
CMPT 307 : Outline Solutions for Practice Problems (Chapter 1)

1.1.

In base 𝑏 representation, the value of a single digit number is at most 𝑏 − 1, while a two digits number

can express a value as large as 𝑏2 − 1. It can be easily shown that 𝑏2 − 1 ≥ 3(𝑏 − 1) for 𝑏 ≥ 2.

1.3.

The depth of a 𝑑-ary tree is minimum when every node has exact 𝑑 children. In that case, 𝑛 = 𝑑0 +

𝑑1 + 𝑑2 + ⋯ + 𝑑𝐷 where 𝐷 is the depth. Note that 𝑑0 + 𝑑1 + 𝑑2 + ⋯ + 𝑑𝐷 ≤ 𝑑𝐷+1 for 𝑑 > 1. So 𝑛 ≤

𝑑𝐷+1 yields 𝐷 ≥ log𝑑 𝑛 − 1 = Ω (
log 𝑛

log 𝑑
).

1.5.

Suppose 𝑛 = 2𝑘.

To conclude ∑
1

𝑖
𝑛
𝑖=1 = 𝑂(log 𝑛):

∑
1

𝑖

𝑛

𝑖=1

= 1 + (
1

2
+

1

3
) + (

1

4
+

1

5
+

1

6
+

1

7
) + ⋯ + (

1

2𝑘−1
+ ⋯ +

1

2𝑘 − 1
) +

1

2𝑘

≤ 1 + (
1

2
+

1

2
) + (

1

4
+

1

4
+

1

4
+

1

4
) + ⋯ + (

1

2𝑘−1
+ ⋯ +

1

2𝑘−1
) +

1

2𝑘

≤ 1 + 𝑘

= 𝑂(log 𝑛)

To conclude ∑
1

𝑖
𝑛
𝑖=1 = Ω(log 𝑛):

∑
1

𝑖

𝑛

𝑖=1

= 1 + (
1

2
) + (

1

3
+

1

4
) + (

1

5
+

1

6
+

1

7
+

1

8
) + ⋯ + (

1

2𝑘−1 + 1
+ ⋯ +

1

2𝑘
)

≥ 1 + (
1

2
) + (

1

4
+

1

4
) + (

1

8
+

1

8
+

1

8
+

1

8
) + ⋯ + (

1

2𝑘
+ ⋯ +

1

2𝑘
)

≥ 1 + 𝑘 (
1

2
)

= Ω(log 𝑛)

1.7.

Consider multiplying a 𝑛-bit number 𝑥 with a 𝑚-bit number 𝑦 using the recursive algorithm. Observe the

followings:

(a) The algorithm terminates after 𝑚 recursive calls.

(b) Each recursive call takes 𝑂(𝑛) time.

To see (a), think of division by 2 as bit shifting. Therefore, the total running time is 𝑂(𝑚 ∙ 𝑛).

1.10.

𝑎 ≡ 𝑏 mod 𝑁 means 𝑁 divides 𝑎 − 𝑏 (you may think of it as 𝑎 − 𝑏 ≡ 0 mod 𝑁). Since 𝑀 divides 𝑁, 𝑀

also divides 𝑎 − 𝑏, which yields 𝑎 ≡ 𝑏 mod 𝑁.

1.12.

Note that 𝑎𝑏 ≡ (𝑎 mod 𝑁)𝑏 mod 𝑁. Then plug 222006
= 22∙22005

= 422005
 into the formula yields the

answer as 222006
≡ 1 mod 3.

1.15.

Consider the condition gcd(𝑥, 𝑐) = 1.

For sufficiency, observe that under the condition gcd(𝑥, 𝑐) = 1 (which implies 𝑥 ≢ 0 mod 𝑐), if 𝑎𝑥 ≡

𝑏𝑥 mod 𝑐 (which implies (𝑎 − 𝑏)𝑥 ≡ 0 𝑚𝑜𝑑 𝑐), then 𝑎 − 𝑏 ≡ 0 mod 𝑐.

For necessity, suppose that gcd(𝑥, 𝑐) > 1, say 𝑥 = 𝑚𝑞 and 𝑐 = 𝑛𝑞 for 𝑚, 𝑛 ≥ 1, 𝑞 > 1. Then we can

find some 𝑎, 𝑏 (e.g. 𝑎, 𝑏 that satisfy 𝑎 − 𝑏 ≡ 𝑛 mod 𝑐) such that 𝑎𝑥 ≡ 𝑏𝑥 mod 𝑐, but 𝑎 ≢ 𝑏 mod 𝑐.

1.17.

For the iterative algorithm, it performs 𝑦 − 1 iterations. In the 𝑖𝑡ℎ iteration, it multiplies 𝑥𝑖 with 𝑥, which

takes 𝑂((log(𝑥𝑖)) ∙ log(𝑥)) = 𝑂(𝑖 log2 𝑥). So the total running time is 𝑂(log2 𝑥 + 2 log2 𝑥 + ⋯ +

(𝑦 − 1) log2 𝑥) = 𝑂(𝑦2 log2 𝑥).

For the recursive algorithm, it performs 𝑂(log 𝑦) iterations. In the 𝑖𝑡ℎ iteration, it multiplies 𝑥𝑦/2𝑖
 with

itself, which takes 𝑂 (log2 (𝑥𝑦/2𝑖
)) = 𝑂 (

1

22𝑖 ∙ 𝑦2 log2 𝑥). So the total running time is ((∑
1

22𝑖

log 𝑦
𝑖=1) ∙

𝑦2 log2 𝑥) = 𝑂(𝑦2 log2 𝑥) since ∑
1

22𝑖
∞
𝑖=1 = 𝑂(1).

The two algorithm have running times of the same order.

1.19.

This can be shown by Induction. The condition is clearly holds for 𝑛 = 1. Now assume that it holds for

𝑛 ≤ 𝑘. We need to show that it also holds for 𝑛 = 𝑘 + 1. Note that

gcd(𝐹𝑘+1, 𝐹𝑘+2) = gcd(𝐹𝑘+1, 𝐹𝑘+2 − 𝐹𝑘+1) = gcd(𝐹𝑘+1, 𝐹𝑘) = 1

where the first equality is by Euclid’s rule, the second equality is by the definition of Fibonacci number,

and the last equality is by the induction hypothesis.

1.25.

First use Fermat’s Little Theorem to deduce that 2125 is the inverse of 2 mod 127. Then by observation,

64 is the inverse of 2 mod 127, so 2125 ≡ 64 mod 127 by the uniqueness of inverse.

1.39.

Suppose that 𝑏𝑐 = 𝑞(𝑝 − 1) + 𝑟. Then

𝑎𝑏𝑐
≡ 𝑎𝑞(𝑝−1)+𝑟 ≡ 𝑎𝑟 mod 𝑝

where the second congruence is by Fermat’s Little Theorem.

To compute 𝑎𝑟 mod 𝑝, We first compute the exponent 𝑟 ≡ 𝑏𝑐 𝑚𝑜𝑑 (𝑝 − 1), and then we compute

𝑎𝑟 mod 𝑝. Both steps can be computed efficiently via modular exponentiations.

