+3−1.

322 Example Let x0 = 2,xn = 9xn−1−56n+63. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equationxn = 9xn−1 or x = 9. A solution to the
homogeneous equation will be of the formxn = A(9)n. Now f (n) =−56n+63 is a polynomial of degree 1 and so we test a particular
solution of the formBn+C. The general solution will have the formxn = A9n +Bn+C. Now
x0 = 2,x1 = 9(2)−56+63= 25,x2 = 9(25)−56(2)+63 = 176. We thus solve the system

2 = A+C,

25= 9A+B+C,

176= 81A+2B+C.

We findA = 2,B = 7,C = 0. The general solution isxn = 2(9n)+7n.

323 Example Let x0 = 1,xn = 3xn−1−2n2 +6n−3. Find a closed form for this recursion.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equationxn = 3xn−1 or x = 9. A solution to the
homogeneous equation will be of the formxn = A(3)n. Now f (n) =−2n2 +6n−3 is a polynomial of degree 2 and so we test a particular
solution of the formBn2 +Cn+D. The general solution will have the formxn = A3n +Bn2 +Cn+D. Now
x0 = 1,x1 = 3(1)−2+6−3 = 4,x2 = 3(4)−2(2)2 +6(2)−3 = 13,x3 = 3(13)−2(3)2 +6(3)−3 = 36. We thus solve the system

1 = A+D,

4 = 3A+B+C+D,

13= 9A+4B+2C+D,

36= 27A+9B+3C+D.

We findA = B = 1,C = D = 0. The general solution isxn = 3n +n2.

324 Example Find a closed form forxn = 2xn−1 +3n−1,x0 = 2.

Solution: We test a solution of the formxn = A2n +B3n. Thenx0 = 2,x1 = 2(2)+30 = 5. We solve the system

2 = A+B,

7 = 2A+3B.

We findA = 1,B = 1. The general solution isxn = 2n +3n.

We now tackle the case whena = 1. In this case, we simply consider a polynomialg of degree 1 higher than the degree off .
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325 Example Let x0 = 7 andxn = xn−1 +n,n≥ 1. Find a closed formula forxn.

Solution: By raising the subscripts in the homogeneous equation we obtain the characteristic equationxn = xn−1 or x = 1. A solution to the
homogeneous equation will be of the formxn = A(1)n = A, a constant. Nowf (n) = n is a polynomial of degree 1 and so we test a particular
solution of the formBn2 +Cn+D, one more degree than that off . The general solution will have the formxn = A+Bn2 +Cn+D. SinceA
andD are constants, we may combine them to obtainxn = Bn2 +Cn+E. Now, x0 = 7,x1 = 7+1 = 8,x2 = 8+2 = 10. So we solve the
system

7 = E,

8 = B+C+E,

10= 4B+2C+E.

We findB = C =
1
2
,E = 7. The general solution isxn =

n2

2
+

n
2

+7.

Aliter: We have

x0 = 7

x1 = x0 +1

x2 = x1 +2

x3 = x2 +3

...
...

...

xn = xn−1 +n

Adding both columns,
x0 +x1 +x2 + · · ·+xn = 7+x0 +x2 + · · ·+xn−1 +(1+2+3+ · · ·+n).

Cancelling and using the fact that 1+2+ · · ·+n =
n(n+1)

2
,

xn = 7+
n(n+1)

2
.

Some non-linear first order recursions maybe reduced to a linear first order recursion by a suitable transformation.

326 Example A recursion satisfiesu0 = 3,u2
n+1 = un,n≥ 1. Find a closed form for this recursion.

Solution: Letvn = logun. Thenvn = logun = logu1/2
n−1 = 1

2 logun−1 = vn−1
2 . As vn = vn−1/2, we havevn = v0/2n, that is,

logun = (logu0)/2n. Therefore,un = 31/2n
.

327 Example (Putnam 1985) Let d be a real number. For each integerm≥ 0, define a sequenceam( j), j = 0,1,2, · · · by am(0) = d
2m , and

am( j +1) = (am( j +1))2 +2am( j), j ≥ 0. Evaluate
lim
n→∞

an(n).

Solution: Observe thatam( j +1)+1 = (am( j))2 +2am( j)+1 = (am( j)+1)2. Putv j = am( j)+1. Thenv j+1 = v2
j , and lnv j+1 = 2lnv j ;

Puty j = lnv j . Theny j+1 = 2y j ; and hence 2ny0 = yn or 2n lnv0 = lnvn or vn = (v0)
2n

= (1+ d
2m )2n

or am(n)+1 = (1+ d
2m )2n

. Thus
an(n) = ( d

2n +1)2n −1→ ed−1 asn→ ∞.

7.3 Second Order Recursions
All the recursions that we have so far examined are first orderrecursions, that is, we find the next term of the sequence given the preceding
one. Let us now briefly examine how to solve some second order recursions.

