Practice Problems

1. Problems from the text: (page 219) 1, 3, 10, 11
2. Problems from the text: (page 230) 7, 8, 28
3. Problems from the text: (page 236) 3, 10, 14, 15, 19

Homework Problems

1. Consider \(n + 2 \) distinct points from the circumference of a circle. If consecutive points along the circle are joined by line segments creating a polygon with \(n + 2 \) sides then the sum of interior angle of the resulting polygon equals \(180n \) degree.

Solution: Let \(S(n) \) be the open statement the sum of the interior angles of \(n + 2 \) sided polygon is \(180n \) degrees. We want to show that \(\forall n \geq 1, \ S(n) \) is true. We will use the weak induction to prove the claim.

Basis: \(S(1) \) is true since the sum of the interior angles of a triangle is 180, i.e. \(180 \times 1 \) degrees.

Inductive hypothesis: Suppose \(S(k) \) is true for an arbitrary \(k \geq 1 \), i.e. the sum of the interior angles of any \(k + 2 \) vertices polygon is \(180 \times k \). This means that the interior of the polygon can be triangulated with \(k \) triangles.

Showing \(S(k+1) \) is true: Consider an arbitrary convex polygon with \((k+1)+2 \) vertices, say \(v_1, v_2, \ldots, v_k+2, v_{k+3} \), on the boundary of the circle. We select an arbitrary vertex \(v_i \). After it is removed the remaining \(k + 2 \) vertices form a polygon \(P \) whose total interior angles is \(180 \times k \) by the induction hypothesis. We now add \(v_i \) to the triangulated \(P \) and the resulting polygon is triangulated with \(k + 1 \) triangles. In the figure, we can add the triangle 3 to the triangulated polygon with 4 vertices. This implies that the sum of the interior angles of a polygon with \(k + 3 \) vertices is \(180 \times (k + 1) \). Therefore, \(S(1) \land S(k) \rightarrow S(k+1) \). By the principle of weak mathematical induction, \(S(n) \) is true for all \(n \geq 1 \).

2. Suppose that a sequence \(a_n \ (n = 0, 1, 2, \ldots) \) is defined recursively by \(a_0 = 1,
\quad a_1 = 7, \ a_n = 4a_{n-1} - 4a_{n-2} \ (n \geq 2) \). Prove by induction that \(a_n = (5n + 2)2^{n-1} \) for all \(n \geq 0 \).

Solution: Let \(S(n) \) be the open statement \(a_n = (5n + 2)2^{n-1} \). We need to show that \(\forall n \geq 0 \ S(n) \) is true. Clearly, \(S(0) \) and \(S(1) \) are true. We will use the strong induction to prove our claim. We show that \(S(0) \land S(1) \land S(k-2) \land S(k-1) \rightarrow S(k+1) \).
7. (a) Determine the prime factorization of 374544.
\[a_{k+1} = 4a_k - 4a_{k-1} \text{ from the definition} \]
\[= 2^2(5k+2)2^{k-1} - 2^2(5(k-1)+2)2^{k-2} \]
\[= (5k+2)2^{k+1} - (5(k-1)+2)2^k \]
\[= 2^k(10k+4 - 5k+5 - 2) \]
\[= 2^k(5k + 1) + 2 \]

We thus show that \(S(k-1) \land S(k) \rightarrow S(k+1) \). Therefore, by the principle of strong induction, we can claim that \(\forall n \geq 0 S(n) \) is true.

3. Show that, for any positive integer \(n \), \(n \) lines “in general position” (i.e., no two of them are parallel, no three of them pass through the same point) in the plane \(\mathbb{R}^2 \) divide the plane into exactly \(\frac{n^2 + n + 2}{2} \) regions. (Hint: Use the fact that an \(n \)th line will cut all \(n - 1 \) lines, and thereby create \(n \) new regions.)
Solution: Let \(a_n \) be the number of regions created by \(n \) lines. The recursive formulation of \(n \) is
\[a_1 = 2, \text{ and } a_n = a_{n-1} + n, n \geq 2. \]
We have to show that \(a_n = \frac{n^2 + n + 2}{2} \). The proof is very similar to that of the above two questions.

