
CMPT 307 (2013)
Assignment 5

November 15, 2013

The following problems are related to dynamic programming. The sections on
RNA secondary structures (6.5), sequence alignment (6.6, 6.7) are not covered.

Problems from the text (page 312):

6.1 Hints (c): Opt(i) = Total weight of the optimal maximum weighted indepen-
dent set of the path Pi =< v1, v2, ..., vi >. Suppose S(i) = 0 if vi is in the
optimal solution of Pi, otherwise S(i) = 1. If vi is in the optimal solution,
Opt(i) = wi + Opt(i − 2), since if vi is in the solution, vi−1 can’t be in the
solution. What is the other case? What is the memoized version? What is
the bottom-up version? What is the running time? How do you keep track
of the optimal independent set?

6.2 Hints (b): Opt(i) = maximum value of the optimal plan for weeks 1 through
i. If the low stress job is selected for week i, Opt(i) = li + Opt(i − 1).
What happens when the high stress job is selected for week i? What is the
memoized version? What is the bottom-up version? What is the running
time? How do you keep track of the optimal plan?

6.3 Hints(b) Opt(i) is the longest path cost from v1 to vi. If vi doesn’t have any
incoming edge, Opt(i) = 0. If it does have at least one incoming edge e =
(vk, vi) (can have more that one incoming edge), Opt(i) is at least 1+Opt(k)
k < j. What is the memoized version? What is the bottom-up version?
What is the running time? How do you keep track of the longest path?

6.5 Hints: Given a string y = y1y2 . . . yn, a segmentation of y is a partition of y
into meaningful words. For Opt(j), the last word ending with yj can start
from some yi where i ranges from 1 to k.

6.6 Hints: Let S(i, j) denote the slack of a line containing the words wi, wi+1, . . . , wj.
S(i, j) is ∞ if the line is small to fit wi, wi+1, . . . , wj. Argue that

Opt(j) = min1≤k≤j{Opt(k − 1) + S2(k, j)

6.7

6.10 Consider Opt(i, j) to be the optimal value for the first i days given that the
las reboot was performed on day i− j (i.e. j days before day i).

1



6.13 The cost of a trading cycle C in G is
∏

(i,j)∈C rij . A trading cycle C is an
opportunity cycle if and only if

∏

(i,j)∈C

rij > 1

i.e. ∑

(i,j)∈C

log rij > 0

or ∑

(i,j)∈C

− log rij < 0

Thus, a trading cycle C is an opportunity cycle if and only if it has a negative
cycle. How can you now solve the problem?

6.17 Consider Opt(j) to be the longest increasing sequence in P [1..j] that either
includes P [j] (provided P [j] > P [1]) or doesn’t include P [j].

Other Problems

1. Knapsack with repetition Modify the algorithm when an item can be
picked more than once. You need to modify the solution to the Knapsack
problem. Can you solve it using an array of size W ?

2. Consider the following 2-partition problem. Given integers a1, a2, . . . , an, we
want to determine whether it is possible to partition {1, 2, ..., n} into two
disjoint subsets I, J such that

∑

i∈I

ai =
∑

j∈J

aj =
1

2

n∑

i=1

ai

For example, for the input {1, 2, 3, 4, 4, 4} the answer is yes because there is
a 2-partition.

Devise and analyze a dynamic programming that runs in time polynomial in
n and in

∑
i ai.

3. Subset Sum SUBSET-SUM is a very simple variation of the knapsack prob-
lem. The problem is defined as follows: Given an array A, is it possible to
find a subset that sums exactly to a bound B? The answer is either yes or
no. Let Opt(i, j) indicate whether it is possible to have a subset of the ele-
ments A[1..i] that sum to exactly j. If the answer is yes then Opt(i, j) = 1,
otherwise it is 0. Now write a recursive definition for Opt(i, j). This is very
similar to the knapsack problem.

2