We now outline a method for solving second order homogeneouslinear recurrence relations of the form

xn = axn−1 +bxn−2.
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1. Find the characteristic equation by “raising the subscripts” in the formxn = axn−1 +bxn−2. Cancelling this givesx2−ax−b = 0.
This equation has two rootsr1 andr2.

2. If the roots are different, the solution will be of the formxn = A(r1)
n +B(r2)

n, whereA,B are constants.

3. If the roots are identical, the solution will be of the formxn = A(r1)
n +Bn(r1)

n.

328 Example Let x0 = 1,x1 =−1,xn+2 +5xn+1 +6xn = 0.

Solution: The characteristic equation isx2 +5x+6 = (x+3)(x+2) = 0. Thus we test a solution of the formxn = A(−2)n +B(−3)n. Since
1 = x0 = A+B,−1 =−2A−3B, we quickly findA = 2,B =−1. Thus the solution isxn = 2(−2)n− (−3)n.

329 Example Find a closed form for the Fibonacci recursionf0 = 0, f1 = 1, fn = fn−1 + fn−2.

Solution: The characteristic equation isf 2− f −1 = 0, whence a solution will have the form

fn = A

�
1+
√

5
2

�n

+B

�
1−
√

5
2

�n

.

The initial conditions give
0 = A+B,

1 = A

�
1+
√

5
2

�
+B

�
1−
√

5
2

�
=

1
2

(A+B)+

√
5

2
(A−B) =

√
5

2
(A−B)

This givesA =
1√
5
,B =− 1√

5
. We thus have theCauchy-Binet Formula:

fn =
1√
5

�
1+
√

5
2

�n

− 1√
5

�
1−
√

5
2

�n

(7.6)

330 Example Solve the recursionx0 = 1,x1 = 4,xn = 4xn−1−4xn−2 = 0.

Solution: The characteristic equation isx2−4x+4 = (x−2)2 = 0. There is a multiple root and so we must test a solution of theform
xn = A2n +Bn2n. The initial conditions give

1 = A,

4 = 2A+2B.

This solves toA = 1,B = 1. The solution is thusxn = 2n +n2n.

7.4 Applications of Recursions
331 Example Find the recurrence relation for the number ofn digit binary sequences with no pair of consecutive 1’s.

Solution: It is quite easy to see thata1 = 2,a2 = 3. To form an,n≥ 3, we condition on the last digit. If it is 0, the number of sequences
sought isan−1. If it is 1, the penultimate digit must be 0, and the number of sequences sought isan−2. Thus

an = an−1 +an−2,a1 = 2, a2 = 3.

332 Example Let there be drawnn ovals on the plane. If an oval intersects each of the other ovals at exactly two points and no three ovals
intersect at the same point, find a recurrence relation for the number of regions into which the plane is divided.

Solution: Let this number bean. Plainlya1 = 2. After then−1th stage, thenth oval intersects the previous ovals at 2(n−1) points, i.e. the
nth oval is divided into 2(n−1) arcs. This adds 2(n−1) regions to thean−1 previously existing. Thus

an = an−1 +2(n−1), a1 = 2.
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333 Example Find a recurrence relation for the number of regions into which the plane is divided byn straight lines if every pair of lines
intersect, but no three lines intersect.

Solution: Letan be this number. Clearlya1 = 2. Thenth line is cut by he previousn−1 lines atn−1 points, addingn new regions to the
previously existingan−1. Hence

an = an−1 +n, a1 = 2.

334 Example (Derangements)An absent-minded secretary is fillingn envelopes withn letters. Find a recursion for the numberDn of ways
in which she never stuffs the right letter into the right envelope.

Solution: Number the envelopes 1,2,3, · · · ,n. We condition on the last envelope. Two events might happen.Eithern andr(1≤ r ≤ n−1)
trade places or they do not.
In the first case, the two lettersr andn are misplaced. Our task is just to misplace the othern−2 letters,(1,2, · · · , r−1, r +1, · · · ,n−1) in
the slots(1,2, · · · , r−1, r +1, · · · ,n−1). This can be done inDn−2 ways. Sincer can be chosen inn−1 ways, the first case can happen in
(n−1)Dn−2 ways.
In the second case, let us say that letterr, (1≤ r ≤ n−1) moves to then-th position butn moves not to ther-th position. Sincer has been
misplaced, we can just ignore it. Sincen is not going to ther-th position, we may relabeln asr. We now haven−1 numbers to misplace,
and this can be done inDn−1 ways.
As r can be chosen inn−1 ways, the total number of ways for the second case is(n−1)Dn−1. ThusDn = (n−1)Dn−2 +(n−1)Dn−1.

335 Example There are two urns, one is full of water and the other is empty.On the first stage, half of the contains of urn I is passed into
urn II. On the second stage 1/3 of the contains of urn II is passed into urn I. On stage three, 1/4 of the contains of urn I is passed into urn II.
On stage four 1/5 of the contains of urn II is passed into urn I,and so on. What fraction of water remains in urn I after the 1978th stage?

