Fortune’s Algorithm

Notes from the book by de Berg, Van
Krevald, Overmars, and Schwarzkpf

Fortune’s Algorithm

Based on sweeping the plane with a horizontal line
and computing the Voronoi diagram as the line
sweeps

Straight-forward approach won’t work

The unanticipated event
can not be recognized

. . Unanticipated event
until p, is known 7
——= = ~ L (Sweep Line)
Therefore the sweep -~ e
line technique in a Ps

straightforward manner
cannot be applied

Fortune’s Algorithm

Fortune applied a transformation that alters the way
the distances are measured in the plane.

The resulting diagram had the same topological
structure as the Voronoi diagram but its edges were
parabolic arcs rather than straight line segments

Sweeping object was a straight line

It was an easy matter to “undistort” it to produce the
correct Voronoi diagram

Fortune’s Algorithm

 Presentation here will be different:

— Our sweep line is a distorted one. It is called beach line.

— This distorted sweep line is created by the interactions of
the points already swept and a horizontal line moving
ahead of the distorted line

— The distorted sweep line is called the beach line and the
beach line follows just behind the horizontal sweep line

Beach Line

s L (Sweep Line)

Fortune’s Algorithm

* Point on the parabolic curves are equidistant to p
and L

Fortune’s Algorithm

 We make sure that the Voronoi diagram cannot be
affected by anything that lies below the horizontal sweep
line

* To do this, we will subdivide the half-plane lying above the
horizontal sweep line into two regions:

— All points that are closer to some point above the horizontal sweep line
than to the sweep line itself (blue)

— All points that are closer to the sweep line than any site above the sweep
line (green)

Beach Line

v L (Sweep Line)

Fortune’s Algorithm

* The beach line consists of the lower envelope of
parabolas, one for each point. Note that some
parabolas will not contribute to the beach line

e Lemma: The beach line is an x-monotone curve
made up of parabolic arcs. The breakpoints of the
beach line lie on Voronoi edges of the final diagram.
— Parabolas are x-monotone, so is the beach line

— The breakpoints are equidistant from the two points and
the sweep line

Fortune’s Algorithm

* The algorithm consists of simulating the growth of
the beach line as the sweep line moves downward
and, in particular, tracing the paths of the
breakpoints as they travel along the edges of the
Voronoi diagram.

e We will maintain:

— Sweep line status:
* maintain the current location (y-coordinate) of the sweep line.
» Store, in left-to-right order, the set of points that define the beach line

* Note: the algorithm never stores the beach line itself. The beach line
exists solely for visual (conceptual) purposes.

Fortune’s Algorithm

* The set of points that are equidistant from the sweep

line to their nearest site above the sweep line is
called the beach line

* This implies that the Voronoi diagram above the
beach line cannot be affected by any points lying
below the sweep line.

* Hence the portion of the Voronoi diagram that lies
above the beach line is “safe”. (i.e. we can compute it
without knowing about which points are still to
appear below the sweep line.)

Fortune’s Algorithm

* Events: There are two types of events

— Point Event:
* When the sweep line passes over a new points.

* A new parabola will be inserted into the beach line.

— Vertex Event: (Circle events in the text)
* When the length of a parabolic arc shrinks to zero

* The arc disappears and a new Voronoi vertex will be created at this
point

Fortune’s Algorithm

Point Event:

.pz
Pie
e
Ps3
< plr pz > < p]_l p3l p1r p2 > < pll p3r p]_l p2 >

* To process a point event:
— Determine the arc of the beach line directly above the new point
— Split the arc into two by inserting a new infinitesimally small arc at this
point
— As the sweep proceeds this arc will start to widen

Fortune’s Algorithm

* This (point event) is the only way that new arcs can

be introduced to the beach line. (Proof is in the book
of Van Krevald et al.)

* Therefore, at most 2n-1 arcs can appear on the
beach line. (Net increase: two arcs per point)

 Point events are known in advance
 We sort the points by y-coordinate

Fortune’s Algorithm

* Vertex Events:

— Vertex events are generated dynamically as the algorithm
runs

— Like the line segment plane sweep algorithm, vertex
events are generated by neighbours on the beach line.
However, unlike the segment intersection where pairs of
consecutive segments generate events, here triples of
points generate the event

Fortune’s Algorithm

1. P, Pj, and P, whose arcs appear
consecutively on the beach line. The o Py
circumcircle lies partially below the
sweep line

2. Circumcircle is empty and the center is
equidistant to p;, p;, p,, and L. The
center is a Voronoi vertex.

3. The arc of p, disappears from the
beach line ,

Fortune’s Algorithm

e (Partial) Voronoi Diagram:

— The partial Voronoi diagram that has been
constructed so far will be stored in a DCEL.

— Unbounded edges are tackled by constructing the
Voronoi diagram within a box large enough to
include all the Voronoi vertices inside it

Fortune’s Algorithm

* Event Queue:

— Point Event
A priority queue of the points. It allows Extract_Max()

— Circle (Vertex) Event
* For each consecutive triple pi, pj, and pk on the beach
line we compute the circumcircle of these events. If
the lower endpoint of the circle lies below the sweep
line, we create a vertex event whose y-coordinate is
the y-coordinate of the bottom endpoint of the

circumcircle.

