MACM 101 : Tutorial (November 13-14, 2019)

- 1. Answer the following short questions.
 - (a) Give an example of a function f from integers to integers ($f: Z \rightarrow Z$) that is onto but not one- to-one.

Solution: The function $f : Z \to Z$ defined by $f(n) = \lfloor \frac{n}{2} \rfloor$ is onto but not one-to-one.

(b) Does the formula $f(x) = \frac{1}{x^2 - 2}$ define a function $f : R \to R$? A function $f : Z \to R$?

Solution: When the domain of *f* is *R*, *f* is not a function since $f(\sqrt{2})$ is not defined. When the domain of *f* is *N*, *f* is a function.

(c) Inclass

Prove by cases that for any positive integer a, $\lfloor \frac{a}{2} \rfloor + \lfloor \frac{a}{2} \rfloor = a$.

Solution: The proof is "by cases". When a is an even integer, i.e. a = 2k, then $\lfloor \frac{a}{2} \rfloor + \lceil \frac{a}{2} \rceil = k + k = 2k = a$.

When a = 2k + 1 (i.e. odd), then $\lfloor \frac{a}{2} \rfloor + \lceil \frac{a}{2} \rceil = k + k + 1 = 2k + 1 = a$.

(d) If $A = \{1, 2, 3, 4, 5\}$ and $B = \{x, y, z\}$, determine the number of one-toone, onto and constant functions one can design.

Solution: Number of one to one function = 0 (since |A| > |B|). Let *A* represent a set of guests and *B* represents a set of rooms.

- There are 3⁵ ways to distribute the guests to rooms.
- Out of these, $C(3,1) \times 2^5$ ways to distribute the guests with at least one room vacant.
- $C(3,2) \times 1^5$ ways to distribute the guests with two vacant rooms.
- There are $C(3,1) \times 2^5 C(3,2) \times 1^5$ ways to have a vacancy.
- Hence there are $S(5,3) = 3^8 (C(3,1) \times 2^5 C(3,2) \times 1^5) = 3^8 C(3,1) \times 2^5 + C(3,2) \times 1^5$ ways to occupy all rooms.
- (e) Let $f: Z^+ \to Z^+$ where for all $x \in Z^+$, f(x) = x + 1. What is the range of *f*? Is *f* one-to-one? Is it onto?

Solution: The range of *f* is $\{2,3,4,...\}$. *f* is one-to-one, but not onto. $f^{-1}(1)$ is not defined.

(f) Let $f: Z^+ \to Z^+$ where for all $x \in Z^+$, $f(x) = max\{1, x-1\}$, the maximum of 1 and x - 1. What is the range of f? Is f one-to-one? Is it onto?

Solution: The range of f is Z^+ . f is not one-to-one since f(1) = f(2) = 1. f is onto.

(g) Prove or disprove: If functions $f : A \to B$ and $g : B \to C$ are onto, then $g \circ f$ is onto.

Solution: $g \circ f$ is onto. The domain of f is A and the codomain of g is C. It can be showed that for any $z \in C$, there exists $a \in A, b \in B$ such that f(a) = b, and f(b) = z.

2. Show that the function $f: R - \{3\} \rightarrow R - \{2\}$ defined by $f(x) = \frac{2x-3}{x-3}$ is a bijection, and find the inverse function.

Solution: *f* is one-to-one:

Suppose there exists distinct x_1 and x_2 such that $f(x_1) = f(x_2)$. In this case $\frac{2x_1-3}{x_1-3} = \frac{2x_2-3}{x_2-3}$. We can simplify this to show that $-3x_1+9 = -3x_2+9$. This is possible only when $x_1 = x_2$. Thus we have a contradiction to the fact that x_1 and x_2 are distinct. Therefore, $f(x_1)$ cannot be equal to $f(x_2)$ if x_1 and x_2 are distinct.

f is onto

Let $y(\neq 2)$ be an element of the codomain of f. We are interested in finding x in the domain such that f(x) = y, i.e. $\frac{2x-3}{x-3} = y$. Simplifying we get $x = \frac{3-3y}{2-y}$ which well defined for any $y \neq 2$. Therefore, f is onto.

Computing f^{-1}

We are interested in computing $f^{-1}(x) = y$, i.e. f(y) = x. Therefore, $y = \frac{3-3x}{2-x}$. Therefore $f^{-1}(x) = \frac{3-3x}{2-x}$. Note that the range of f^{-1} is $R - \{2\}$.

3. Inclass test

Let $A = \{1, 2, 3, 4, 5\}$ and $B = \{1, 2, 3, 4, 5, 6\}$. How many one-to-one functions $f : A \to B$ satisfy (a) f(1) = 3? (b) f(1) = 3, f(2) = 6.

Solution: Number of one-to-one functions: 6.5.4.3.2 = P(6,5). Number of one-to-one function with f(1) = 3 is 5.4.3.2Number of one-to-one function with f(1) = 3 and f(2) = 6 is 4.3.2.