Solution: Letxn,yn,n = 0,1,2, . . . denote the fraction of water in urns I and II respectively at stagen. Observe thatxn +yn = 1 and that

x0 = 1;y0 = 0

x1 = x0− 1
2x0 = 1

2 ;y1 = y1 + 1
2x0 = 1

2

x2 = x1 + 1
3y1 = 2

3 ;y2 = y1− 1
3y1 = 1

3

x3 = x2− 1
4x2 = 1

2 ;y1 = y1 + 1
4x2 = 1

2

x4 = x3 + 1
5y3 = 3

5 ;y1 = y1− 1
5y3 = 2

5

x5 = x4− 1
6x4 = 1

2 ;y1 = y1 + 1
6x4 = 1

2

x6 = x5 + 1
7y5 = 4

7 ;y1 = y1− 1
7y5 = 3

7

x7 = x6− 1
8x6 = 1

2 ;y1 = y1 + 1
8x6 = 1

2

x8 = x7 + 1
9y7 = 5

9 ;y1 = y1− 1
9y7 = 4

9

A pattern emerges (which may be proved by induction) that at each odd stagen we havexn = yn = 1
2 and that at each even stage we have (if

n = 2k) x2k = k+1
2k+1 ,y2k = k

2k+1 . Since1978
2 = 989 we havex1978= 990

1979.

Homework

336 Problem Find the sum of all the integers from 1 to 1000 inclusive, which are not multiples of 3 or 5.

337 Problem The sum of a certain number of consecutive positive integersis 1000. Find these integers. (There is more than one solution.
You must find them all.)

338 Problem Use the identity
n5− (n−1)5 = 5n4−10n3 +10n2−5n+1.
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and the sums

s1 = 1+2+ · · ·+n =
n(n+1)

2
,

s2 = 12 +22 + · · ·+n2 =
n(n+1)(2n+1)

6
,

s3 = 13 +23 + · · ·+n3 =

�
n(n+1)

2

�2

,

in order to find
s4 = 14 +24 + · · ·+n4.

339 Problem Find the exact value of
1

1·3·5 +
1

3·5·7 + · · ·+ 1
997·999·1001

.

Answers
336 We compute the sum of all integers from 1 to 1000 and weed out the sum of the multiples of 3 and the sum of the multiples of 5, butput
back the multiples of 15, which we have counted twice. Put

An = 1+2+3+ · · ·+n,

B = 3+6+9+ · · ·+999= 3A333,

C = 5+10+15+ · · ·+1000= 5A200,

D = 15+30+45+ · · ·+990= 15A66.

The desired sum is

A1000−B−C+D = A1000−3A333−5A200+15A66

= 500500−3·55611−5·20100+15·2211

= 266332.

337 Let the the sum of integers beS= (l +1)+(l +2)+(l +n). Using Gauss’ trick we obtainS=
n(2l +n+1)

2
. As S= 1000,

2000= n(2l +n+1). Now 2000= n2 +2ln+n > n2, whencen≤ b
√

2000c= 44. Moreover,n and 2l +n+1 are divisors of 2000 and are of
opposite parity. Since 2000= 2453, the odd factors of 2000 are 1, 5, 25, and 125. We then see that the problem has the following solutions:

n = 1, l = 999,

n = 5, l = 197,

n = 16, l = 54,

n = 25, l = 27.

338 Using the identity forn = 1 ton:
n5 = 5s4−10s3 +10s2−5s1 +n,

whence

s4 =
n5

5
+2s3−2s2 +s1−

n
5

=
n5

5
+

n2(n+1)2

2
− n(n+1)(2n+1)

3
+

n(n+1)

2
− n

5

=
n5

5
+

n4

2
+

n3

3
− n

30
.

339 Observe that
1

(2n−1)(2n+1)
− 1

(2n+1)(2n+3)
=

4
(2n−1)(2n+1)(2n+3)

.

Lettingn = 1 ton = 499 we deduce that

4
1·3·5 +

4
3·5·7 + · · ·+ 4

997·999·1001
=

1
1·3 −

1
999·1001

,

whence the desired sum is
1

4·1·3 −
1

4·999·1001
=

83333
999999

.
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Chapter 8
Graph Theory

8.1 Simple Graphs

340 Definition A simple graph (network) G= (V,E) consists of a non-empty setV (called thevertex (node)set) and a setE (possibly
empty) of unordered pairs of elements (called theedgesor arcs) of V.

Vertices are usually represented by means of dots on the plane, and the edges by means of lines connecting these dots. See figures8.1
through8.4for some examples of graphs.

