
CMPT 307 (Fall 2013)
Practice 6(December 6, 2013)

• stable sorting algorithms: maintain the relative order of records with
equal keys

• in place algorithms: need only O(logn) extra memory beyond the items
in an array of size n being sorted and they don’t need to create auxiliary
locations for data to be temporarily stored.

1. Given a set S of n elements and an index k(1 ≤ k ≤ n), we define the
k-smallest element to be the k-th element when the elements are sorted from
the smallest to the largest.

Suggest an O(n) on average time algorithm for finding the k-smallest element.

2. Given an array A of n numbers, suggest an O(n) expected time algorithm to
determine whether there is a number in A that appears more than n/2 times.

3. n records are stored in an array A of size n. Suggest an algorithm to sort the
records in O(n) (time) and no additional space in each of the following cases:

(a) All the keys are 0 or 1

(b) All the keys are in the range [0 . . . k], k is constant

4. Given the following algorithm to sort an array A of size n:

(a) Sort recursively the first 2/3 of A : A[1 . . . 2n/3]

(b) Sort recursively the last 2/3 of A : A[n/3 + 1 . . . n]

(c) Sort recursively the first 2/3 of A : A[1 . . . 2n/3]

Prove the above algorithm really sorts A and find a recurrence T (n), expressing
its running time.

5. How can we use an unstable sorting algorithm U (for example, quicksort
or heapsort) to build a new stable sorting algorithm S with the same time
complexity as the algorithm U?

6. Design an algorithm to report k smallest entries in an array in linear expected
time where k is at most n log n.

1

