Problems of Chapter 4

4.3 The adjacency matrix, when squared, stores the information about the paths of length 2 in *G*. The $(i, j)^{th}$ entry in M^2 indicates the number of length two paths from vertex *i* to vertex *j*. Similarly, the $(i, j)^{th}$ entry in M^3 indicates the number of length three paths from vertex *i* to vertex *j*. Note that < 1,5,1,2 > is considered a length 3 path. Knowing M^3 it is easy to check if there exists a cycle of length 3.

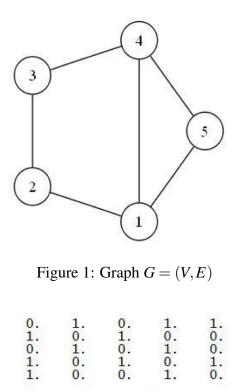


Figure 2: Adjacency matrix M of G

3.	0.	2.	1.	1.
0.	2.	0.	2.	1.
2.	0.	2.	0.	1.
1.	2.	0.	3.	1.
1.	1.	1.	1.	2.
	Fig	gure 3:	M^2	
2.	5.	1.	6.	4.
5.	0.	4.	1.	2.
1.	4.	0.	5.	2.
6.	1.	5.	2.	4.
4.	2.	2.	4.	2.
	Fig	gure 4:	M^3	

4.4 The proposed algorithm fails to identify the cycles that involve two back edges during the DFS.

Figure 3: Counterexample for 4.4.

- **4.9** If there is a negative cycle involving *s*, clearly, there doesn't exist any shortest paths. Suppose it is the case that there is no such negative cycle, we can show that Dijkstra's algorithm can be applied. We first add a positive constant, say K, to each edge incident on *s*. Now all the edges in the modified graph G' have positive weights. The shortest path to any vertex *v* contains one edge incident to *s*. The true distance to *v* is the distance to *v* in G' minus K.
- **4.10** Apply Bellman-Ford (BF) algorithm k rounds. It can be shown that after the i^{th} round, BF algorithm will finish computing the shortest paths of vertices of length at most i.
- **4.11** Very similar to 4.4.
- **4.13** The valid path from *s* to *t* cannot contain any edge of length greater than *L*. Eliminate these edges before Dijkstra's algorithm is applied.

- **4.14** Consider a shortest path from *u* to *v* throughout v_0 . We can find this path by precomputing the shortest path tree in *G* from v_0 , and computing the shortest path tree from v_0 to the graph G^R where all edges of *G* are reversed.
- 4.19 There are two approaches. Approach 1: We make the following modifications to Dijkstra's algorithm to take into account node weights: In the initialization phase, dist(s) = w(s). In the update phase, we use dist(u) + l(u, v) + w(v) instead of dist(u) + l(u, v). Analysis of correctness and running time are exactly the same as in Dijkstras algorithm.

Approach 2: We make the following modification to each node of *G*. Dijkstra's algorithm is applied to the modified graph.