341 Definition If v andv′ are vertices of a graphG which are joined by an edgee, we say thatv is adjacentto v′ and thatv andv′ are
neighbours, and we writee= vv′. We say that vertexv is incidentwith an edgee if v is an endpoint ofe. In this case we also say thate is
incident withv.

v1

Figure 8.1: A graph
with card(V) = 1 and
card(E) = 0.

v2 v1

Figure 8.2: A graph
with card(V) = 2 and
card(E) = 1.

v2 v1

v3

Figure 8.3: A graph
with card(V) = 3 and
card(E) = 3.

v2 v1

v4v3

Figure 8.4: A graph
with card(V) = 3 and
card(E) = 5.

342 Definition Thedegreeof a vertex is the number of edges incident to it.

Depending on whether card(V) is finite or not, the graph is finite or infinite. In these notes we will only consider finite graphs.

Our definition of a graph does not allow that two vertices be joined by more than one edge. If this were allowed we would obtain a
multigraph. Neither does it allowloops, which are edges incident to only one vertex. A graph with loops is apseudograph.

343 Definition The complete graph withn verticesKn is the graph where any two vertices are adjacent. ThusKn has
�n

2

�
edges.

Figure8.1shewsK1, figure8.2shewsK2, figure8.3shewsK3, and figure8.5shewsK4, figure8.6shewsK5.
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90 Chapter 8

344 Definition Let G = (V,E) be a graph. A subsetS⊆V is anindependent setof vertices ifuv 6∈ E for all u,v in S(Smay be empty). A
bipartite graphwith bipartitionX,Y is a graph such thatV = X∪Y, X∩Y = ∅, andX andY are independent sets.X andY are called the
partsof the bipartition.

345 Definition Km,n denotes thecomplete bipartite graphwith m+n vertices. One part, withm vertices, is connected to every other vertex
of the other part, withn vertices.

346 Definition A u−v walk in a graphG = (V,E) is an alternating sequence of vertices and edges inG with starting vertexu and ending
vertexv such that every edge joins the vertices immediately preceding it and immediately following it.

347 Definition A u−v trail in a graphG = (V,E) is au−v walk that does not repeat an edge, while au−v pathis a walk that which does
not repeat any vertex.

348 Definition Pn denotes apathof lengthn. It is a graph withn edges, andn+1 verticesv0v1 · · ·vn, wherevi is adjacent tovi+1 for
n = 0,1, . . . ,n−1.

349 Definition Cn denotes acycleof lengthn. It is a graph withn edges, andn verticesv1 · · ·vn, wherevi is adjacent tovi+1 for
n = 1, . . . ,n−1, andv1 is adjacent tovn.

350 Definition Qn denotes then-dimensional cube. It is a simple graph with 2n vertices, which we label withn-tuples of 0’s and 1’s.
Vertices ofQn are connected by an edge if and only if they differ by exactly one coordinate. Observe thatQn hasn2n−1 edges.

Figure8.7shewsK3,3, figure8.8shewsP3, figure8.9shewsC5, figure8.10shewsQ2, and figure8.11shewsQ3.

351 Definition A subgraph G1 = (V1,E1) of a graphG = (V,E) is a graph withV1 ⊆V andE1 ⊆ E.

v2 v1

v4v3

Figure 8.5:K4.

A

B

C

D E

Figure 8.6:K5.

A B C

D E F

Figure 8.7:K3,3.

v2 v1

v4v3

Figure 8.8:P3.

A

B

C

D E

Figure 8.9:C5.

01 11

1000

Figure 8.10:Q2.

011 111

101001

010 110

100000

Figure 8.11:Q3.

A

B

CE
D

F
G

Figure 8.12: Example352.

We will now give a few examples of problems whose solutions become simpler when using a graph-theoretic model.

352 Example If the points of the plane are coloured with three different colours, red, white, and blue, say, shew that there will always exist
two points of the same colour which are 1 unit apart.
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Solution: In figure8.12all the edges have length 1. Assume the property does not holdand thatA is coloured red,B is coloured white,D
coloured blue. ThenF must both be coloured red. SinceE andC must not be red, we also conclude thatG is red. But thenF andG are at
distance 1 apart and both coloured red which contradicts ourassumption that the property did not hold.

353 Example A wolf, a goat, and a cabbage are on one bank of a river. The ferryman wants to take them across, but his boat is too small to
accommodate more than one of them. Evidently, he can neitherleave the wolf and the goat, or the cabbage and the goat behind. Can the
ferryman still get all of them across the river?

Solution: Represent the position of a single item by 0 for onebank of the river and 1 for the other bank. The position of the three items can
now be given as an ordered triplet, say(W,G,C). For example,(0,0,0) means that the three items are on one bank of the river,(1,0,0)
means that the wolf is on one bank of the river while the goat and the cabbage are on the other bank. The object of the puzzle isnow seen to
be to move from(0,0,0) to (1,1,1), that is, traversingQ3 while avoiding certain edges. One answer is

000→ 010→ 011→ 001→ 101→ 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the lettuce over bringing back the goat, (iii) takes the wolf over,
(iv) returns and takes the goat over. Another one is

000→ 010→ 110→ 100→ 101→ 111.

