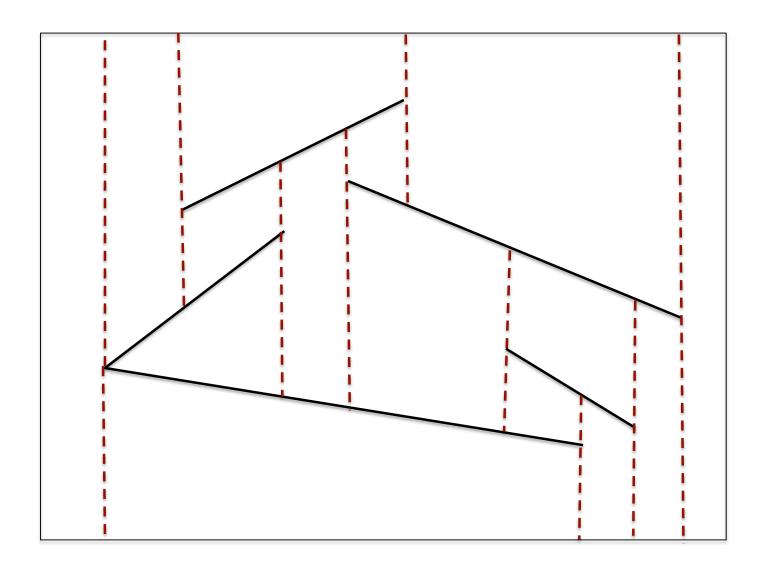
Trapezoidal Maps

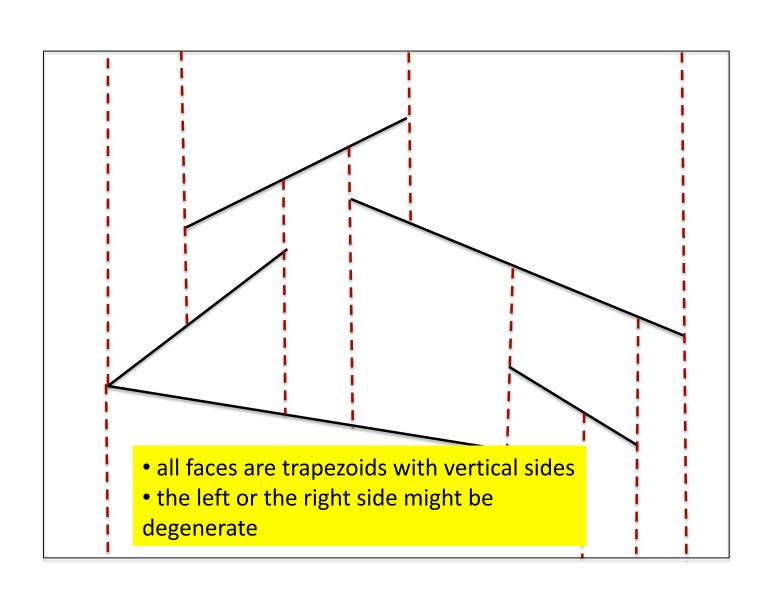
Notes taken from CG lecture notes of Mount (pages 60-69)

Course page has a copy

Trapezoidal Maps

- $S=\{s_1,s_2,...,s_n\}$ is the set of line segments
 - segments don't intersect, but can touch
 - assuming that if the endpoints are not touching, the x-coordinates of their segments have distinct endpoints
- Trapezoidal map results when a bullet is shot upwards and downwards from each vertex until it hits another segment segment of S.
 - to avoid infinite bullet paths, we assume that S is contained within a large bounding box.





Size of the map of n line segments

Claim: Given a polygonal subdivision with n segments, the resulting trapezoidal map has at most 6n+4 vertices and 3n+1 trapezoids.

