Trapezoidal Maps

Notes taken from CG lecture notes of
Mount (pages 60-69)

Course page has a copy

Trapezoidal Maps

* S={s;,S,, ..., S, is the set of line segments
— segments don’t intersect, but can touch

— assuming that if the endpoints are not touching,
the x-coordinates of their segments have distinct
endpoints

* Trapezoidal map results when a bullet is shot
upwards and downwards from each vertex
until it hits another segment segment of S.

— to avoid infinite bullet paths, we assume that S is
contained within a large bounding box.

« all faces are trapezoids with vertical sides

* the left or the right side might be

degenerate

Size of the map of n line segments

Claim: Given a polygonal subdivision with n
segments, the resulting trapezoidal map has at
most 6n+4 vertices and 3n+1 trapezoids.

* bound on the vertices

— each vertex shoots two bullets, thus creating two

vertices; each segment has two endpoints; the
bounding rectangle has 4 vertices

— Total number of vertices: 2n (endpoints)+2.2n
(bullet points) + 4 = 6n+4

Size of the maps of n line segments

Claim: Given a polygonal subdivision with n segments, the resulting
trapezoidal map has at most 6n+4 vertices and 3n+1 trapezoids.

* bound on the trapezoids :
— each segment realizes the following

 |left endpoint of s supports two trapezoids from the left.
* right endpoint of s supports one trapezoid from the left
* totalis 3
— leftmost trapezoid is not bounded by any point from
the left

— number of trapezoids is at most 3n+1

Data structure for each trapezoid

neighboring trapezoids (no more than 4)

We also store the pointers to the

Each trapezoid is determined by
4 entities

* a segment on the top

* a segment on the bottom

* a bounding vertex on the left
' * a bounding vertex on the right

We also store the pointers to the
neighboring trapezoids (no more than 4)

The data structure allows ...

... tracing a polygonal chain C through the
trapezoidal map of Sin O(|C| + k) where k is
the number of trapezoids intersected by C,
provides C does not properly intersect any
segment of S. (We are assuming that the
starting trapezoid is given)

Incremental algorithm

Start with the bounding rectangle (starting trapezoid)

We then add the segments in random order one at a time. As each
segment is added, update the trapezoidal map.

S, = set of first i random segments

T. = the resulting trapezoidal map

When a new segment s, is added, we perform the following
operationson T, ;.

Find the trapezoids of T, ; that contain the left and the right endpoint of s..

Trace the line segment s, from left to right, determining which trapezoids it
intersects.

Go back to these trapezoids and fix them.
The left and the right endpoint of s, need to have bullets fixed from them.

One of the earlier bullet path might hit this line segment. We need to trim
this bullet path.

* Observe that the structure does not depend
on the order in which the segments are
added.

* |gnoring the time spent on locating the
endpoint s, the time it takes to insert s, is O(k;)
where k. is the number of created trapezoids.

Expected time to build T,

e Later we will argue that O(log n) time is
needed on an average to locate the trapezoid
containing the left endpoint of each new

segment.
* We will show that the expected value of k,,
E(k:) is O(1).
e This results in an O(nlogn) expected time
algorithm for the incremental construction of
the trapezoidal map of n segments.

Inserting s.

* Worst case situation: Tracing cost is O(n?)

9
Starting point

Inserting s.

 On an average each insertion results in a
constant # of trapezoids being created

* |Intuition:

— Short segment might not intersect very many
trapezoids

— long segment may cut many trapezoids, but it
shields later segments from cutting through many
trapezoids.

Lemma A: E(k) is O(1).

The analysis will be based on a backward analysis.
Here T, denote the map after s, is inserted.

Since each segment is inserted at random, each

segment has an equal probability of 1/i to be the last
segment to have been added.

Let 6(A,s)=1 if segment s defines one of the sides of
A, otherwise 8(A,s)=0.

Therefore

E[k;] >° 3 (A,

.
- -

Showing that E(k:) is O(1).

* Instead of counting the number of trapezoids that
depend on each segment, we count the number of
segments each trapezoid depend on

 Therefore Ek|~~ > > 4&As)

e Since each trapezoid is defined by 4 segments,
E(k)<1/i*|T.|*4 =1/i*O(i)*4 = O(1)

Incremental algorithm

Start with the bounding rectangle (starting trapezoid)

We then add the segments in random order one at a time. As each
segment is added, update the trapezoidal map.

S, = set of first i random segments

T. = the resulting trapezoidal map

When a new segment s, is added, we perform the following
operationson T, ;.

Find the trapezoids of T, ; that contain the left and the right endpoint of s..

Trace the line segment s, from left to right, determining which trapezoids it
intersects.

Go back to these trapezoids and fix them.
The left and the right endpoint of s, need to have bullets fixed from them.

One of the earlier bullet path might hit this line segment. We need to trim
this bullet path.

Running time of inserting s, has two
parts

* Query time : one point location in T, ,

* Tracing time through the trapezoids in T, ,
— We have seen that this takes expected O(1) time.

Step: Find the trapezoid in T, that
contains the left endpoint of s,

* Point Location Structure: The data structure is
a rooted directed acyclic graph. Each node has
either two or zero outgoing edges. Each leaf
(node with zero outgoing edge) stores a
trapezoid in the map. The other nodes are
internal nodes that facilitate the point location
search. As we will see later, this search
structure is not a binary tree.

Two types of internal nodes

e x-nodes

— each x-node contains the x-coordinate x, of an
endpoint of one of the segment. The search takes the
left branch if the x-coordinate of the query point q is
less than x,, otherwise it takes the right branch.