This means that the ferryman (i) takes the goat across, (ii) returns and that the wolf over bringing back the goat, (iii) takes the lettuce over,
(iv) returns and takes the goat over. The graph depicting both answers can be seen in figure8.13. You may want to visit

http://www.cut-the-knot.org/ctk/GoatCabbageWolf.shtml

for a pictorial representation.

101

001011

010

110 100

000 111

Figure 8.13: Example353.

354 Example (E ötv ös Mathematical Competition, 1947) Prove that amongst six people in a room there are at least three who know one
another, or at least three who do not know one another.

Solution: In graph-theoretic terms, we need to shew that every colouring of the edges ofK6 into two different colours, say red and blue,
contains a monochromatic triangle (that is, the edges of thetriangle have all the same colour). Consider an arbitrary person of this group
(call him Peter). There are five other people, and of these, either three of them know Peter or else, three of them do not knowPeter. Let us
assume three do know Peter, as the alternative is argued similarly. If two of these three people know one another, then we have a triangle
(Peter and these two, see figure8.14, where the acquaintances are marked by solid lines). If no two of these three people know one another,
then we have three mutual strangers, giving another triangle (see figure8.15).

355 Example Mr. and Mrs. Landau invite four other married couples for dinner. Some people shook hands with some others, and the
following rules were noted: (i) a person did not shake hands with himself, (ii) no one shook hands with his spouse, (iii) noone shook hands
more than once with the same person. After the introductions, Mr. Landau asks the nine people how many hands they shook. Each of the
nine people asked gives a different number. How many hands did Mrs. Landau shake?

Solution: The given numbers can either be 0,1,2, . . . ,8, or 1,2, . . . ,9. Now, the sequence 1,2, . . . ,9 must be ruled out, since if a person shook
hands nine times, then he must have shaken hands with his spouse, which is not allowed. The only permissible sequence is thus 0,1,2, . . . ,8.

91
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Peter

Figure 8.14: Example354.

Peter

Figure 8.15: Example354.

Consider the person who shook hands 8 times, as in figure8.16. Discounting himself and his spouse, he must have shaken hands with
everybody else. This means that he is married to the person who shook 0 hands! We now consider the person that shook 7 hands,as in figure
8.17. He didn’t shake hands with himself, his spouse, or with the person that shook 0 hands. But the person that shook hands onlyonce did
so with the person shaking 8 hands. Thus the person that shookhand 7 times is married to the person that shook hands once. Continuing this
argument, we see the following pairs(8,0), (7,1), (6,2), (5,3). This leaves the person that shook hands 4 times without a partner, meaning
that this person’s partner did not give a number, hence this person must be Mrs. Landau! Conclusion: Mrs. Landau shook hands four times.
A graph of the situation appears in figure8.18.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.16: Example355.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.17: Example355.

Mr. Landau

8

76
5

4

3
2 1

0

Figure 8.18: Example355.

8.2 Graphic Sequences
356 Definition A sequence of non-negative integers isgraphic if there exists a graph whose degree sequence is precisely that sequence.

357 Example The sequence 1,1,1 is graphic, sinceK3 is a graph with this degree sequence, and in general, so is thesequencen,n, . . . ,n| {z }
n+1 n′s

,

sinceKn+1 has this degree sequence. The degree sequence 1,2,2, . . . ,2| {z }
n twos

,1 is graphic, sincePn+1 has this sequence. The degree sequence

2,2, . . . ,2| {z }
n twos

is graphic, sinceCn has this sequence. From example355, the sequence 0,1,2,3,4,5,6,7,8 is graphic, whereas the sequence

1,2,3,4,5,6,7,8,9 is not.

A Bi D j

Figure 8.19: Theorem358.

A Cj Bi

Figure 8.20: Theorem358.

A
Bi D

Cj

Figure 8.21: Theorem358.

A
Bi D

Cj

Figure 8.22: Theorem358.

358 Theorem (Havel-Hakimi) The two degree sequences

I : a≥ b1 ≥ b2 ≥ ·· · ≥ ba ≥ c1 ≥ c2 ≥ ·· · ≥ cn,

II : b1−1,b2−1, · · · ,ba−1,c1,c2, · · · ,cn,
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are simultaneously graphic.

Proof: Assume first that the sequence II is graphic. There is a graph G′ with degree sequence equal to sequence II. We
construct the graph G from G′ by adding a vertex and connecting it to the vertices whose degrees are b1−1,b2−1, · · · ,ba−1.
Then G is a graph whose degree sequence is sequence I, and so II=⇒ I.

