Line Arrangement



Line Arrangement

Problem: Given a set L of n lines in the plane,
compute their arrangement which is a planar
subdivision.
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Line Arrangements

Problem: Given a set L of n lines in the plane,
compute their arrangement which is a planar
subdivision.

[

Planar subdivision:
stored in a DCEL
data structure.




 Theorem: The complexity of the arrangement of n
lines is ©(n?) in the worst case (non-degenerate
situation)

— Number of vertices : ©(n?) (n-1 vertices on each line;
total=n(n-1)/2; each vertex is counted twice)

— Number of edges : n? (n edges on each line)

— Number of faces : ©(n?) (follows from Euler formula : #
faces - # edges + # vertices = 2)

* |n degenerate situation when all lines pass through a
single point (hnumber of vertices = 1), the number of
edges and faces are linear in n.



Line Arrangement

* Goal: compute this planar map (as a DCEL)
e Algorithm: Use an incremental algorithm:
(add one line at a time and update
the DCEL structure)
We will construct the arrangement
inside a rectangular box.



An incremental algorithm:

* |[nput: A set L of nlines in the plane and a bounding
box B.

e Qutput: The DCEL structure of the arrangement A(L)
inside a bounding box.
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What happens when a line is added?

* Consider the arrangement of i lines




What happens when a line is added?

* Consider the arrangement of first i lines.
* We now insert the (i+1)% line.

Without any loss of
generality, suppose the
inserted line is horizontal.




What happens when a line is added?

* Consider the arrangement of first i lines.
* We now insert the (i+1)t line.

Faces affected




Zone Theorem

e Zoneofaline L: Thezoneofalinel inan
arrangement A(L) 1s the set of faces of A(L)
whose closure intersects | .

* The complexity of a zone (z,) of A(L) is the
total complexity of all the faces: the total sum
of edges (or vertices) of these faces.

* Theorem: z, < 6n where |L| =n.



What happens when a line is added?

* Consider the arrangement of first i lines
* We now insert the (i+1)™" line.

* Count the number of left
bounding edges.
* Show that there are no
more than 3n left bounding
edges in the event of no
AN
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Zone Theorem (left bounding edges):

Theorem: The number of left bounding edges in
the zone of a line in A(L) is at most 3n.



Zone Complexity: Proof
(no degeneracy is assumed, i.e. no three lines are
concurrent)

* By induction on n; for n=1, it is trivial.
* Suppose the zone complexity is true for any arrangement of
m lines, m < n.

* Foranyn>1:

— Let 1., betherightmost line intersecting 1,, the line being
inserted. Without any loss of generality we assume that 1 is
horizontal. We now remove the line 1, -

— By the induction hypothesis, the zone of 1, in A(L-{1l;,,¢}) has
at most 3(n-1) left bounding edges.

— When adding 1 ;.. back, the number of left bounding edges in
the zone of 1, increases as follows:

* One new left bounding edge on 1, -
* At most two old left bounding edges get split by 1 ;¢ -

— The zone complexity of 1 is at most 3(n-1)+3 < 3n.

— The theorem follows from the principle of mathematical induction.




L igntis the line with the rightmost
intersection with 1
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Removel ;qn¢




All left bounding edges in the zone of L, in A
(L-{Lignt}) is highlighted




Adding 1., introduces two extra left
bounding edges in this case




Adding 1, introduces¥we-(three) extra

left bounding edges

1r1‘ght




Zone Theorem (right bounding edges):

* Similarly we can show that

Theorem: The number of right bounding edges
in the zone of a line in A(L) is at most 3n.



Constructing the Arrangement

* The time insert the (i+1)®" line is linear in the
complexity of the zone, which is linear in the
number of existing lines (i.e. i). Therefore, the
total running time of the incremental
algorithm is

o(n?) + Y (Oogi) + O()

O(n?)

Finding a Finding the According
oounding left entry to the zone
DOX point theorem

Note: Bound doesn’t depend on the insertion order.




Applications of Arrangement

* Sweeping Arrangements

— We know the arrangement of n lines can be constructed in
O(n?) time, which is optimal.

— For some instances, any graph traversal would suffice.

— For other problems, we need traversal in some order, for
example as a plane sweep from left to right.

* Requires the sweep to stop at every intersection point of the lines.
This implies O(n? logn) time algorithm requiring O(n) space.