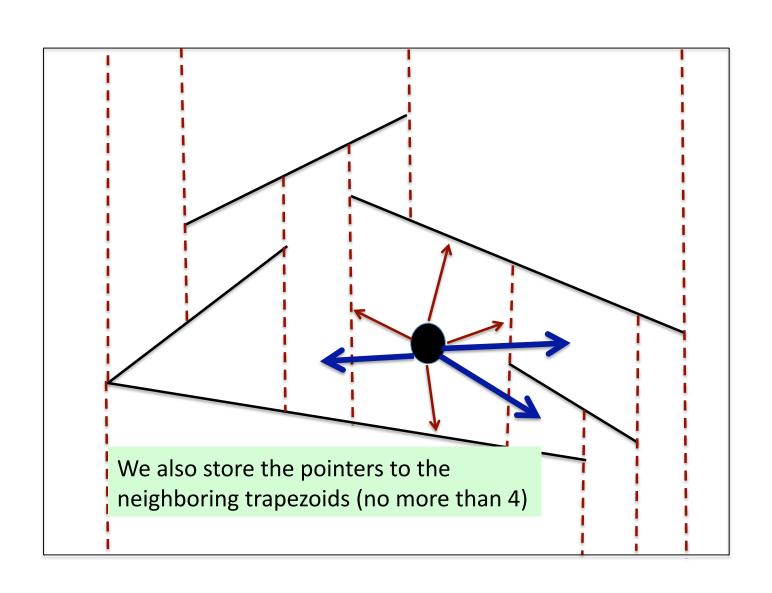
- bound on the vertices
 - each vertex shoots two bullets, thus creating two vertices; each segment has two endpoints; the bounding rectangle has 4 vertices
 - Total number of vertices: 2n (endpoints)+2.2n (bullet points) + 4 = 6n+4

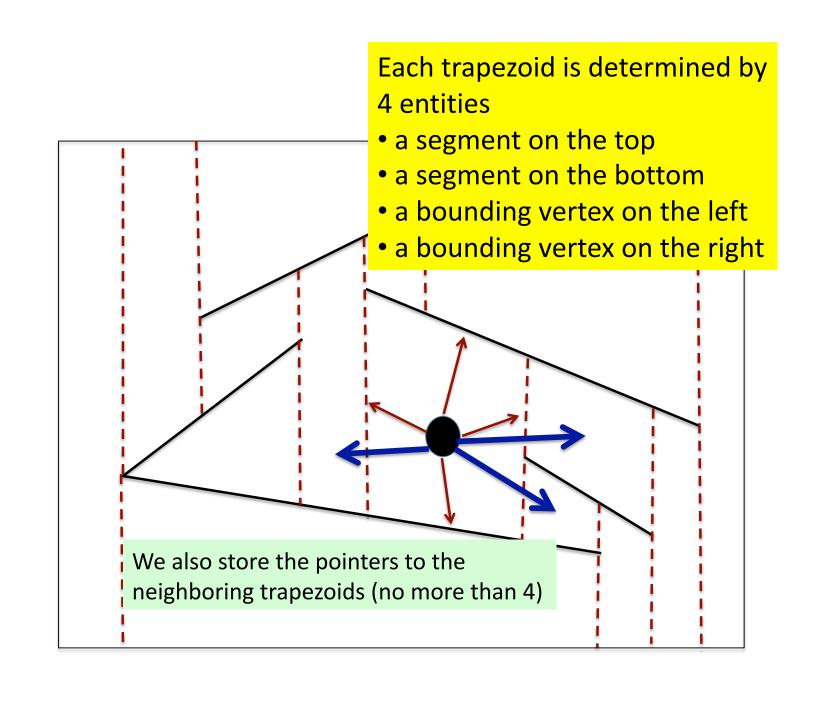
Size of the maps of n line segments

Claim: Given a polygonal subdivision with n segments, the resulting trapezoidal map has at most 6n+4 vertices and 3n+1 trapezoids.

- bound on the trapezoids :
 - each segment realizes the following
 - left endpoint of s supports two trapezoids from the left.
 - right endpoint of s supports one trapezoid from the left
 - total is 3
 - leftmost trapezoid is not bounded by any point from the left
 - number of trapezoids is at most 3n+1