Assume now that sequence I is graphic. Let A,Bi ,Ci be vertices withdegA = a,degBi = bi , anddegCi = ci , respectively. If A
were adjacent to all the Bi , our task is finished by simply removing A. So assume that there is Bi to which A is not adjacent,
and a Cj to which A is adjacent. As the sequence is arranged in decreasing order, we must have bi ≥ c j . If it happens that
bi = c j , we then simply exchange Bi and Dj (see figures8.19and8.20). If bi > c j then Bi has at least one more neighbour
than Cj . Call this neighbour D. In this case we remove the edges ACj and BiD and add the edges ABi and DCj to obtain a new
graph with the same degree sequence as II. See figures8.21and8.22. This process is iterated until A is adjacent to all the Bi .
This finishes the proof.❑

359 Example Determine whether the degree sequence 6,5,4,3,2,2,2,2 is graphic.

Solution: Using the Havel-Hakimi Theorem successively we have

6,5,4,3,2,2,2,2→

4,3,2,1,1,1,2→
4,3,2,2,1,1,1→
2,1,1,0,1,1→
2,1,1,1,1,0→
0,0,1,1,0→
1,1,0,0,0.

This last sequence is graphic. By the Havel-Hakimi Theorem,the original sequence is graphic.

8.3 Connectivity
360 Definition A graphG = (V,E) is connectedif for any two of its vertices there is a path connecting them.

361 Definition A graph isconnected if for any two vertices there is a path with these vertices at its ends. Acomponent of a graph is a
maximal connected subgraph.

362 Definition A forestis a graph with no cycles (acyclic). Atree is a connected acyclic graph. Aspanning treeof a graph of a connected
graphG is a subgraph ofG which is a tree and having exactly the same of vertices asG.

8.4 Traversability
We start with the following, which is valid not only for simple graphs, but also for multigraphs and pseudographs.

363 Theorem (Handshake Lemma) Let G = (V,E) be a graph. ThenX
v∈V

degv = 2card(E) .

Proof: If the edge connects two distinct vertices, as sum traversesthrough the vertices, each edge is counted twice. If the
edge is a loop, then every vertex having a loop contributes2 to the sum. This gives the theorem.❑

364 Corollary Every graph has an even number of vertices of odd degree.

Proof: The sum of an odd number of odd numbers is odd. Since the sum of the degrees of the vertices in a simple graph is
always even, one cannot have an odd number of odd degree vertices.❑
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365 Definition A trail is a walk where all the edges are distinct. AnEulerian trail on a graphG is a trail that traverses every edge ofG. A
tour of G is a closed walk that traverses each edge ofG at least once. AnEuler touron G is a tour traversing each edge ofG exactly once,
that is, a closed Euler trail. A graph iseulerianif it contains an Euler tour.

366 Theorem A nonempty connected graph is eulerian if and only if has no vertices of odd degree.

Proof: Assume first that G is eulerian, and let C be an Euler tour of C starting and ending at vertex u. Each time a vertex v is
encountered along C, two of the edges incident to v are accounted for. Since C contains every edge of G, d(v) is then even for
all v 6= u. Also, since C begins and ends in u, d(u) must also be even.

Conversely, assume that G is a connected noneulerian graph with at least one edge and no vertices of odd degree. Let W be
the longest walk in G that traverses every edge at most once:

W = v0,v0v1,v1,v1v2,v2, ...,vn−1,vn−1vn,vn.

Then W must traverse every edge incident to vn, otherwise, W could be extended into a longer walk. In particular, W traverses
two of these edges each time it passes through vn and traverses vn−1vn at the end of the walk. This accounts for an odd number
of edges, but the degree of vn is even by assumption. Hence, W must also begin at vn, that is, v0 = vn. If W were not an Euler
tour, we could find an edge not in W but incident to some vertex in W since G is connected. Call this edge uvi . But then we can
construct a longer walk:

u,uvi ,vi ,vivi+1, ...,vn−1vn,vn,v0v1, ...,vi−1vi ,vi .

This contradicts the definition of W, so W must be an Euler tour. ❑

A

B

C

D

Figure 8.23: Example367.

v1 v2 v2 vi vi+1 vn−1 vn

Figure 8.24: Theorem369

The following problem is perhaps the originator of graph theory.

367 Example (K önigsberg Bridge Problem) The town of Königsberg (now called Kaliningrad) was built on an island in the Pregel River.
The island sat near where two branches of the river join, and the borders of the town spreaded over to the banks of the river as well as a
nearby promontory. Between these four land masses, seven bridges had been erected. The townsfolk used to amuse themselves by crossing
over the bridges and asked whether it was possible to find a trail starting and ending in the same location allowing one to traverse each of the
bridges exactly once. Figure8.23has a graph theoretic model of the town, with the seven edges of the graph representing the seven bridges.
By Theorem366, this graph is not Eulerian so it is impossible to find a trail as the townsfolk asked.

368 Definition A Hamiltonian cyclein a graph is a cycle passing through every vertex.G is Hamiltonianif it contains a Hamiltonian cycle.

