1. Write the following set by listing their elements between braces.
 (a) \(\{ x \in \mathbb{R} : x^2 = 7 \} \)
 (b) \(\{ x \in \mathbb{Z} : 2x < 5 \} \)
 (c) \(\{ x \in \mathbb{Z} : -2 < x \leq 7 \} \)
 (d) \(\{ x \in \mathbb{Z} : -5 < x \leq 2 \} \)

2. Write the following set in set-builder notation.
 (a) \(\{ -3, -2, -1, 0, 1, 2, 3 \} \)
 (b) \(\{ 0, 1, 8, 27, 64, 125, \ldots \} \)
 (c) \(\{ 0, -1, -4, -9, \ldots \} \)

3. Let \(\mathbb{R} \) be the universal set. Let \(A = \{ 1 \} \), \(B = (0, 1) = \{ x : 0 < x < 1 \} \) and \(C = [0, 1] = \{ x : 0 \leq x \leq 1 \} \). Write down the following sets.
 - \(A \cup B \); \(A \cap B \); \(B \cap C \); \(A \cup C \); \(A \cap C \)

4. Let \(A, B, C, D \) be nonempty sets. Prove that \(A \times B \subseteq C \times D \) if and only if \(A \subseteq C \) and \(B \subseteq D \).

5. Let \(A, B \) and \(C \) be three arbitrary subsets of the universal set \(U \). Use an element containment proof (i.e. prove that the left side is a subset of the right side and the right side is a subset of the left side) to prove the following:
 - \(\overline{A \cap B} \cup C = \overline{A} \cup \overline{B} \cap \overline{C} \).
 - \(\overline{A \cup B} \cap \overline{C} = \overline{A} \cap \overline{B} \cup \overline{C} \).

6. Use the membership table method to determine which membership \(\subseteq, =, \supseteq \) is true for the following pair of sets.
 - \((B - C), \quad (B - A) - (C - A) \)

7. Prove that \(A \times (B \cap C) = (A \times B) \cap (A \times C) \) by using the set builder notations.

8. Two fair six-sided dice are rolled and the sum \(s \) of the numbers coming up is recorded. What is the probability of \(s \geq 10 \)? Show your work for the case when the dice are distinguished and when they are not.

9. A random experiment consists of rolling an unfair, six-sided die. The digit 6 is three times as likely to appear as the numbers 2 and 4. The numbers 2 and 4 are twice as likely to appear as one of the numbers, 1, 3, and 5.

Assign appropriate probabilities to the six outcomes in the sample space.