4. Give a recursive definition of the sequence \(\{ a_n \}, n = 1, 2, 3, \ldots \), if
(a) \(a_n = 4n \)
(b) \(a_n = 4^n \)
(c) \(a_n = 4 \)
Solution: \(a_1 = 4; a_n = a_{n-1} + 4, n \geq 2 \)

5. Give a recursive definition for the set of all
(a) positive even integers
(b) positive odd integers
(c) nonnegative even integers
Solution: \(2 \in S, \text{ if } x \in S, x + 2 \in S \)

6. Let \(n \in \mathbb{Z}^+ \) with \(n = r_0 + r_1 \times 6^1 + r_2 \times 6^2 + \ldots + r_k \times 6^k \). Prove that
(a) \(2|n \) if and only if \(2|r_0 \).
(b) \(4|n \) if and only if \(4|(r_0 + r_1 \times 6) \).
(c) \(8|n \) if and only if \(8|(r_0 + r_1 \times 6 + r_2 \times 6^2) \)
Solution: Suppose \(p(n) : 8|n \) and \(q(n) : 8|r_0 + r_1 \times 6^1 + r_2 \times 6^2 \). We want to show that \(\forall n \ p(n) \leftrightarrow q(n) \). We first show that \(\forall n \ p(n) \rightarrow q(n) \). The equivalent contrapositive statement we need to prove is \(\forall n \neg q(n) \rightarrow \neg p(n) \). Since \(\neg q(n) \) is true, \(r_0 + r_1 \times 6^1 + r_2 \times 6^2 = 8.T + i \) where \(T \) and \(i \) are integers and \(1 \leq i \leq 7 \). Now we can write \(n = 8.T + i + 8.T' \), since 8 divides \(r_3 \times 6^3 + r_4 \times 6^4 + \ldots + r_k \times 6^k \). Thus \(n = 8(T + T') + i \). This shows that \(8 \not| n \).
We can easily prove the second part: \(\forall n \ q(n) \rightarrow p(n) \).

7. (a) Determine the prime factorization of 374544.
Solution: \(4374544 = 2^4 \cdot 3^4 \cdot 17^2 \).
(b) Determine the number divisors of 374544 of types \(a^i, i = 1, 2, 3, 4\) where \(a\) is an integer.
Solution: Suppose we are interested in finding the number of divisors which are perfectly squares. For example, \(2^2, 2^4, 3^2, 3^4, 2^23^2\), etc. The number of such divisors is \((\left\lfloor \frac{4}{2} \right\rfloor + 1) \times (\left\lfloor \frac{4}{2} \right\rfloor + 1)\). Note here that \(1^2\) is considered as a divisor which is a perfect square.

8. (a) Use Euclidean algorithm to determine the greatest common divisor of the integers 243 and 198.
Solution: We compute the following:\n\begin{align*}
243 &= 1.198 + 45; 198 = 4.45 + 18; 45 &= 2.18 + 9; 18 &= 2.9 + 0. \text{ Therefore,} \end{align*}
\[\text{gcd}(243, 198) = 9.\]

(b) Use your computations above, determine two integers, \(x\) and \(y\), such that \(\text{gcd}(243, 198) = 243x + 198y\).

Thus we have \(x = 9\) and \(y = -11.\)

(c) Determine a value of \(c\) such that \(c = 243a + 198b\) where \(a, b, c \in \mathbb{Z}^+\).
Solution: We can arbitrarily set \(a = 1\) and \(b = 1\), and we get \(c = 243.1 + 198.1 = 441.\) Note that \(a, b, c \in \mathbb{Z}^+\).

9. Determine the value of \(c \in \mathbb{Z}^+, 30 < c < 39\), for which the Diophantine equation \(243a + 198b = c\) has no solution. Determine the solutions of the remaining values of \(c\).
Solution: We know \(\text{gcd}(243, 198) = 9\) and we can write 9 = 9 \times 243 – 11 \times 198. Since 9 divides only 36 in the range \([31, 38]\), \(243a + 198b = c\) have no solution when \(c = 31, 32, 33, 34, 35, 37, 38\). When \(c = 36\), we can write 36 = 243(9 \times 4) + 198(–11 \times 4). We can rewrite 36 = 243(9 \times 4 – 198k) + 198(–11 \times 4 + 243k) for any \(k\). For every integer values of \(k\), we obtain a different integral solution to the equation \(243a + 198b = c\).