Data structure for each trapezoid



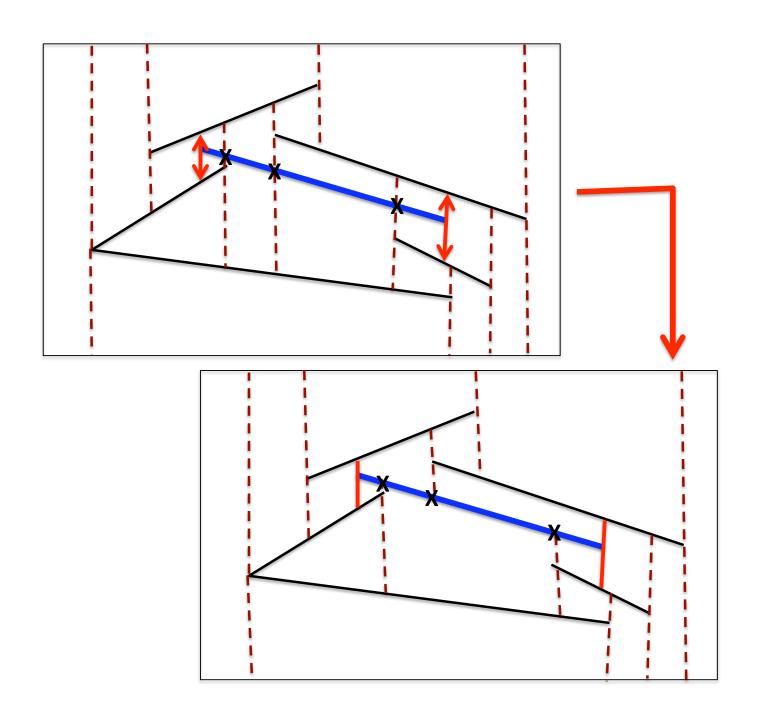


The data structure allows ...

... tracing a polygonal chain C through the trapezoidal map of S in O(|C| + k) where k is the number of trapezoids intersected by C, provides C does not properly intersect any segment of S. (We are assuming that the starting trapezoid is given)

Incremental algorithm

- Start with the bounding rectangle (starting trapezoid)
- We then add the segments in random order one at a time. As each segment is added, update the trapezoidal map.
- S_i = set of first i random segments
 - T_i = the resulting trapezoidal map
- When a new segment s_i is added, we perform the following operations on T_{i-1} .
 - Find the trapezoids of T_{i-1} that contain the left and the right endpoint of s_i .
 - Trace the line segment s_i from left to right, determining which trapezoids it intersects.
 - Go back to these trapezoids and fix them.
 - The left and the right endpoint of s_i need to have bullets fixed from them.
 - One of the earlier bullet path might hit this line segment. We need to trim this bullet path.



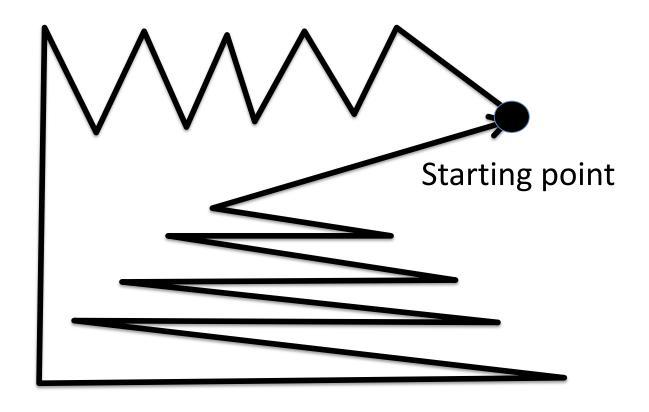
- Observe that the structure does not depend on the order in which the segments are added.
- Ignoring the time spent on locating the endpoint s_i, the time it takes to insert s_i is O(k_i) where k_i is the number of created trapezoids.

Expected time to build T_n

- Later we will argue that O(log n) time is needed on an average to locate the trapezoid containing the left endpoint of each new segment.
- We will show that the expected value of k_i, E(k_i) is O(1).
- This results in an O(nlogn) expected time algorithm for the incremental construction of the trapezoidal map of n segments.

Inserting s_i

Worst case situation: Tracing cost is O(n²)



Inserting s_i

- On an average each insertion results in a constant # of trapezoids being created
- Intuition:
 - Short segment might not intersect very many trapezoids
 - long segment may cut many trapezoids, but it shields later segments from cutting through many trapezoids.

Lemma A: $E(k_i)$ is O(1).

- The analysis will be based on a backward analysis.
 Here T_i denote the map after s_i is inserted.
- Since each segment is inserted at random, each segment has an equal probability of 1/i to be the last segment to have been added.
- Let $\delta(\Delta,s)=1$ if segment s defines one of the sides of Δ , otherwise $\delta(\Delta,s)=0$.
- Therefore

$$E[k_i] = \frac{1}{i} \sum_{s \in S_i} \sum_{\Delta \in T_i} \delta(\Delta, s).$$

Showing that $E(k_i)$ is O(1).

