SECTION 2.1
Ex. 2 Recall the definition of a primitive statement. Which statements cannot be broken down into simpler statements?
Ex. 4 When we write a — b, we mean “if a then 0", or “b is necessary for a”, or “a is sufficient for b”.
Ex. 11 We can think of a truth assignment in a truth table as a string of bits, similar to example 1.7

Ex. 12 There is an easier to do this than simply constructing the table. Remember that an implication S; — S, for
statements Sy, .59, is false only when 57 is true but S is false. Therefore, the truth assignements of p, ¢ and r are
irrelevant.

SECTION 2.2

Ex. 4 The useful rules here are (in order)
(a) Distributive :the left side can be simplified to (((p A ¢) A (r V =r)) V —q)) using this rule.

(b) Inverse

(¢) Identity
(d) Distributive
(e)

()

a

Inverse

Ex. 6 Once you've negated the statement and 'pushed’ the negation in, the useful rules are -

(i) Associative

(ii) Distributive

(iii) Inverse

(iv) Distributive
)

(v) Associative

(vi) Inverse
(b)-(¢) Remember that (a — b) <= (—a Vb)
(b) Once you’ve negated the statement and ’pushed’ the negation in, the useful rules are -
(i) Distributive
(ii) Associative
(iii) Inverse (twice)
(iv) Domination (twice)

(v) Identity (twice)

Ex. 8 Use the definition of the dual and the equivalent form of implication. You use the fact that any compound
proposition can be transformed to an equivalent proposition using the connectives V, Aand-.

Ex. 12 Use a truth table, or notice that —(p <+ ¢) < —[(p = q¢) A (¢ = p)] <= —[(-pV ¢) A (—qV p)]

Ex. 15 The question is asking you to find statements that are equivalent (as far as truth tables go) to the original
statements, but that have no symbols other than 1. Notice that once you've figured out (a), you can reuse it in
other, more complicated statements. To understand nand, we use the definition given: p 1 ¢ <= —(a Ab). So
for example for —p, we want to construct a statement of the form 7 17 that is equivalent to —p:

(a) [0] T [ 1 |Noticethat p < pAp
110 0
[(p]a]pVa] Ve = pAq| 717 = (AT)]
00 0 1
M lol1] 1 0 What does =(—p A —q) look like?
110 1 0
1|1 1 0




lplalprg]-lprg) <= —pV—q

From part (a) we know how to do —p and —¢. From part (b) we now

00 0 1
()fol1] o 1
10 0 1
1[1] 1 0

how to do —p V —¢ and we know how to do =(=pV —q) <= pAgq

(d) p—=q <= —pVq
() perq <= (P—=>q AN(g—p)

Ex. 16 Similar to Exercise 15.



