
Homework 3
MACM 101-D1
October 4, 2019

Date due: October 11, 2019 in the Class.

1 Practice Problems (Not to be handed in)

1. Problems (pages 116-117) 4, 6, 8, 10, 13, 20.

2. Prove the following statements using either direct or contrapositive proof,
which ever is easer.

(a) If a, b ∈ Z (set of all integers) and a and b have the same parity, then
3a+ 7 and 7b− 4 do not.

(b) If n is odd, then 8|(n2 − 1).

(c) If x5 − 4x4 + 3x3 − x2 + 3x− 4 ≥ 0, then x ≥ 0.

3. Prove the following statements using proof by contradiction method.

(a) There exist no integers a and b for which 21a + 30b = 1.

(b) Every non-zero rational number can be expressed as a product of two
irrational numbers.

4. Write the following compound statements in symbols. Use the following
letters to represent the statements:

c : It is cold.
d : It is dry.
r : It is rainy.
w : It is warm.

(a) It is neither cold nor dry.

(b) It is rainy if it is not dry.

(c) To be warm it is necessary that it be dry.

(d) It is cold or dry, but not both.
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2 Homework Problems (To be handed in)

1. Suppose the variables x, y represent students and courses, respectively. T (x, y)
is an open statement ”x is taking y”. For each of the following symbolic
statements state its equivalent English statements.

(a) ∃y∀xT (x, y)
There exists a course which is taken by all the students.

(b) ¬∃x∃yT (x, y)
There does not exist a student who is taking at least one
course.

(c) ∀y∃xT (x, y)
For each of the courses there exists a student taking the course.

(d) ¬∀x∃yT (x, y)
Not all students are taking a course.

(e) ∀x∃y¬T (x, y)
Every student is not taking at least one course.)

2. Give an example to show that

(∀y)(∃x) p(x, y)↔ (∃y)(∀x) p(y, x)

Solution: Suppose the open statement p(x, y) is “x.y = 0” where the
universe of x and y are the reals.

3. Prove or disprove the following statements about integers whose domain is
non-zero integers.

(a) If a|b and c|d, then (a+ b)|(c+ d).
Not true. Counterexample: a = 2, b = 4, c = 3, d = 9.

(b) If a|b and b|c, then a|c.
True. We can write b = a.t and c = b.t′, t, t′ are integers. There-
fore, a|c since c = a.t.t′.

(c) If a|b and b|c, then (a+ b)|c.
Not true. Counterexample: a = 4, b = 8, c = 32.

(d) If a|b and b|c, then ab|c2.
True. We can write b = a.t and c = b.t′. Therefore, ab = a2t.
Now c2 = b2.t′2, i.e. c2 = a2t2t′2, i.e. c2 = ab.t.t′2. Thus, ab|c2.

4. Suppose n is an arbitrary integer.
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(a) Show that n(n+ 1) is divisible by 2.
Solution: Proof by cases: If n = 2t, then

n(n+ 1) = 2t(2t+ 1) = 2(t2 + t)

is even.

If n=2t+1, then

n(n+ 1) = (2t+ 1)(2t+ 2) = 2(2t2 + 3t+ 1)

is also even.

Therefore, whether n is even or odd, the product n(n + 1) is always
even.

(b) Show that n(n+ 1)(n+ 2) is divisible by 3!.
Solution: We can prove this in more than one way.

Proof by cases: Any integer can be expressed as 6t+ u where is one
of 0, 1, 2, 3, 4, 5. Now

n(n+ 1)(n+ 2) = (6t+ u)(6t+ u+ 1)(6t+ u+ 2)

which is divisible by 6 if u(u + 1)(u + 2) is divisible by 6 (check).
We prove this claim using an exhaustive proof. We show that for
each value of u in {0, 1, 2, 3, 4, 5}, 6 divides u(u+ 1)(u+ 2).

u u(u+ 1)(u+ 2)
0 0.1.2 = 0 = 6.0
1 1.2.3 = 6 = 6.1
2 2.3.4 = 24 = 6.4
3 3.4.5 = 60 = 6.10
4 4.5.6 = 120 = 6.20
5 5.6.7 = 210 = 6.35

This completes the proof. This is a correct proof, but is not elegant.

Another proof by cases approach We have already seen that n(n+
1) is divisible by 2. We can also show that n(n+1)(n+2) is divisible
by 3. This can be done by showing that any integer of the type
n = 3t+ u, u = 0, 1, 2 is divisible by 3 (use arguments similar to the
one described above). Since 2 and 3 do not have a common factor,
therefore n(n+ 1)(n+ 2) is divisible by 2 · 3.

Combinatorial approach for n ≥ 3 We know that the the number
of ways to select 3-subsets of a set of n+2 elements is C(n+2, 3) =
(n+2)(n+1)n

3!
. Since C(n+2, 3) is an integer, 3! divides n(n+1)(n+2)
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when n ≥ 3. We can exhaustively show that the statement is also
true for n = 0, 1, 2. For n < 0, the arguments are very similar to
that for n > 0 (ignoring the sign). This completes the for arbitrary
n.
Also note that the above arguments can be applied to show that
n(n+ 1)(n+ 2) . . . (n+ k − 1) id divisible by k!.

5. (a) Prove that
√
7 is an irrational number.

Solution: We can prove this by contradiction. Suppose ¬p is true, i.e.√
7 is rational. Therefore, we can use the fact that

√
7 can be expressed

as
√
7 = a

b
where integers a and b have no common factors. We can

write a2 = 7b2. This implies that a2 is divisible by 7. Since 7 is a
prime number, 7 divides a2 implies 7 divides a. Thus a = 7 · t
for some integer t. Now a2 = 7b2 can be written as 49t2 = 7b2. This
means that 7 divides b2 as well. Since 7 is a prime number, 7 divides b.
We now arrive at a contradiction: We started with the fact that a and b
have no common factor. We then showed that 7 is a common factor of
a and b. This leads to the conclusion that ¬p is false. This implies that√
7 is an irrational number.

(b) Show where your arguments in (a) get violated if you want to show in a
similar manner that

√
9 is an irrational number.

Solution: The arguments used above cannot be applied for the case of√
9 since the highlighted statement above is not true for 9, since 9 is not

a prime number. (9 divides 62 doesn’t mean that 9 divides 6.)

(c) Find a counterexample to the statement that every positive integers
can be written as the sum of the squares of three integers. What is the
smallest integer for which it is a counterexample.

Solution: We see that

• 1 = 12 + 02 + 02

• 2 = 12 + 12 + 02

• 3 = 12 + 12 + 12

• 4 = 22 + 02 + 02

• 5 = 22 + 12 + 02

• 6 = 22 + 12 + 12

We are unable to express 7 as the sum of the squares of three integers.
Therefore, n = 7 is the smallest integer for which it is a counterexample.
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