CMPT 307 : Quiz 1 (Total Marks 55) Time: 50 minutes

1. (10 points) Rank the following functions by order of growth: that is find an arrangement g_1, g_2, \ldots, g_6 of the functions satisfying $g_1 \in \Omega(g_2), g_2 \in \Omega(g_3), \ldots, g_5 \in \Omega(g_6)$.

$n^2, n!, \log_e(n!), n^{0.1}, 2\log_2 n, n \log_2 n$

Answer: We first simplify :

- $\log_e(n!) \in \Theta(n \log_e n)$ i.e. $\log_e(n!) \in \Theta(n \log_2 n)$.
- $2^{\log_2 n} = n$. Note that $2^{\log_2 n} = n^{1/2}$, since $\log_2 n = \frac{\log_{10} n}{\log_{10} 2} = \frac{1}{2}$ (why?).

The functions in non-increasing asymptotic order are:

$g_1 = n!, g_2 = n^2, g_3 = n \log_2 n, g_4 = \log_e(n!), g_5 = n, g_6 = n^{0.1}$

Note that $g_3 \in \Theta(g_4)$.

2. (5 points) Suppose $\text{mystery}(n)$ is a function call taking $O(\sqrt{n})$ time to consider. Consider

```plaintext
if (\text{mystery}(n))
    A;
else
    B;
```

Give a tight bound on the running time of this piece of code as a function of n, on the assumption that

(a) A and B take $O(n)$ and $O(1)$ times respectively.
(b) A and B both take $O(1)$ time.

Answer: Here the function $\text{mystery}(n)$ with running time $O(\sqrt{n})$ returns a boolean value true or false.

In case (a), in the worst case, the running time of A dominates the running time of B. The total running time cost is, therefore, $O(n + \sqrt{n})$ which is $O(n)$ (why?).

In case (b), in the worst case, the running time is dominated by that of $\text{mystery}(n)$. Therefore, the running time is $O(\sqrt{n})$.

1
3. (5 points) Assume the parameter n in the procedure below is a positive power of 2, i.e. $n = 2, 4, 8, 16, \ldots$. Determine the running time of the following function.

Function mystery(n)
{
 count = 0; x = 2;
 while (x < n) {
 x = 2 * x;
 count++
 }
 writeln(count)
}

Answer: Suppose $n = 2^k$ for some k. In this case $k = \log_2 n$. The initial value of x is 2. Every iteration of the while loop doubles the value of x. Hence the while loop will be repeated $k - 1$ times. Therefore, the total step count is $O(k)$ which is $O(\log_2 n)$.

4. (15 points) This question is on modular arithmetic.

(a) Starting from the definition of $x \equiv y \pmod{N}$ (namely, N divides $x - y$), show that

$$x \equiv x' \pmod{N}, \ y \equiv y' \pmod{N} \ \Rightarrow \ \ xy \equiv x'y' \pmod{N}$$

Answer: Since N divides $x - x'$ and $y - y'$, $x = x' + tN$ and $y = y' + t'N$ where t and t' are integers. Therefore, $xy = (x' + tN) * (y' + t'N) = x'y' + N(t'x' + ty' + t'tN)$. Therefore, $xx' - yy'$ is divisible by N. This implies $xx' = yy' \pmod{N}$.

(b) Show that if $a \equiv 1 \pmod{N}$, then $a^p \equiv 1 \pmod{N}$

Answer: This is obtained by multiplying $a \equiv 1 \pmod{N}$ repeatedly p number of times.

(c) Give a polynomial time algorithm to compute $x^y \pmod{N}$ where x, y, N are all n-bit positive integers. You must analyze your algorithm for the worst-case time complexity.

Answer: Discussed in the text (Figure 1.4).
5. (10 points) Describe Euclid’s algorithm to compute the greatest common
divisor of a positive integers M and N of n binary bits long. Show that the
algorithm runs in polynomial time.

Answer: Euclid’s algorithm is described in Figure 1.5 of the text. The algorithm is a recursive algorithm. The lemma in page 21 says that
if $M \geq N \Rightarrow M \mod N < \frac{M}{2}$.

Let r_1 be the remainder, and $r_1 < M/2$.

In the second round, using the same logic, we can claim that the remainder $r_2 (= N \mod r_1)$ will be less than $N/2$.

This means that in two consecutive rounds, both the arguments M and N
are at least halved in their values. The length of each argument decreases by at least one bit. Therefore, the base case will be reached in $2n$ recursive
calls (initially, M and N are n-bit long). Each recursive call requires a mod computation. Therefore, the worst case complexity of the gcd algorithm is $O(n^3)$ which is a polynomial in n.

6. (10 points) This question is about Fermat’s Little Theorem (FLT).

(a) Formally state FLT.

(b) What is the contrapositive equivalent of FLT?

(c) Use FLT to show that $8^{62} \equiv 8^2 \pmod{11}$.

Answer:

(a) (Text page 23) If p is prime, then $\forall 1 \leq a < p, a^{p-1} \equiv 1 \pmod{p}$.

(b) The contrapositive equivalent: if $\exists 1 \leq a < p, a^{p-1} \not\equiv 1 \pmod{p}$, then
p is not a prime.

(c) We can write $8^{62} = 8^2 \times 8^{60} = 8^2 \times (8^{10})^6$. FLT says that $8^{10} \equiv 1 \pmod{11}$. Therefore, $8^{62} \equiv 8^2 \times (8^{10})^6 \equiv 8^2 \times (8^{10} \equiv 1 \pmod{11})^6 \equiv 8^2 \pmod{11}$. (mod 11).