
CMPT 307 Homework 3
October 7, 2019

Homework is due on Wednesday, October 16, 2019.

1. Practice Problems (Chapter 2 of the text) 2.19, 2.21, 2.22, 2.23, 2.24,2.32

Homework Problems

1. We are given an array A with n integer elements and a number C. Assume
that the sum of the elements in A is larger than C.We would like to compute
the smallest subset of A whose elements sum to at least C. (For example, if
A = [8, 3, 9, 2, 7, 1, 5] and C = 18, then the answer is {7, 8, 9}. Give a linear
expected time algorithm for this problem.
Ans (hints): After selecting the pivot and partitioning the array into two
parts: SL and SR, one can throw SL and work with SR if the total weight of
SR is greater than C. When the total weight of SR is less than C, work with
SL with new C =Old C - total weight of SR. We then repeat the algorithm.
The algorithm takes linear expected time.

2. We are given an array of integers A[1..n]. We would like to determine whether
there exists an integer x which occurs in A more than n

3
times. Give an

algorithm which runs in expected O(n) time.

Ans (hints): The solution if exists is either the n
3

the smallest element or the
2n
3

smallest element. Compute these two selected points (in linear expected
time), and then check the number of times these two elements have appeared.
The second step is linear.

3. We are given two arrays of integers A[1..n] and B[1..n], and a number X.
Design an algorithm which decided whether there exist i, j ∈ {1, 2, . . . , n}
such that A[i] + B[j] = X. Your algorithm should run in time O(n log n).

Ans (hints): We first sort the arrays. Set a = 1 and b = n. Check if
A[a] + B[b] = X. Otherwise, if A[a] + B[b] < X then a = a + 1, otherwise
set b = b− 1.

4. Problems 2.17 and 2.24 from the text.
Ans: Problem 2.17 This was discussed in the class. Assume that n is even.
After looking at the element A[n

2
] we can conclude the following:

• (A[n
2
] = n

2
): In this case we exit with the answer affirmative, i.e. yes for

the index n
2
.

1



• (A[n
2
] < n

2
): In this case the index i for which A[i] = i cannot exist

in the sub-array [1..n
2
− 1]. If there exists such an i, n

2
− i < A[n

2
] − i

(why?), ie. n
2
< A[n

2
], a contradiction.

• (A[n
2
] > n

2
): Using similar arguments we can show that an instance

where A[i] = i cannot exist in the sub-array [n
2

+ 1, .., n].

This way we are able to remove of of the total elements in every iteration.
Ans: Problem 2.24

(a) Modify the in place split procedure of 2.15 so that it explicitly returns
the three subarrays SL, SR, Sv. Quicksort can then be implemented as
follows:

function quicksort(A[1,,n])

pick k at random among 1, ,n

(S_L,S_R,S_v =split(A[1,,n],A[k])

quicksort(SL )

quicksort(SR )

(b) In the worst case we always pick A[k] that is the largest element of A.
Then, we only decrease the problem size by 1 and the running time
becomes T (n) = T (n− 1) + O(n), which implies T (n) = O(n2).

(c) 1 ≤ i ≤ n, let pi be the probability thatA[k] is the ith largest element
in A and let ti be the expected running time cost of the algorithm in
this case. The expected running time of the algorithm can be expressed
as T (n) =

∑n
i=1 piti. Since the probability of selecting any element of

A as a pivot is the same, therefore pi = 1
n
. Moreover, ti is at most

O(n) + T (n− i + 1) + T (i− 1), as SL has at most n− i + 1 elements
and SR has at mosr i− 1. Then

T (n) ≤ 1

n

n∑
i=1

(T (n− i + 1) + T (i− 1) + O(n)).

i.e. T (n) ≤ 1

n

n−1∑
i=1

(T (n− i) + T (i) + O(n)).

We can rewrite this for some constant c:

T (n) ≤ cn +
2

n

n−1∑
i=1

T (i)

We can then show by induction that T (n) ∈ O(n log n).

2


