
CMPT 307 : Quiz 3 (Total Marks: 55)
November 15, 2019

1. (15 points) Answer the following questions providing a brief justification for
your answers.

(a) A graph where all edges are distinct can have more than one minimum
spanning trees. True or false?
Answer: False. Look at question 4(b) of homework 5.

(b) A graph where all edge weights are distinct can have more than one
shortest paths between two vertices u and v. True or false?
Answer: True. Let w(u,w1)= 1,w(u,w2)= 2,w(w1,v)= 4,w(w2,v)=
3. This is an example.

(c) Adding a number w on the weight of every edge of a graph might
change the shortest path between two vertices u and v. True or false?
Answer:True

(d) Multiplying all edge weights by a positive number might change the
shortest path between two vertices u and v. True or false?
Answer: False. The weight of a path P becomes c×w(P), which does
not change the ordering.

(e) Let T be a minimum spanning tree of a graph G. Then for any two
vertices u,v the path from u to v in T is a shortest path from u to v in
G. True or false?
Answer: False. Let w(u, v) = 3, w(u, w) = 2, w(w, v) = 2. Then the
minimum spanning tree contains the edges (u, w) and (w, v), and not
(u, v) which is the shortest path from u to v.

(f) Suppose you are given a connected weighted graph G = (V,E) with
a distinguished vertex s and where all edge weights are positive and
distinct. It is possible for a tree of shortest paths from s and minimum
spanning tree in G to not share any edges. True or false?
Answer: False. Let e = (s,v) be the minimum cost edge incident to
s. Then dist[s,v] is the cost of edge e. Consider a cut S = s and V −S.
The minimum cost edge between S and V−S is e. Therefore, by the cut
property, there exists a minimum spanning tree that contains e. Thus,
e is present in both the shortest path tree from s and the minimum
spanning tree.

2. (10 points) For each of the methods of divide-and-conquer, greedy algorithm
and dynamic programming, determine the properties from the following list
that are appropriate for the method.



(a) Make a choice at each step

(b) Each choice depends on solutions to subproblems

(c) Bottom up solution, from smaller to larger subproblems

(d) Solve the subproblem arising after the choice is made

(e) The choice we make may depend on previous choices, but not on solu-
tions to subproblems

(f) Top down solution, problems decrease in size

(g) Divide the initial problem into subproblems.

(h) Subproblems are disjoint.

Answer:

Divide and conquer b,c,g,h

Greedy: a,d,e, f

Dynamic Programming b,c,g



3. (15 points) We would like to apply the Bellman-Ford (BF) algorithm to the
following path graph with v1 as the source vertex.

(a) How many iterations are needed if the edges are considered in the fol-
lowing order.

(v6,v7),(v5,v6),(v4,v5),(v3,v4),(v2,v3),(v1,v2)

Ans: The following table illustrates the progress of the algorithm.

Iteration 0 1 2 3 4 5 6 7
dist(v1) 0 0 0 0 0 0 0 0
dist(v2) ∞ 5 5 5 5 5 5 5
dist(v3) ∞ ∞ 6 6 6 6 6 6
dist(v4) ∞ ∞ ∞ 13 13 13 13 13
dist(v5) ∞ ∞ ∞ ∞ 8 8 8 8
dist(v6) ∞ ∞ ∞ ∞ ∞ 14 14 14
dist(v7) ∞ ∞ ∞ ∞ ∞ ∞ 15 15

(b) Determine the order of the edges such that the shortest path distances
from v1 can be determined in two iterations.

Ans: If the edges are considered in the order (v1,v2),(v2,v3), (v3,v4),
(v4,v5),(v5,v6) and (v6,v7), the BF algorithm will find all the distances
correctly during the first iteration. The second iteration is needed to
make sure that all the distances are correctly computed.

(c) What is the worst case running time of the BF algorithm on an arbitrary
directed graph with n vertices and m edges?

Answer: The worst case running time results when there exists a short-
est path of length n−1 and the edges of the shortest paths are consid-
ered in the reverse order. In this case the running time is O(n(n+m)).



4. (15 points) Consider a set S of day activities ( see the figure) where the ith
activity ai has starting time si and finish time fi. An activity a j contains an
activity ai if the interval [s j, f j) contains the interval [si, fi). An activity ai is
called a proper activity if it does not contain another activity. Two activities
ai and a j are compatible if [si, fi) and [s j, f j) do not overlap. The problem we
are solving is to select a maximum size subset (A∗) of mutually compatible
activities.

(a) Show that there exists an optimal solution A∗ where all the activities
are proper activities.
Ans: See homework 5 solution 1(a).

(b) For an arbitrary proper interval x, compute A∗(x). What is the running
time?
Ans: Let sx and fx be the starting time and finishing time of activity
x, respectively. We first eliminate all the activities which are not com-
patible with x. The cost to implement this is O(n). Let SL (SR) be
the activities compatible with x which lie on the left (right) side of x.
Starting from the right (left), we find optimal greedy solution of the
activities SL ∪{x} (SR ∪{x}). These solutions require O(n logn) time
to compute since we need to sort the endpoints of the intervals of SL

and SR first. The union of these two optimal solutions is A∗(x). The
total cost is O(n logn).

(c) It is possible for two proper intervals a and b realizing A∗(a) and A∗(b)
such that |A∗(a)| 6= |A∗(b)|. (see the figure). Show that the size differ-
ence of A∗(a) and A∗(b) is at most one for any arbitrary proper activi-
ties a and b.
Ans: The proof is very similar to the one given in the solution of ques-
tion 1(d) of homework 5.

Let x be a point on the line. Let Sx be the set of intervals that overlap
x. Clearly, at most one interval of Sx can be picked in the optimal
solution A∗. Let SL and SR be the intervals of S−Sx that lie to the left
and the right of x. The optimal mutually compatible activities can be
determined by taking the mutually compatible activities of SL and SR,



and probably one of the intervals of Sx. In the figure we notice that
A∗(a) = {c,d,a,h} and A∗(b) = {c,d,b,g,h}. Since all the involved
intervals are proper intervals, if any one interval of Sx is selected, this
selection might make at most two of the optimal compatible activity
intervals of SL∪ SR not compatible. Therefore, the size of the optimal
compatible intervals of S is at most the size of the optimal compatible
activity intervals of SL∪SR plus one.

(d) Design and analyze an algorithm to compute A∗, given S.
Ans: This is described in the lecture slides.