 Instead of counting the number of trapezoids that depend on each segment, we count the number of segments each trapezoid depend on

• Therefore
$$E[k_i] = rac{1}{i} \sum_{\Delta \in T_i} \sum_{s \in S_i} \delta(\Delta, s).$$

Since each trapezoid is defined by 4 segments,
 E(k_i) ≤ 1/i* |T_i|*4 = 1/i*O(i)*4 = O(1)

Incremental algorithm

- Start with the bounding rectangle (starting trapezoid)
- We then add the segments in random order one at a time. As each segment is added, update the trapezoidal map.
- S_i = set of first i random segments
 - T_i = the resulting trapezoidal map
- When a new segment s_i is added, we perform the following operations on T_{i-1} .
 - Find the trapezoids of T_{i-1} that contain the left and the right endpoint of s_i .
 - Trace the line segment s_i from left to right, determining which trapezoids it intersects.
 - Go back to these trapezoids and fix them.
 - The left and the right endpoint of s_i need to have bullets fixed from them.
 - One of the earlier bullet path might hit this line segment. We need to trim this bullet path.

Running time of inserting s_i has two parts

- Query time : one point location in T_{i-1}
- Tracing time through the trapezoids in T_{i-1}
 - We have seen that this takes expected O(1) time.

Step: Find the trapezoid in T_{i-1} that contains the left endpoint of s_i

 Point Location Structure: The data structure is a rooted directed acyclic graph. Each node has either two or zero outgoing edges. Each leaf (node with zero outgoing edge) stores a trapezoid in the map. The other nodes are internal nodes that facilitate the point location search. As we will see later, this search structure is not a binary tree.

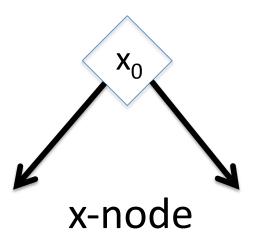
Two types of internal nodes

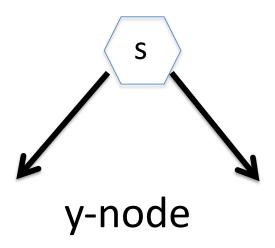
x-nodes

— each x-node contains the x-coordinate x_0 of an endpoint of one of the segment. The search takes the left branch if the x-coordinate of the query point q is less than x_0 , otherwise it takes the right branch.

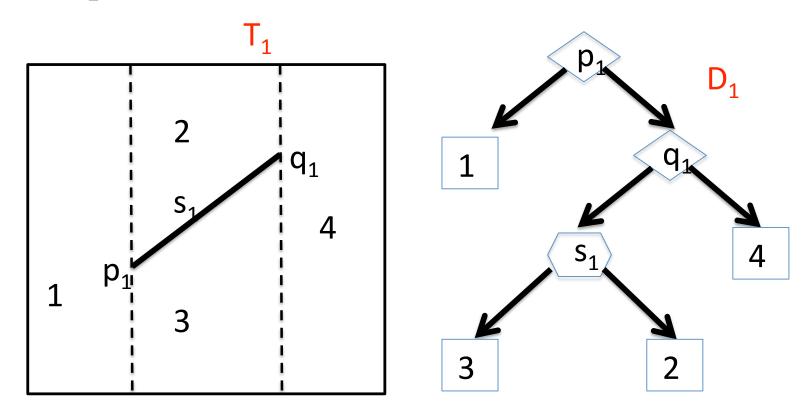
y-nodes

each y-node contains a pointer to a line segment s of S_i. The left and the right children correspond to whether the query point is below or above the line segment s. In this case the x-coordinate of the query point lies between the x-coordinates of the endpoints of s.

