Voronoi Applications

Nearest Neighbour Queries

* Given a fixed set of points P in the plane, construct
the Voronoi diagram in O(nlogn) time.

 Now for a query point g, finding the nearest
neighbour of q reduces to finding in which Voronoi
region it falls

* The problem of locating a point inside a partition is
called point location

Point Location in a Planar Subdivision

* Input: A planar subdivision S with n edges

* Aim: Preprocess S such that point location queries
can be answered quickly

* Query: Given a query point, report the face of S
that contains g

Point Location in a Planar Subdivision

Ot

I

I

I

1

I

-
X

 Brute Approach:

— If Sis stored in DCEL, the query can be answered in O(n) time.
Just visit each face and determine if g is contained in
it. (How?)

* Take any ray from q. Find x, the point of intersection of the ray
with the boundary
* Walk the faces intersected by gx

Point Location in a Planar Subdivision

A

Nae ..

 Slab Method:

— ldea: Draw a vertical line through every vertex
— This partitions the plane into slabs
— Finding the right vertical slab can be done in O(logn) time

— How do we answer a query within a slab?
e Binary search: O(logn) time

* We can y-order the edges crossing the slab so that binary search is possible

Point Location in a Planar Subdivision

A

Nae ..

* Slab Method: Que:r:y:

— Search for the vertical slab that contains q
* O(logn) time

— Search for trapezoid in the vertical slab
* O(logn) time
— Total time : O(logn)

Point Location in a Planar Subdivision

— —

n/4 vertices — — n/4 vertices

|
n/2 vertices

e Slab Method: Storage
— O(n) slabs
— O(n) Trapezoids per slab
— Number of slabs : Q (n?)

Point Location in a Planar Subdivision

| QueyTime | space

1sttry O(n) O(n)
2" try O(logn) 0(n?)
Best O(logn) O(n)

Expected case already discussed;
Similar worst-case bound is possible.

All Nearest Neighbours

e Given a set P of n points, determine the nearest neighbour
of each point of P

* p->0 means the nearest

neighbour of pin P is
g P q .1/'/ \./,.<\\>,/
 Nearest Neighbour Graph of P: f @
NNG(P)
* A node is associated with each
point

* There is an edge between two
nodes if one of the corresponding
points is nearest to the other
corresponding poin

All Nearest Neighbours

* Lemma: NNG(P) C DT(P)

* Proof: Clearly if q is nearest to p, p and q are
directly connected in DT(P)

— Here, p and g are called Delaunay neighbours

[%

Minimum Spanning Tree

* Definition: a spanning tree of a point set P is a tree that
connects all the points of P
e Definition: Minimum spanning tree (MST) is a spanning tree
of P with minimum cost
* Kruskal’s Algorithm of Computing MST of a Graph
G = (V,E)
— Sort all edges of G by length e, ..., e,
— Initialize T to the empty set

— While T is not a spanning tree of P do

* If T+e, isatree then
TETHe,

* i« i+l
e Complexity: O (|v|?log|v])

Minimum Spanning Tree

Lemma: MST(P) € DT(P)

— The MST edges of P are contained in
DT(P)

Proof: Consider an MIST edge e

Observation:

— e is the shortest edge between V, and V,
— The circle with e as diameter is empty
— e is a Delaunay edge

For the MST of points in the plane there
are () edges. However we can only
use DT(P) edges (O(n) in number).
Therefore Kruskal’s algorithm costs O

(nlogn) time

Traveling Salesman Tour

Find the shortest closed path that visits every point
of the set. Such a closed path is called a traveling
salesman tour.

There are (n-1)! Different tours (starting from 1)

Hard problem (NP-hard)
* No polynomial time solution is known
Approximation algorithm:

* An algorithm which computes a solution which is close
to optimal

Traveling Salesman Tour

Consider an MST of P
Double the edges

— Each node has degree even

e Construct an Euler tour
* Eulerian tour cost is 2 * MST cost (1)

e TSP tour cost is no more than Eulerian
tour cost

e TSP tour cost is more than MST cost (2) 1
* Therefore: \ —

— (1) Euler tour cost = (2*MST)
— (2) Euler tour cost < (2*TSP)

7
* Euler tour is 2-approximations of \/>
TSP tour

Traveling Salesman Tour

 3/2-Approximation Tour
— Start from MST
— ldentify the odd-degree vertices

* There will always be an even number of
such vertices

— Pair up the odd degree vertices with
minimum cost

— Every node has even degree now
— Construct an Euler tour

— The cost of Euler tour

e = Cost of MST + Cost of edges between
paired up vertices

e Euler tour cost < (TSP + %4 TSP) =
3/2 TSP

Medial Axis

* A generalization of Voronoi diagram. The set of sites is an
infinite set of points, in particular the continuous boundary of
a polygon

* Voronoi diagram: set of points whose nearest neighbour is
not unique

 Medial Axis of a Polygon P:

— Set of points inside P that have more than one closest point among the
points of dP, the boundary of P

Medial Axis

 Medial Axis of a Rectangle

— The nearest neighbour of any point on the medial axis is
not unique.

