1. Answer the following short questions.

(a) Give an example of a function \(f \) from integers to integers (\(f : \mathbb{Z} \to \mathbb{Z} \)) that is onto but not one-to-one.

Solution: The function \(f : \mathbb{Z} \to \mathbb{Z} \) defined by \(f(n) = \lfloor \frac{n}{2} \rfloor \) is onto but not one-to-one.

(b) Does the formula \(f(x) = \frac{1}{x+2} \) define a function \(f : \mathbb{R} \to \mathbb{R} \)? A function \(f : \mathbb{Z} \to \mathbb{R} \)?

Solution: When the domain of \(f \) is \(\mathbb{R} \), \(f \) is not a function since \(f(\sqrt{2}) \) is not defined. When the domain of \(f \) is \(\mathbb{N} \), \(f \) is a function.

(c) **Inclass**

Prove by cases that for any positive integer \(a \), \(\lfloor \frac{a}{2} \rfloor + \lceil \frac{a}{2} \rceil = a \).

Solution: The proof is “by cases”. When \(a \) is an even integer, i.e. \(a = 2k \), then \(\lfloor \frac{a}{2} \rfloor + \lceil \frac{a}{2} \rceil = k + k = 2k = a \).

When \(a = 2k + 1 \) (i.e. odd), then \(\lfloor \frac{a}{2} \rfloor + \lceil \frac{a}{2} \rceil = k + k + 1 = 2k + 1 = a \).

(d) If \(A = \{1, 2, 3, 4, 5\} \) and \(B = \{x, y, z\} \), determine the number of one-to-one, onto and constant functions one can design.

Solution: Number of one to one function = 0 (since \(|A| > |B| \)). Let \(A \) represent a set of guests and \(B \) represents a set of rooms.

- There are \(3^5 \) ways to distribute the guests to rooms.
- Out of these, \(C(3, 1) \times 2^5 \) ways to distribute the guests with at least one room vacant.
- \(C(3, 2) \times 1^5 \) ways to distribute the guests with two vacant rooms.
- There are \(C(3, 1) \times 2^5 - C(3, 2) \times 1^5 \) ways to have a vacancy.
- Hence there are \(S(5, 3) = 3^8 - (C(3, 1) \times 2^5 - C(3, 2) \times 1^5) = 3^8 - C(3, 1) \times 2^5 + C(3, 2) \times 1^5 \) ways to occupy all rooms.

(e) Let \(f : \mathbb{Z}^+ \to \mathbb{Z}^+ \) where for all \(x \in \mathbb{Z}^+ \), \(f(x) = x + 1 \). What is the range of \(f \)? Is \(f \) one-to-one? Is it onto?

Solution: The range of \(f \) is \(\{2, 3, 4, \ldots\} \). \(f \) is one-to-one, but not onto. \(f^{-1}(1) \) is not defined.
(f) Let \(f : \mathbb{Z}^+ \rightarrow \mathbb{Z}^+ \) where for all \(x \in \mathbb{Z}^+ \), \(f(x) = \max\{1, x - 1\} \), the maximum of 1 and \(x - 1 \). What is the range of \(f \)? Is \(f \) one-to-one? Is it onto?

Solution: The range of \(f \) is \(\mathbb{Z}^+ \). \(f \) is not one-to-one since \(f(1) = f(2) = 1 \). \(f \) is onto.

(g) Prove or disprove: If functions \(f : A \rightarrow B \) and \(g : B \rightarrow C \) are onto, then \(g \circ f \) is onto.

Solution: \(g \circ f \) is onto. The domain of \(f \) is \(A \) and the codomain of \(g \) is \(C \). It can be showed that for any \(z \in C \), there exists \(a \in A, b \in B \) such that \(f(a) = b \), and \(f(b) = z \).

2. Show that the function \(f : \mathbb{R} \setminus \{3\} \rightarrow \mathbb{R} \setminus \{2\} \) defined by \(f(x) = \frac{2x-3}{x-3} \) is a bijection, and find the inverse function.

Solution: \(f \) is one-to-one:

Suppose there exists distinct \(x_1 \) and \(x_2 \) such that \(f(x_1) = f(x_2) \). In this case \(\frac{2x_1-3}{x_1-3} = \frac{2x_2-3}{x_2-3} \). We can simplify this to show that \(-3x_1 + 9 = -3x_2 + 9 \). This is possible only when \(x_1 = x_2 \). Thus we have a contradiction to the fact that \(x_1 \) and \(x_2 \) are distinct. Therefore, \(f(x_1) \) cannot be equal to \(f(x_2) \) if \(x_1 \) and \(x_2 \) are distinct.

\(f \) is onto

Let \(y(\neq 2) \) be an element of the codomain of \(f \). We are interested in finding \(x \) in the domain such that \(f(x) = y \), i.e. \(\frac{2x-3}{x-3} = y \). Simplifying we get \(x = \frac{3-3y}{2-y} \) which well defined for any \(y \neq 2 \). Therefore, \(f \) is onto.

Computing \(f^{-1} \)

We are interested in computing \(f^{-1}(x) = y \), i.e. \(f(y) = x \). Therefore, \(y = \frac{3-3x}{2-x} \). Therefore \(f^{-1}(x) = \frac{3-3x}{2-x} \). Note that the range of \(f^{-1} \) is \(\mathbb{R} \setminus \{2\} \).

3. **Inclass test**

Let \(A = \{1, 2, 3, 4, 5\} \) and \(B = \{1, 2, 3, 4, 5, 6\} \). How many one-to-one functions \(f : A \rightarrow B \) satisfy (a) \(f(1) = 3 \)? (b) \(f(1) = 3, f(2) = 6 \).

Solution: Number of one-to-one functions: \(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = P(6, 5) \).
Number of one-to-one function with \(f(1) = 3 \) is \(5 \cdot 4 \cdot 3 \cdot 2 \)
Number of one-to-one function with \(f(1) = 3 \) and \(f(2) = 6 \) is \(4 \cdot 3 \cdot 2 \).