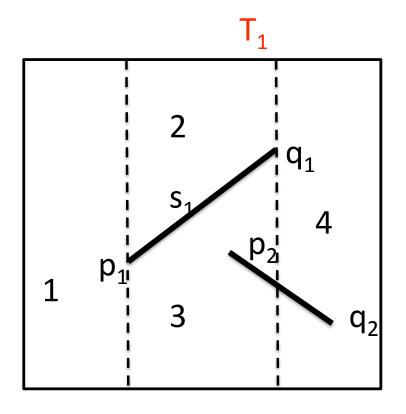




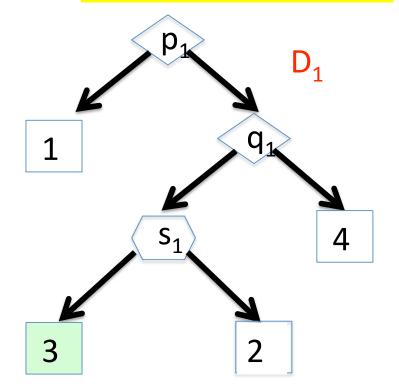
• s₁ is added

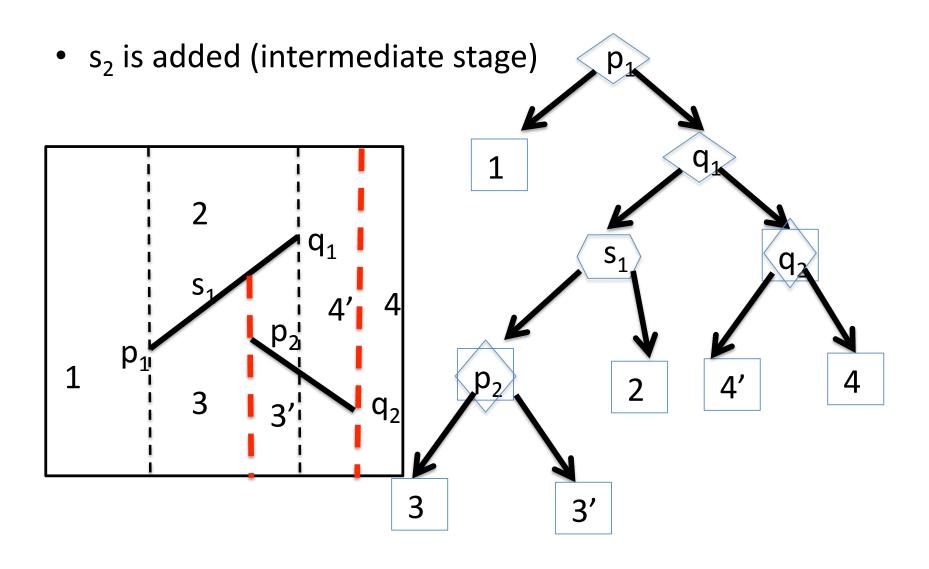


s₂ is added

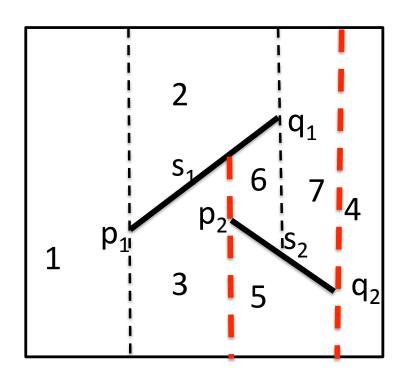


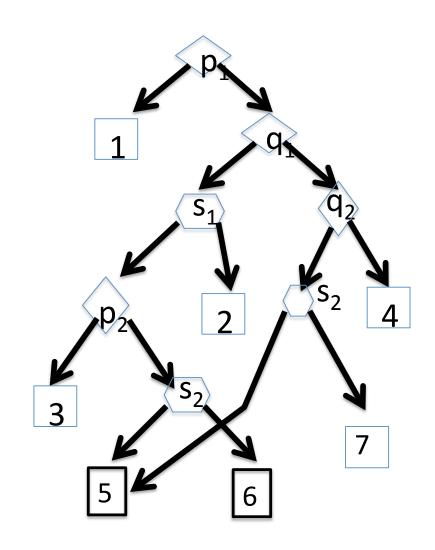
Perform search on D_1 to locate the trapezoid that contains the left point p_2 .