— For point g, there are two boundary edges

/1

Medial Axis /

Q===

Medial Axis

e Other examples:

a: angle bisector of 1 and 2

b: angle bisector of 1 and 5

c: angle bisector of 2 and 5

5 4
b v f 3 e d:equidistant to vertex v
1 and edge 2
a C e
d * e:angle bisector of 2 and 4
2

f: angle bisector of 3 and 4

g: angle bisector of 2 and 3

Medial Axis

e Other examples:

Medial Axis

c: hearestto 1l and 3

e: hearestto3 and 7

g: nearestto4 and 7

i: nearestto 4 and 6

Medial Axis

Blum 1967: Introduced medial axis

Medial axis is used to represent an object
An object can be smoothed by smoothing the medial axis

Medial axis of a polygon can be computed in O(nlogn) time
— Lee 1982

For a convex polygon, O(n) time algorithm is known
— Aggarwal, Guibas, Saxe, and Shor 1989

Voronoi Diagram’s Connection to Convex Hulls

* Initial idea came from Brown (1979)

 The Voronoi diagram of a point set in the plane can be

computed by computing the convex hull of a transformed
point set in 3-dimensions

* Voronoi diagrams in d-dimensions are equivalent to convex
hulls in d+1 dimensions

One-Dimensional Delaunay Triangulation

* LetP={py, Py - P}
* We transform pi on a line to a point g, = (p,, p;?)
* Compute the convex hull of the points Q ={q,, 9, ..., 4,,}

* The projection of the lower convex hull of Q (that is visible
from y= -0) on to the x-axis realizes the Delaunay

triangulation of P

Convex Hull of Q

O P1 P, P3 Pa O p; P, Ps3 Pa
(origin) (origin)

One-Dimensional Delaunay Triangulation

e QObservation:

— Each q, = (p,, p;%) is an extreme point of Q

— The projection of the lower convex hull of Q onto x is the Delaunay
triangulation of P

— Note: The edge q,q, is an edge of the convex hull of Q and its
projection onto x contains all the points of P

Convex Hull of Q urs)

L 4 @ o—©@ @ L 4
Po Py P, P3 Pa Po Py P, Ps3
(origin) (origin)

©
N

One-Dimensional Delaunay Triangulation

Convex Hull of Q

Po P P, P3 P4
(origin)

* Observation:
— Each q, = (p,, p;%) is an extreme point of Q

— The projection of the lower convex hull of Q onto x is the Delaunay
triangulation of P

— Note: The edge q,q, is an edge of the convex hull of Q and its
projection onto x contains all the points of P

One-Dimensional Delaunay Triangulation

e QObservation:

— Suppose a and b lie on y = x?

— Let @’ and b’ be the projections of a and b onto the x axis

— Let t be the tangent point of the parabola where the line through a
and b is translated (staying parallel)

— Can show that the projection of t onto x-axis is the middle point of ab

One-Dimensional Delaunay Triangulation

e QObservation:

— Equation of L: y—t'2=2t" (x-t') ie. y=2t'x—-t"?
— Translate L’ vertically by r? to obtain L
— Equation of L: y=2t'x—t'2+4r2

— Intersection of L with y = x2 (a and b) can be obtained by solveing
* Y =x2=2t'x-t"2+r?

e = x=t'=xr

Two-Dimensional Delaunay Triangulation

* Given P = {p]_r p21 ceey pn}) pi = (Xi/ y|)
* Paraboloid z = x?+y?
- p; = (X, ¥)) - (X, Vi, Xi2+yi2) = (;
* LetQ={qy, .., q,} be the transformed points in 3-dimension
e Construct the convex hull of Q

* Project the lower convex hull of Q (visible from z = -) onto
the xy-plane

* The projected diagram is the Delaunay triangulation

Two-Dimensional Delaunay Triangulation

FIGURE 5.27 Plane for (a, b) = (2, 2) and r = 1 cutting the paraboloid.

FIGURE 5.28 The curve of intersection in Figure 5.27 projects to a circle of radius 1 in the
xy-plane.

Two-Dimensional Delaunay Triangulation

Three-Dimensional Delaunay Triangulation

* Consider 3-dimensional convex hull facet f.

* Three points a, b, and c of Q determine the facet f

* All the remaining points of Q lie on one side of the facet f.
* LetL be the plane that contains f

* Observation:

— Lintersects z = x2+y? into an ellipse
* EquationofL:ox+Py+yz=1

* Equation of paraboloid : z = x?+y?
— The projection of an ellipse onto xy-plane is a circle
— The projection of a, b, and c (say a’, b’, and c’) lie on the circle
— The circle is empty
— The triangle Aa’b’c’ is a Delaunay triangle

Connection to Arrangements

e One Dimensional Voronoi Diagram

— P = {plr Ty pn}) pi = Xi
— Suppose q; = (x;, X?), p.'s projection onto y= x?

— Consider the tangent line L, through pi and tangent to y=x2

— Projecting the visible part of the arrangment from y = +o
to the x-axis realizes the Voronoi diagram of P

P1 P, Ps3 Pa

Connection to Arrangements

* Two Dimensional Voronoi Diagram
—P= {plr Ly pn} y pi = (Xi) y|)
— Q = {qlr ey qn}; qi = (Xii yir Xi2+yi2)
— Let |. be the plane tangent to the paraboloid at g;

— Compute the arrangements of L, i=1, 2, ..., n that are
visible from z = +o©

— The projections of A onto the xy-plane determines the
Voronoi Diagram of P