* y-nodes

— each y-node contains a pointer to a line segment s of
S.. The left and the right children correspond to
whether the query point is below or above the line
segment s. In this case the x-coordinate of the query
point lies between the x-coordinates of the endpoints
of s.

N\

X-node

7N\

y-node

Few steps of the algorithm

* 5, is added

N\
T N
o N

Few steps of the algorithm

Perform search on D, to
locate the trapezoid
that contains the left

* s, is added

—_
[EEY

s
PN

N

\"’\
O
—— ARY S TERpRpap——_— Rp———
@)
I
N

[N
L)
—]
W
O
N

N

Few steps of the algorithm

* s, is added (intermediate stage) p\

N

O
RAppp———
W

=

\
©
seadbkdseocsoedeseea
O
D
S

(00)

O
N

Few steps of the algorithm

/p\

* s, is added (Final)

Analysis of point location structure

* Three cases of how the end points of s, can lie

inside a trapezoid. _—

/
T

/(

Analysis of point location structure

Local modifications after s, is added. More
comparisons are needed for point location inside
the old trapezoid. T

/
/

Nt location needs 2
— ' comparisons (worst case)

Point location needs 2 //
comparisons (worst case}]
/
—

Point location needs 3
comparisons (worst case)

Analysis of T,

* Expected size of T is O(n)

— The number of new nodes is proportional to the
number of newly created trapezoids.

— The expected number of new trapezoids after an
insertion is O(1)

— Expected total size is O(n).

Claim: Expected query timein T is O(logn)

— Consider one query point q, chosen arbitrarily.

— Let us consider how g moves incrementally through
the structure with the addition of new line segment.

— Let A, be the trapezoid q lies after the insertion of |
segments.

— If A, = A, insertion of s, did not affect the trapezoid
that q was in.

— Suppose A, ,# A.. In this case g must be relocated.

— In the worst case we need to make 3 comparisons to
relocate (i.e. g falls as much as 3 levels)

— The probability that g changes at the it" step is 4/i.
— The expected length of a path is at most
3.4 .(1+1/2+1/3+ ... + 1/n) = 12H_= O(logn)

Some useful Lemmas

* Lemma B:

For any g, if we know that g € A, where A, e T, the

expected cost of locating qin T, k 2 j is at most
12.(H,— H;) which is O(log k/j).

— This follows easily from the query time analysis

Some useful Lemmas

* Lemma C: Let R be arandom subset of S, |R|=r. Let Z
be the intersections between T(R) and S\R. The
expected value of Z is O(n-r).

Proof: For any s € S\R, the number of intersections between s
and the trapezoidal map of R, T(R) is deg(s, T(RU{s})).

E(Z) = C(> D deg(s, T(RU{s}))
n,)RCSSES\R
Y4IR!
RCS SER' C(n r) RS
IRl=r+l Ri=rd
=4(r+1)C(n,r+1) =4(n-r)

C(n,r)

Seidel’s Trapezoidal Partitioning
Algorithm

Define log'’!n = log log ... logn (i times)
log*n = max(h|log"n > 1}

N(h) = ceiling(n/log"in); N(0)=1

Generate a random orders,, s,, ..., S,.

Let S={s,, S, ..., S}

T(S;): Trapezoidal map of S

D(S,): Point location data structure for T(S))

Algorithm

1. Generate T(S,) and D(S,)

2. Forh=1tolog*n do
(a) fori=N(h-1)+ 1to N(h)do

Insert segment s, producing T(S,) and D(S,) from
T(S; ;) and D(S, ,).

(b) Trace the edges of polygon P through T(N(h)) to
locate the endpoints of all s;, j > N(h).

3. i=N(log*n)+1tondo
Insert s, producing T(S;) and D(S;) from T(S, ;) and D
(Si.1)-

Algorithm Analysis

1. Generate T(S,) and D(S,)
Takes O(1) time

2. Forh=1tolog*n do
(a) fori=N(h-1)+1to N(h)do

Insert segment s, producing T(S,) and D(S) from T(S, ;) and
D(S, ;).

< N(h)*[O(1) (Lemma A) + O(log(N(h)/N(h-1)) (Lemma B)]
i.e N(h)*[O(1) + O(log(n/N(h-1)))

i.e N(h)*[O(1) +O(log(n/ceiling(n/log"1n)))]

i.e N(h)*O(loglog(h1)n)

i.e N(h)*O(log(Mn) = O(n).

(b) Trace the edges of polygon P through T(N(h)) to locate the
endpoints of all's;, j > N(h).

O(n) by Lemma C

Algorithm

3. i=N(log*n)+1tondo
2nse)rt s, producing T(S;) and D(S;) from T(S, ;) and D
S.1)-
= O(n)jﬁk O(log(n/N(log*n))) (Lemma A and B)
i.e O(n)*0O(1) = O(n)

Finally

* Theorem: Let S be a set of n segments that
form a simple polygon. Then
— One can build T(S) and D(S) in O(nlog*n) time
— Expected size of D(S) is O(n)
— Expected query time for any g in D(S) is O(log n)
 The same results holds if P is a connected
polygonal subdivision. In step 2(b) of the

algorithm, a graph traversal algorithm is used
to trace P through T(N(h)).

Planar Subdivision

Degeneracy

Degeneracy

Degeneracy

This trapezoid has /

empty interior. —>i§

Degeneracy

Degeneracy

n
[HRY

n
N

Total number of trapezoids (including the degenerate ones) is
still at most 3n+1