— There is more sophisticated version of the sweep, called
topological plane sweep. The plane is swept by a thread,
instead of a line. This can be done in O(n?) time and O(n)
space. It is applicable in almost all instances where
ordinary plane sweep works.



Applications of Arrangements and
Duality

* Duality concept and arrangements allow a large
number of problems to be solved. Unless otherwise
stated, all problems can be solved in O(n?) time and
O(n?) space by constructing a line arrangement, or in
O(n?logn) time and O(n) space through plane sweep.
(In all instances, the extra logn factor can be
removed through the use of the topological plane
sweep.



Applications of Arrangements and Duality

— General position test: Given a set of n points in the plane,
determine whether any three are collinear.

— Minimum area triangle: Given a set of n points in the
plane, determine the minimum area triangle whose
vertices are selected from these points.

— Minimum k-corridor: Given a set of n points, and integer k,
determine the narrowest pair of parallel lines that enclose
at least k points of the set. The distance between the lines
can be defined either as the vertical distance between the
lines or the perpendicular distance between the lines.

— Visibility graphs non-intersecting line segments: The
vertices are the end points of the segments and two
endpoints are visible if the interior of the line segment
joining them intersects none of the segments.



Applications of Arrangements and Duality

— Maximum stabbing line: Given a set of line segments in
the plane, compute the line that stabs (intersects) the
maximum number of segments.

— Hidden surface removal: Given a set of n non-intersecting
polygons in 3-space, imagine projecting these polygons
onto a plane (either orthogonally or using perspective).
Determine which portions of the polygons are visible from
a viewpoint under this projection. In practice, the
projected scene is rarely quadratic. O(n?) algorithm is
really of theoretical values.

— Ham Sandwich Cut: Given n red points and m blue points,
find a single line that simultaneously bisects these point
sets. If the point sets are linearly separable, this can be
done in O(n+m) time and space.



Sorting all angular sequences.

Consider a set of n points in the plane. For each point p in this

set, we want to perform an angular sweep, say in

counterclockwise order, visiting the other n-1 points of the

set. For each point p, we can order the angles of the points

around p in O(nlogn) time per point and O(n%logn) overall.

— With arrangements we can speed this up to O(n?) total time.

— A point p=(p,,p,) and line I: (y=ax-b) in the primal plane are
respectively mapped to a dual point p* and dual line I where I” = (a,b)
and p”: (b=p,a—p,).

— Suppose p is the point around which we want to sort. Let p,, p,, ..., P
be the points in the final angular order.

n



Sorting all angular sequences.

— Suppose p is the point around which we want to sort. Let p,, p,, ..., P
be the points in the final angular order.

n

— Since the a-axis in the dual plane is the slope-axis, the intersection
points of p,, i= 1, 2, ...,n in increasing order along p” realize the slope
ordering around p. This ordering can be determined in O(n) time from
the DCEL structure of the arrangement.

Figure 1: Arrangements and angular sequences.



Maximum Discrepancy

we consider a problem derived from computer graphics and
sampling.

Suppose that we are given a collection of n points S lying in a
unit square U=[0,1]%. We want to use these points for random
sampling purposes.

In particular, the property that we would like these points to
have is that for any halfplane h, we would like the size of the
fraction of points of P that lie within h should be roughly
equal to the area of intersection of h with U .

If we define p(h) to be the area of hNU, and p(h)=|S nh|/|S|
then we would like p(h) = pg(h).

This property is important when point sets are used for things
like sampling and Monte-Carlo integration.



Maximum Discrepancy

 We define the discrepancy of S with respect to a halfplane h
to be Ag(h)= |u(h) - us(h)|.

* In the following figure, uc(h) = 7/13=0.538; p(h) = 0.625

* Halfplane discrepancy of S is defined to be the maximum

(least upper bound) of A(*) over all halfplanes. This is
denoted by A(S).

Figure 4: Discrepancy of a point set.



Maximum Discrepancy

 Finiteness criterion

Lemma Let h denote the halfplane that generates the maximum
discrepancy with respect to S, and let denote the line | that bounds h.
Then either (i) | passes through at least two points of S, or (ii) | passes

through one point of S, and this point is the midpoint of the line
segment [N U.

— Remark: If a line passes through one or more points of S, then should
this point be included in p (h)? For the purposes of computing the
maximum discrepancy, the answer is to either include or omit the
point, whichever will generate the larger discrepancy. The justification
is that it is possible to perturb h infinitesimally so that it includes none
or all of these boints without altering u(h).