Unlike Theorem366, there is no simple characterisation of all graphs with a Hamiltonian cycle. We have the following one way result,
however.

369 Theorem (Dirac’s Theorem, 1952) Let G = (V,E) be a graph withn = card(E)≥ 3 edges whose every vertex has degree≥ n
2 . Then

G is Hamiltonian.

Proof: Arguing by contradiction, suppose G is a maximal non-Hamiltonian with with n≥ 3, and that G has more than3
vertices. Then G cannot be complete. Let a and b be two non-adjacent vertices of G. By definition of G, G+ab is
Hamiltonian, and each of its Hamiltonian cycles must contain the edge ab. Hence, there is a Hamiltonian path v1v2 . . .vn in G
beginning at v1 = a and ending at vn = b. Put

S= {vi : avi+1 ∈ E} and {v j : v jb∈ E}.
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As vn ∈ S∩T we must havecard(S∪T) = n. Moreover, S∩T = ∅, since if vi§∩T then G would have the Hamiltonian cycle

v1v2 · · ·vivnvn−1 · · ·vi+1v1,

as in figure8.24, contrary to the assumption that G is non-Hamiltonian. But then

d(a)+d(b) = card(S)+card(T) = card(S∪T)+card(S∩T) < n.

But since we are assuming that d(a) ≥ n
2

and d(b)≥ n
2

, we have arrived at a contradiction.❑

8.5 Planarity

370 Definition A graph isplanar if it can be drawn in a plane with no intersecting edges.

371 Example K4 is planar, as shewn in figure8.25.

A
B

CD

2
3

4
1

Figure 8.25: Example373.

372 Definition A faceof a planar graph is a region bounded by the edges of the graph.

373 Example From figure8.25, K4 has 4 faces. Face1 which extends indefinitely, is called theoutside face.

374 Theorem (Euler’s Formula) For every drawing of a connected planar graph withv vertices,e edges, andf faces the following formula
holds:

v−e+ f = 2.

Proof: The proof is by induction on e. Let P(e) be the proposition that v−e+ f = 2 for every drawing of a graph G with e
edges. If e= 0 and it is connected, then we must have v= 1 and hence f= 1, since there is only the outside face. Therefore,
v−e+ f = 1−0+1 = 2, establishing P(0).

Assume now P(e) is true, and consider a connected graph G with e+1 edges. Either

➊ G has no cycles. Then there is only the outside face, and so f= 1. Since there are e+1 edges and G is connected, we
must have v= e+2. This gives(e+2)− (e+1)+1 = 2−1+1 = 2, establishing P(e+1).

➋ or G has at least one cycle. Consider a spanning tree of G and anedge uv in the cycle, but not in the tree. Such an edge
is guaranteed by the fact that a tree has no cycles. Deleting uv merges the two faces on either side of the edge and leaves
a graph G′ with only e edges, v vertices, and f faces. G′ is connected since there is a path between every pair of vertices
within the spanning tree. So v−e+ f = 2 by the induction assumption P(e). But then

v−e+ f = 2 =⇒ (v)− (e+1)+( f +1) = 2 =⇒ v−e+ f = 2,

establishing P(e+1).

This finishes the proof.❑
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375 Theorem Every simple planar graph withv≥ 3 vertices has ate≤ 3v−6 edges. Every simple planar graph withv≥ 3 vertices and
which does not have aC3 hase≤ 2v−4 edges.

Proof: If v = 3, both statements are plainly true so assume that G is a maximal planar graph with v≥ 4. We may also
assume that G is connected, otherwise, we may add an edge to G.Since G is simple, every face has at least3 edges in its
boundary. If there are f faces, let Fk denote the number of edges on the k-th face, for1≤ k≤ f . We then have

F1 +F2 · · ·+Ff ≥ 3 f .

Also, every edge lies in the boundary of at most two faces. Hence if Ej denotes the number of faces that the j-th edge has, then

2e≥ E1 +E2 + · · ·+Ee.

Since E1 +E2 + · · ·+Ee = F1 +F2 · · ·+Ff , we deduce that2e≥ 3 f . By Euler’s Formula we then have e≤ 3v−6.

The second statement follows for v= 4 by inspecting all graphs G with v= 4. Assume then that v≥ 5 and that G has no cycle
of length3. Then each face has at least four edges on its boundary. This gives2e≥ 4 f and by Euler’s Formula, e≤ 2v−4. ❑

376 Example K5 is not planar by Theorem375sinceK5 has
�5

2

�
= 10 edges and 10> 9 = 3(5)−6.

377 Example K3,3 is not planar by Theorem375sinceK3,3 has 3·3 = 9 edges and 9> 8 = 2(6)−4.

378 Definition A polyhedronis a convex, three-dimensional region bounded by a finite number of polygonal faces.

379 Definition A Platonic solidis a polyhedron having congruent regular polygon as faces and having the same number of edges meeting
at each corner.