Fortune’s Algorithm

e QOperations to be Performed:
— Point Event

* Given a fixed location of the sweep line, determine the
arc of the beach line that intersects a given vertical
line (O(logn) time search is possible)

* Computing the predecessor and the successor on the
beach line

* Inserta new arc p; within a given arc p;, thus splitting
the arc for p; into two. This creates three arcs: p;, p, p;
(can be done in O(logn) time

 Delete an arc from the beach line (can be done in O
(logn) time)

Fortune’s Algorithm

e QOperations to be Performed:

— Point Event: p, lieson L &
. P1=p,
* Determine the arc of the beach L

line directly above p;. Let p; be |
the corresponding site. P3= P,
* Replace the arc p; by arcs p;, p;, p; <Py P>

 Create new edge (dangling) for
the Voronoi diagram which lies
on the bisector between pi and

P;

* Old triples involving p, is delete
and some new triples involving
p, will be inserted

Fortune’s Algorithm

e QOperations to be Performed:

— Vertex Events:

Let p;, p;, Py be the three
consecutive points that generate
this event (from left to right).

We delete the arc for p; from the
beach line

We create a new vertex in the
Voronoi diagram and tie the
edges (p;, p;) and (p;, p,) to it and
start a new bisector (p, p,) that
starts growing down below

P

Fortune’s Algorithm

* Lemma: Both the point event and the vertex event
can be handled in O(logn) time

 Theorem: Fortune’s algorithm computes the
Voronoi diagram in O(nlogn) time. The storage
space requirement is O(n)

Maximizing Angles and Edge Flippings

 Among all triangulations, the Delaunay
triangulation maximizes the minimum angle.

— DT avoids skinny triangles

 Much stronger statement: Among all the
triangulations with the same smallest angle, the
DT maximizes the second smallest angle, and so
on.

* In particular, any triangulation can be
associated with the sorted angle sequence i.e.
the increasing sequence of angles (o, o, ...,
a,,) appearing in the triangles of the
triangulation.

Maximizing Angles and Edge Flippings

* Theorem: Among all triangulations of a given
point set, the Delaunay triangulation has the
lexicographically largest angle sequence

* Proof: Consider an angle sequence (3, 3,, ---,
B,,) of a non-Delaunay triangulation. We
want to show that in this case there exists
another triangulation (B,’, B,’, ..., B,,) which
is lexicographically larger.

Maximizing Angles and Edge Flippings

* Since the angle sequence (8, B,, ---, B,,) cOmes from a non-
Delaunay triangulation, there exists a case like:

. D lies inside the circumcircle of . Circumcircle of Aabd and
Aabc Abcd are empty

. Implies that b lies inside the
circumcircle of Aacd

Maximizing Angles and Edge Flippings

Maximizing Angles and Edge Flippings

* gy > Oy
* Bpe >y
* Oy > Oy
* gy > Og,

 There are two other angles that need to be compared as well. It
is not hard to show that, after swapping, these other angles can
not be smaller than the minimum of o, , o, a4 O,

* Since there are only a finite number of triangulations, this
process must terminate with the lexicographically macimum
triangulation and this triangulation must satisfy the empty circle
condition. Hence it is the Delaunay triangulation

Legal Triangulation

* Definition: an edge of a triangulation is illegal if we can locally
increase the smallest angle by flipping that edge

 Definition: a legal triangulation is one that does not contain any
illegal edges

e Algorithm: Legal Triangulation (T) Py
* Input: Some triangulation of P ’
* Output: A legal triangulation of P P 4‘
While T contains an illegal edge PP
do /*flip pip; */

let p;p;p, and p;p,p, be two triangles adjacent to p;p,
remove p,p; from T and add p,p, instead

Return T

Legal Triangulation

Legal Triangulation

We are assuming

that prior to adding

p the trianlgulation
~ was legal.

Legal Triangulation

We maintain a stack
to store the
triangles that need
to be tested. After p
is added, the three
triangles pab, pbc
and pca are added
to the stack.

Stack
Bottom
pCa
pbc
pab

Legal Triangulation

Stack
Bottom

pca
pbc

p.a.b

Triangle pab is
being considered.

It is illegal. Flip the
edge ab. Creates
two new triangles
pad and pdb.

Legal Triangulation

Stack
Bottom

pca
pbc
pdb
pad

Triangle pad is
considered next.

It is legal.

Legal Triangulation

Stack
Bottom

pca
pbc
pdb

Triangle pdb
is considered next.

It is illegal.

Edge pd is flipped.
Two new triangles
are created.

Legal Triangulation

Legal Triangulation

Stack
Bottom
pca
pbc
peb
pde

Triangle pde is
legal.

Triangle peb is
legal.

Triangle pbc is
illegal.

Legal Triangulation

Legal Triangulation

Stack
Bottom
pCa
pfc
pbf

Triangle pbf is
legal.

Triangle pfc is
legal

Triangle pca is
legal.

Legal Triangulation

Stack
Bottom

Stack is empty.

The triangulation
of the points
including p is
legal.

Total cost is
proportional to
the number of
triangles that
contain p.

Analysis

 Given the initial triangulation of the point set S, the
Delaunay triangulation of S can be obtained by simply edge
flips in O(n+k) time where k is the number of edge flips.

 We are assuming here that the initial triangulation is stored
in a DCEL data structure

e Whatis kin the worst case?
e |tis O(n?)
e But in practice it is extremely small (expected O(n))

 One can obtain the initial triangulation of S in O(nlogn) time
(How?)

* Inthis case the stack contains all the triangles to start with.