. . '\‘ h
. A

(a) (b)

Figure 4: Discrepancy of a point set.



Maximum Discrepancy

* his determined by two points.

— There are O(n?) such pairs determining halfplanes. These can be
picked from the arrangement easily. Moreover, the number of points
lying on both halfplanes can be determined from the arrangment of
the dual lines as well. This can be done in O(n?logn) time and O(n)

space using the sweep method, or O(n?) time and linear space using
the topological sweep.

* his determined by one point.

— Every point p realizes at most two placements. There are O(n) such

halfplanes, and the discrepancy of each such halfplane can be
determined in O(n) time.

(a) (b)

Figure 4: Discrepancy of a point set.



Median Level of an Arrangement

« Consider a set S of n points
* Without any loss of generality suppose n is odd

S*



Median Level of an Arrangement

« Consider a set S of n points
* Without any loss of generality suppose n is odd

L*

3points lie above L
3 lines lie below L*



Median Level of an Arrangement

« Consider a set S of n points

Without any loss of generality suppose n is odd

_ _ Any point on the
4 points lie above segment has 4
and below and p points above and
lies on L

4 points below



Median Level of an Arrangement

* Any point on the median level => the corresponding line
in the primal plane bisects S

° ® Median level



Minimum-Area Triangle

 If points {a, b, ¢} achieve a minimum area triangle among
the points in a given point set P, c is the closest point
among P - {a,b} to the line L_, containing ab, where
the distance is measured orthogonal to L,

This corridor must be
be” e— empty if Aabc is the
smallest area triangle



Minimum-Area Triangle

 Interpret the relationship in the dual arrangement
(assuming order preserving dual)

The line segment s must be contained in a face (i.e. no dual line can
intersect s, otherwise the corridor is not empty



Problem 4: 219

« 4 Sections: A point set P in the plane can be partitioned
iInto 4 open wedges by two lines such that each wedge

contains no more than { ‘ points A
\
\B
* Find A that splits P into P,, P, ;
* |Pi] =[Pyl
« B is a ham-sandwich cut of P, .
and P, :



Other forms of duality



Duality

* p:(pyp,)=> p:b=pa-p,
e L:y=ax-b =>L":(a,b)
* Properties:
- (p)" =p
— (L) =L
— Incidence:
* Ifp,q, rliesonl, p’,q’,andr’ contain L’

¢
r
/E/g/ 9 >-<q*
| L
P




Duality (properties)

 Above-Below Relationship:

— If p lies above L, then L" lies above p”

p *
/ 9 P

e Y-distance is Preserved:

L

L™ (a,b
E’ L (Py:Py) ' (@)

/'/ > 4 P b=pap,

L:y=ax-b

* Y-distance of p to L =p,- (ap,-b) * Y-distance of L* to p* = b- (p,a-p,)



Duality (properties)

* Vertical line does not dualize => singular
e (0,0) does not dualize either

e Polar Duality
—p:(a,b) => p :ax+by+1=0

— L:ax+by+1=0 => L":(a,b)

L

d
d
b= (@b) /g



Polar Duality

* Incidence Property is Preserved:

N
/,’// : (C’d)

L*: (a,b \I_;ax+by+1=0

p*:cx +dy =1




Polar Duality

e Above-Below Relationship

SA1d

|* \\ L:ax+by+1=0

P

e If plies above the line L, p* lies above L*. (order does not
change
« Singularity
* Any line through the origin
. Point (0,0)




Duality (from the text)

e p:(a,b) => p*:y=2ax-Db
e L:y=2ax—b=>L*:(a,b)

« Can be shown that if p is above L, then L* is above p*



Order Preserving Duality

e p:(a,b) => p*: ax+by+1=0
L:ax+by+1=0 => L*:(a,b)




Duality

 Order Preserving Duality

 Envelope Theorem: Computing the lower (upper)
envelope of a set L of lines is equivalent to computing
the lower (upper) convex hull of the set L* of points

« Non-order Preserving Duality

* Envelope Theorem: Computing the lower (upper)
envelope of a set L of lines is equivalent to computing the
upper (lower) convex hull of the set L* of points




Problem 4: 219

« 4 Sections: A point set P in the plane can be partitioned
iInto 4 open wedges by two lines such that each wedge

contains no more than { ‘ points A
\
\B
* Find A that splits P into P,, P, ;
* |Pi] =[Pyl
« B is a ham-sandwich cut of P, .
and P, :



