MACM 101 : Homework 6 (November 23, 2019)

Homework is due December 1, 2019 (through the server) Exercises on Relations (Chapter 7).

Practice Problems

- 1. Problems from the text: 7.1:5,6,7,8,9,10,16
- 2. Problems from the text: 7.3: 3, 4, 6(a, b), 16
- 3. Problems from the text: 7.4 : 2,3,4,6,8,11,13,17

Homework Problems

1. What is the probability that a random relation from set $A = \{a, b, c, d\}$ to set $B = \{1, 2, 3, 4, ..., 8\}$ is a one-to-one function?

Ans: We know that any relation from *A* to *B* is a subset of the cartesian product $A \times B$. There are 4×8 elements in $A \times B$. Therefore, there are 2^{32} different relations one can describe. Note that the number of elements in the power set of $A \times B$ is also $2^{|A|+|B|}$. The number of one to one function $f: A \to B$ is $8 \times 7 \times 6 \times 5$. Therefore, the probability of a random relation to be a one-to-one function is $\frac{8 \times 7 \times 6 \times 5}{2^{|A|+|B|}}$.

2. Consider the set $A = \{1, 2, 3, 4\}$. On the cartesian product $A \times A$ we define the relation *R* by

$$(x_1, y_1)R(x_2, y_2) \leftrightarrow y_1 - x_1 = y_2 - x_2$$

Show that R is an equivalence relation and illustrate the different equivalence classes in a figure.

Ans: It is easy to show that *R* is reflexive, symmetric and transitive. The equivalent classes are:

3. Consider the following set $S = \{(a,b) | a, b \in Z, b \neq 0\}$ where Z denotes the integers. Show that the relation

$$(a,b)R(c,d) \leftrightarrow ad = bc$$

on S is an equivalence relation. Give the equivalence class [(1,2)]. What can an equivalence class be associated with?

Ans: Here *R* is a relation on *S*, i.e. $R \subseteq S \times S$. An element of *S* is related to another element of (c,d) of *S* if their ratios are the same, i.e. $\frac{a}{b} = \frac{c}{d}$. We can easily show that this relation *R* is an equivalence relation. The elements of the equivalent class that contains (1,2) {(a,2a) where $a \in Z$ }.

4. Consider a set $A = \{1, 2, 3, 4, 5, 6\}$. Define an equivalence relation *R* on *A* which realizes $\{1, 3, 5\}$ and $\{2, 4, 6\}$ as the partition of *A*.

Ans: Let $A_1 = \{1,3,5\}$ and $A_2 = A - A_1$. The equivalence relation *R*, which is a subset of $A \times A$, given by $\{(a,b), \text{ for all } a, b \in A_1, (c,d), \text{ for all } c, d \in A_2\}$ partitions *A* into two equivalent classes A_1 and A_2 .

5. Two Hasse diagrams are shown below. Unfortunately, the labels at the vertices are missing. The diagram on the right the relation is the divides relation, i.e. $(x,y) \in R$ if and only if x|y, and the set is some subset of the positive integers. For the diagram to the left, the relation is the inclusion relation, i.e. $(X,Y) \in R$ if and only if $X \subseteq Y$, and the set is a subset of the power set of a finite set.

Figure 1: Hasse Diagram

Ans:

- 6. Construct maximum size relations on the set $\{a, b, c, d\}$ with each of the following properties, or prove that no such relation exists.
 - (a) reflexive and symmetric, but not transitive

Ans: Consider all possible arcs between the nodes of *A*. There are 16 such arcs. The relation thus defined is an equivalence relation. If we remove any one of the pair of arcs (a,d), (d,a); (a,c), (c,a); (b,d), (d,b) will make the the relation not transitive.

(b) irreflexive, symmetric and transitive

Ans: $(a,b), (b,a) \in R \to (a,a)$, will violate the property of irreflexivity. Therefore, *R* is an empty set.

(c) irreflexive, antisymmetric, not transitive

Ans: I believe the relation $R = \{(a,b), (b,c), (c,d), (a,c), (a,d), (d,b)\}$ has the required property.

Ans:

- (d) reflexive, neither symmetric, nor antisymmetric, and transitive
- 7. Let $A = \{1, 2, 3\}$. Determine all the equivalence relations *R* on *A*. For each of these, list all ordered pairs in the relation.

Ans: The following are the partitions of A.

- (a) $\{\{1,2,3\}\}$: size 1
- (b) $\{\{1,2\},\{3\}\},\{\{1,3\},\{2\}\},\{\{2,3\},\{1\}\}$: size 2 each
- (c) $\{\{1\},\{2\},\{3\}\}$: size 3

Now apply question 4 strategy to determine an equivalence relation for each partition.

8. Let $g: B \to C$ be any surjective function. Consider the relation R defined as $\forall b_1 \in B \ \forall b_2 \in B \ [(b_1, b_2) \in R \Leftrightarrow g(b_1) = g(b_2)]$. Identify the equivalence classes.

Ans: Two elements of B are related if they are mapped to the same image. The relation is equivalence. The equivalence classes are the elements of C, since the function g is an onto function. Every element of C is an imgae of some element of A.