
CMPT 307 (2013)
Hints to some problems in Chapter 4 of the text.

4.4: In this problem we are given a sequence S = {s1, s2, ..., sn} and S ′ =
{s′1, s

′

2, ..., s
′

m}. We need to determine whether S ′ is a subsequence of
S.

We can solve the problem greedily. Find the first occurrence of s′1 in
S. Starting from this location in S, look for s′2 in S. This process is
repeated. This way the search process takes O(n) time.

4.5: The greedy solution is: start at one end, say west, of the road, and
place a base station that is exactly 4 miles away from a house h in the
west for the first time. If we go any further east without placing a base
station, we won’t cover h. We delete all the houses covered by this base
station, and iterate this process on the remaining houses.

4.6: Let si, bi, ri denote respectively the swimming, biking and running times
of contestant i. We need to order the contestants such that the comple-
tion time of the entire race is minimized. One constraint is that only
one contestant can be in the swimming pool at any given time.

The greedy strategy that can be shown to be optimal is to order the
contestant in decreasing bi+ri. Use the exchange argument for proving
the optimality.

4.9(a): The problem was discussed in the class.

4.10: (a) When the new edge is added to T , a cycle is created. We visit
the edges of the cycle (in O(|V |) time), and check if the costs of the
edges are no greater than the added edge. If it is true, T is the MST
of the graph that includes the added edge (using the cycle property).
Otherwise, MST changes. We use the adjacency list of MST T .

(b) If MST changes, the new MST can be be obtained from old MST
T by removing the heaviest edge of the cycle.

4.13: An optimal algorithm is to schedule the jobs in decreasing order of
wi/ti. Optimality property can be proved using the exchange argu-
ments.

1

4.15: The generic formulation of the problem: Given a set of intervals, Ij =
[aj , bj], on a line. The problem is to select a smallest set of intervals S
such that each interval not in S is overlapped by some interval in S.

Initially, all the intervals are unmarked. Look at the unmarked interval
that ends the earliest. Among the intervals that intersect, it selects the
interval, say s, that ends last (i.e. covers the most). Add this interval
to S. Mark all the intervals covered by s. Repeat the process till there
is no unmarked intervals.

4.21: Get a BFS tree in O(n) time that contains n − 1 edges. Add the re-
maining edges one by one. Each addition will result in a cycle. Remove
the heaviest edge which can’t be in any MST, by the cycle property.
We need to do this nine times. Each time it takes O(n) time.

4.22: It is false. Consider a graph with 4 nodes, v1, v2, v3, v4. Edges (v1, v2),
(v2, v3), (v3, v4), (v4, v1) have cost 2 each, and the edge (v1, v3) has cost
1. Every edge belongs to some MST. However the spanning tree
{(v1, v2), (v2, v3), (v3, v4)} is not a MST.

4.29: This was discussed in the class. A detailed description is given here.

If any of the degrees is 0, this should be an isolated node in the graph;
so we can just delete that degree from the list.

Let us now sort the list so that d1 ≥ d2 ≥ ... ≥ dn > 0. Let d1 = k.
Now consider the list L = {d2 − 1, ..., dk+1 − 1, dk+2, ..., dn}.

Claim: the graph we want exists iff there is a graph whose degrees are
the items of L.

Note that L has one less element than the original list. So we can
proceed recursively to check if G satisfies the desired property.

We prove the two directions of the if and only if separately.

(If part) If a graph G whose degrees are the elements of L exists, we
can add a node v1 and connect it to the first d1 nodes of G in the
descending order of degrees.

(Only if part) Suppose there is no graph whose degrees are the elements
of L, but at the same time, there is a graph G satisfying the degree
sequence d1 ≥ d2 ≥ ... ≥ dn > 0. We show how we can transform G

2

into a graph where v1 is joined to v2, ..., vd1 . If this property does not
hold, there exist vi and vj, i < j, so that v1 is joined to vj , but v1 is
not joined to vi. (why?) Since di ≥ dj , there exist a vertex vk, not
equal to vi, vj and v1 with the property that (vi, vk) is an edge and
(vj, vk) is not an edge. Now we replace the edges (vi, vk) and (v1, vj)
by the edges (v1, vi) and (vj , vk). This keeps the degrees of v1, viandvj
the same. We repeat this process till G is converted to the one with
the desired property.

3