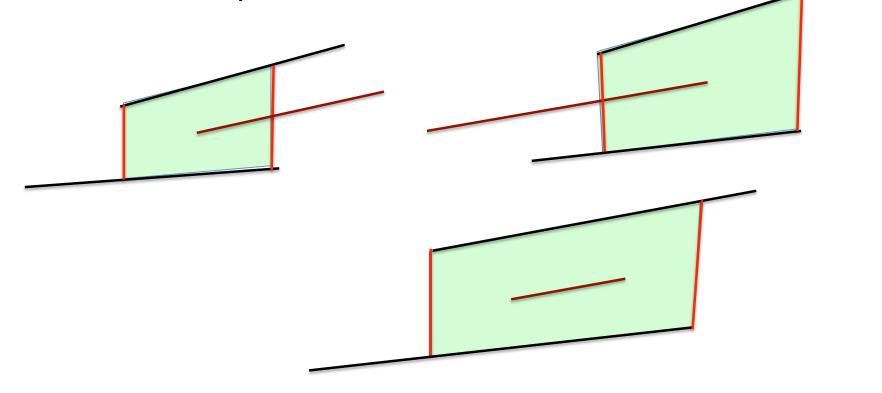
• s₂ is added (Final)





Analysis of point location structure

Three cases of how the end points of s_i can lie inside a trapezoid.



Analysis of point location structure

Local modifications after s_i is added. More comparisons are needed for point location inside the old trapezoid. Point location needs 2 comparisons (worst case) Point location needs 2 comparisons (worst case)

Point location needs 3

comparisons (worst case)

Analysis of T_n

- Expected size of T_n is O(n)
 - The number of new nodes is proportional to the number of newly created trapezoids.
 - The expected number of new trapezoids after an insertion is O(1)
 - Expected total size is O(n).

Claim: Expected query time in T_n is O(logn)

- Consider one query point q, chosen arbitrarily.
- Let us consider how q moves incrementally through the structure with the addition of new line segment.
- Let Δ_i be the trapezoid q lies after the insertion of i segments.
- If $\Delta_{i-1} = \Delta_i$, insertion of s_i did not affect the trapezoid that q was in.
- Suppose Δ_{i-1} ≠ Δ_i . In this case q must be relocated.
- In the worst case we need to make 3 comparisons to relocate (i.e. q falls as much as 3 levels)
- The probability that q changes at the ith step is 4/i.
- The expected length of a path is at most $3.4 \cdot (1+1/2+1/3+...+1/n) = 12H_n = O(log n)$

Some useful Lemmas

Lemma B:

For any q, if we know that $q \in \Delta_j$ where $\Delta_j \in T_j$, the expected cost of locating q in T_k , $k \ge j$ is at most $12.(H_k - H_i)$ which is $O(\log k/j)$.

This follows easily from the query time analysis

Some useful Lemmas

 Lemma C: Let R be a random subset of S, |R|=r. Let Z be the intersections between T(R) and S\R. The expected value of Z is O(n-r).

Proof: For any s ϵ S\R, the number of intersections between s and the trapezoidal map of R, T(R) is $deg(s, T(RU\{s\}))$.

$$E(Z) = \frac{1}{C(n,r)} \sum_{\substack{R \subset S \ s \in S \setminus R \\ |R| = r}} \sum_{s \in R'} deg(s, T(RU\{s\}))$$

$$= \frac{1}{C(n,r)} \sum_{\substack{R' \subset S \\ |R'| = r+1}} \sum_{s \in R'} deg(s,T(R')) \le \frac{1}{C(n,r)} \sum_{\substack{R' \subset S \\ |R'| = r+1}} 4 |R'|$$

$$= 4(r+1) \frac{C(n,r+1)}{C(n,r)} = 4(n-r)$$

Seidel's Trapezoidal Partitioning Algorithm

- Define log⁽ⁱ⁾n = log log ... logn (i times)
- log*n = max(h|log^(h)n ≥ 1}
- N(h) = ceiling(n/log^(h)n); N(0)=1
- Generate a random order s₁, s₂, ..., s_n.
 Let S_i={ s₁, s₂, ..., s_i}
- T(S_i): Trapezoidal map of S_i
- D(S_i): Point location data structure for T(S_i)

Algorithm

- 1. Generate $T(S_1)$ and $D(S_1)$
- 2. For h = 1 to log*n do
 - (a) for i = N(h-1) + 1 to N(h) do Insert segment s_i , producing $T(S_i)$ and $D(S_i)$ from $T(S_{i-1})$ and $D(S_{i-1})$.
 - (b) Trace the edges of polygon P through T(N(h)) to locate the endpoints of all s_i , j > N(h).
- 3. i = N(log*n) + 1 to n do Insert s_i , producing $T(S_i)$ and $D(S_i)$ from $T(S_{i-1})$ and D (S_{i-1}) .