By puncturing a face of a polyhedron and spreading its surface into the plane, we obtain a planar graph.

380 Example (Platonic Solid Problem) How many Platonic solids are there? Ifm is the number of faces that meet at each corner of a
polyhedron, andn is the number of sides on each face, then, in the corresponding planar graph, there aremedges incident to each of thev
vertices. As each edge is incident to two vertices, we havemv= 2e, and if each face is bounded byn edges, we also haven f = 2e. It follows
from Euler’s Formula that

2e
m
−e+

2e
n

= 2 =⇒ 1
m

+
1
n

=
1
e

+
1
2
.

We must haven≥ 3 andm≥ 3 for a nondegenerate polygon. Moreover, if eithern or mwere≥ 6 then

≤ 1
3

+
1
6

=
1
2

<
1
e

+
1
2
.

Thus we only need to check the finitely many cases with 3≤ n,m≤ 5. The table below gives the existing polyhedra.

n m v e f polyhedron

3 3 4 6 4 tetrahedron

4 3 8 12 6 cube

3 4 6 12 8 octahedron

3 5 12 30 20 icosahedron

5 3 20 30 12 dodecahedron

381 Example (Regions in a Circle) Prove that the chords determined byn points on a circle cut the interior into 1+
�n

2

�
+
�n

4

�
regions

provided no three chords have a common intersection.
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Solution: By viewing the points on the circle and the intersection of two chords as vertices, we obtain a plane graph. Eachintersection of the
chords is determined by four points on the circle, and hence our graph hasv =

�n
4

�
+n vertices. Since each vertex inside the circle has degree

4 and each vertex on the circumference of the circle has degree n+1, the Handshake Lemma (Theorem363) we have a total of

e=
1
2

�
4

�
n
4

�
+n(n+1)

�
edges. Discounting the outside face, our graph has

f −1 = 1+e−v = 1+2

�
n
4

�
+

n2

2
+

n
2
−
��

n
4

�
+n

�
= 1+

�
n
2

�
+

�
n
4

�
faces or regions.

Homework

382 Problem Determine whether there is a simple graph with eight vertices having degree sequence 6,5,4,3,2,2,2,2.

383 Problem Determine whether the sequence 7,6,5,4,4,3,2,1 is graphic.

384 Problem (IMO 1964) Seventeen people correspond by mail with one another—each one with all the rest. In their letters only three
different topics are discussed. Each pair of correspondents deals with only one of these topics. Prove that there at least three people who
write to each other about the same topic.

385 Problem If a given convex polyhedron has six vertices and twelve edges, prove that every face is a triangle.

386 Problem Prove, using induction, that the sequence

n,n,n−1,n−1, . . . ,4,4,3,3,2,2,1,1

is always graphic.

387 Problem Seven friends go on holidays. They decide that each will senda postcard to three of the others. Is it possible that every
student receives postcards from precisely the three to whomhe sent postcards? Prove your answer!

Answers

383 Using the Havel-Hakimi Theorem, we have
7,6,5,4,4,3,2,1→

5,4,3,3,2,1,0→

3,2,2,1,0,0→

1,1,0,0→
This last sequence is graphic. Hence the original sequence is graphic.

384 Choose a particular person of the group, say Charlie. He corresponds with sixteen others. By the Pigeonhole Principle, Charlie must
write to at least six of the people of one topic, say topic I. Ifany pair of these six people corresponds on topic I, then Charlie and this pair do
the trick, and we are done. Otherwise, these six correspond amongst themselves only on topics II or III. Choose a particular person from this
group of six, say Eric. By the Pigeonhole Principle, there must be three of the five remaining that correspond with Eric in one of the topics,
say topic II. If amongst these three there is a pair that corresponds with each other on topic II, then Eric and this pair correspond on topic II,
and we are done. Otherwise, these three people only correspond with one another on topic III, and we are done again.

385 Let x be the average number of edges per face. Then we must havex f = 2e. Hencex =
2e
f

=
24
8

= 3. Since no face can have fewer

than three edges, every face must have exactly three edges.
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386 The sequence 1,1 is clearly graphic. Assume that the sequence

n−1,n−1, . . . ,4,4,3,3,2,2,1,1

is graphic and add two vertices,u,v. Joinv to one vertex of degreen−1, one of degree ofn−2,, etc., one vertex of degree 1. Sincev is
joined ton−1 vertices, andu so far is not joined to any vertex, we have a sequence

n,n−1,n−1,n−1,n−2,n−2, . . . ,4,4,3,3,2,2,1,0.

Finally, join u to v to obtain the sequence
n,n,n−1,n−1, . . . ,4,4,3,3,2,2,1,1.

387 The sequence 3,3,3,3,3,3,3 is not graphic, as the number of vertices of odd degree is odd. Thus the given condition is not realisable.
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