Algorithm Analysis

```
Generate T(S_1) and D(S_1)
    Takes O(1) time
2. For h = 1 to log*n do
    (a) for i = N(h-1) + 1 to N(h) do
            Insert segment s<sub>i</sub>, producing T(S<sub>i</sub>) and D(S<sub>i</sub>)
                                                                      T(S_{i-1}) and
                                                              from
        D(S_{i-1}).
         \leq N(h)^*[O(1) (Lemma A) + O(log(N(h)/N(h-1)) (Lemma B)]
        i.e N(h)*[O(1) + O(log(n/N(h-1)))
        i.e N(h)*[O(1)+O(log(n/ceiling(n/log^{(h-1)}n)))]
        i.e N(h)*O(loglog^{(h-1)}n)
        i.e N(h)*O(log^{(h)}n) = O(n).
   (b) Trace the edges of polygon P through T(N(h)) to locate the
         endpoints of all s_i, j > N(h).
         O(n) by Lemma C
```

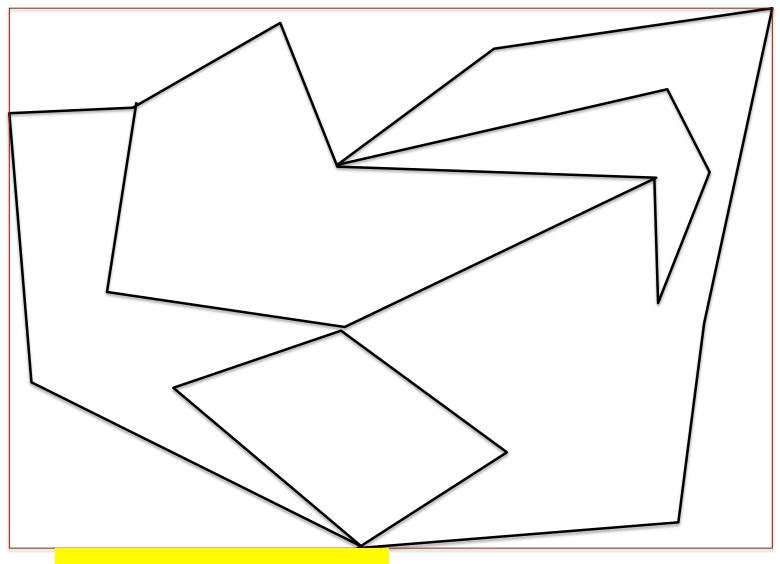
Algorithm

- 1. Generate $T(S_1)$ and $D(S_1)$
- 2. For h = 1 to log*n do
 - (a) for i = N(h-1) + 1 to N(h) do

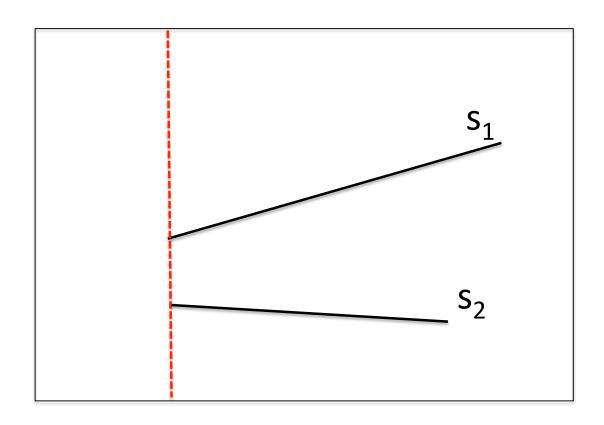
 Insert segment s_i , producing $T(S_i)$ and $D(S_i)$ from $T(S_{i-1})$ and $D(S_{i-1})$.
 - (b) Trace the edges of polygon P through T(N(h)) to locate the endpoints of all s_i , j > N(h).
- 3. i = N(log*n) + 1 to n do Insert s_i , producing $T(S_i)$ and $D(S_i)$ from $T(S_{i-1})$ and D (S_{i-1}) .
 - = O(n)* O(log(n/N(log*n))) (Lemma A and B) i.e O(n)*O(1) = O(n)

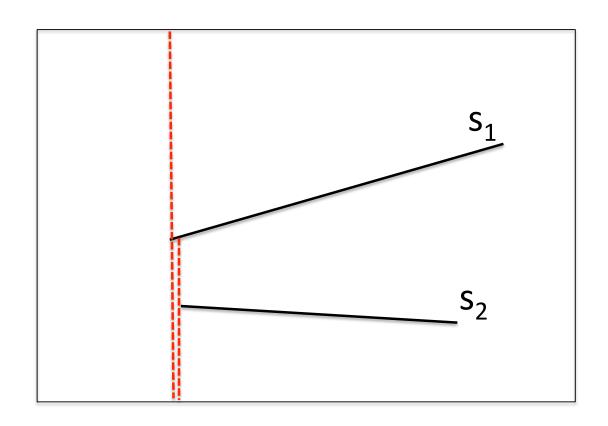
Finally

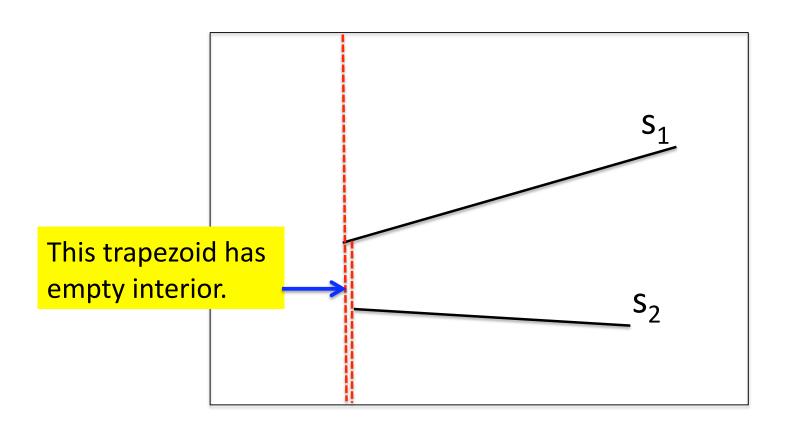
- Theorem: Let S be a set of n segments that form a simple polygon. Then
 - One can build T(S) and D(S) in O(nlog*n) time
 - Expected size of D(S) is O(n)
 - Expected query time for any q in D(S) is O(log n)
- The same results holds if P is a connected polygonal subdivision. In step 2(b) of the algorithm, a graph traversal algorithm is used to trace P through T(N(h)).

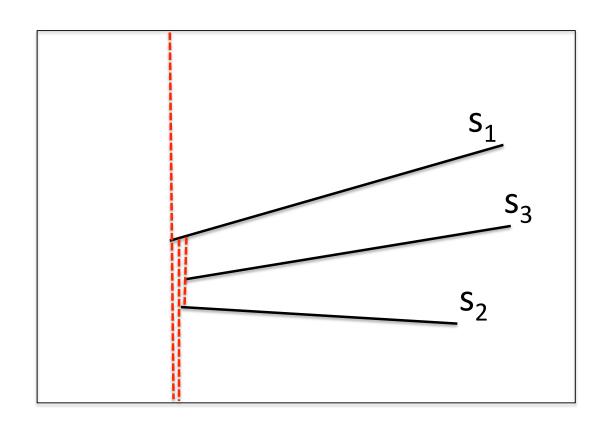


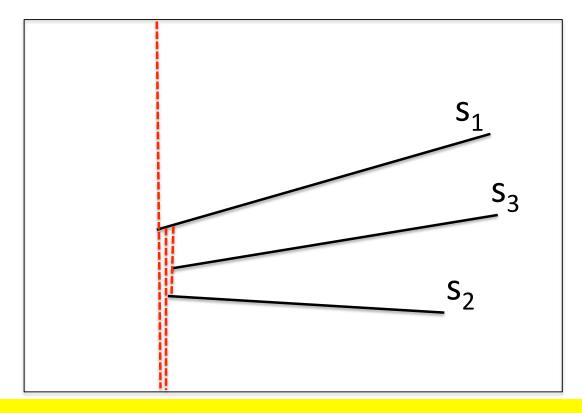
Planar Subdivision











Total number of trapezoids (including the degenerate ones) is still at most 3n+1