
Heap
A priority queue must at least support the following operations on a dynamic set
S of elements:

• Insert(S,k): inserts a new element x into S with key k.

• Maximum(S): returns the element of S with the maximum value.

• ExtractMax(S): removes and returns the element with the maximum value.

• ChangeKey(S,x, k): changes the value of element x’s key to the new value
k. This value could be larger or smaller than the value it is replacing.

Heap data structure allows one to perform priority queue operations efficiently.
One can view a max-heap as a binary tree where each node and the key stored

each node (indicating the priority) is greater than the keys of its child nodes. Thus
the root of a max heap is the largest element of the heap. The heap is almost a
complete binary tree at every level except the bottom level. The bottom level is
filled from left to right. If the heap structure has height h storing n keys, 2h ≤
n ≤ 2h+1− 1. Heap data structure allows all of the operations mentioned to be
performed in logarithmic time.

The following figure is obtained from CLRS.

The heap can be implemented in an array. The root is stored at index 1, and
if a node is stored at index i, its left child has index 2i and the right child has
index2i+1. The parent of node i is stored at index b i

2c.
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Initially, we need to build a heap of a set of keys. Surely, we can build it by
adding each of the n keys one at a time requiring O(n logn) total time. However,
the required heap can be constructed in O(n) using a divide and conquer algorithm
whose recurrence relation will look like T (n) = 2T (n

2)+O(logn). Check that this
realizes T (n) ∈ O(n).

We can increase or decrease the value of a key at node u in O(logn) time.
When the value of the key at node u is increased, the update step of the heap is
to push u up the heap so that max-heap property is not violated. If the key value
at node u is decreased, the update step of the heap requires node u to be pushed
down.

For Dijkstra’s algorithm to compute the single source shortest path tree in a
graph G = (V,E), min-heap can be used to maintain the information. The time
complexity of Dijkstra’s algorithm in that case is O((|V |+ |E|) log |V |).
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Sets and Dictionaries
In this section we consider a set of objects. The members of a set are drawn from a
single universe: set of numbers; set of words; set of records identified by keys (viz.
student records with student ids being the keys); etc. In a typical implementation
of a dynamic set, each element is represented by an object whose fields can be
examined and manipulated. Some kinds of dynamic sets assume that one of the
objects fields is an identifying key field. If the keys are all different, we can think
of dynamic set as being a set of key values. The object may contain other data.
Here are some abstract operations that might be useful in applications involving
sets:

Search(x, S): Return ‘true’ if x is an element of S, otherwise, return ‘false’.

Union(S,T): Return S∪T .

Intersection(S,T): Return S∩T .

Difference(S,T): Return S−T .

MakeEmptySet(): Return the empty set Φ.

IsEmpty(S): Return ‘true’ if S is an empty set, else return ‘false’.

Insert(x,S): Add x to S. (This has no effect if x ∈ S already.)

Delete(x,S): Remove x from S. (This has no effect if x 6∈ S already.)

Equal(S,T): Return ‘true’ if S = T , otherwise return ‘false’.

Min(S): Return the smallest member of the set S (Elements are linearly ordered.)

Dictionary: A set of abstract data type with just operations MakeEmptySet, IsEmp-
tySet, Insert, Delete, and Membership is called a dictionary.

0.1 Elementary Data Structures (Chapter 10; CLRS)
We can represent a dynamic set in a linear list. For each of the four types of lists
in the following, the asymptotic worst case running time for each dynamic set
operation is listed below. (We assume that S has n objects.)
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unsorted , sorted, unsorted, sorted, sorted,
singly singly doubly doubly array
linked linked linked linked

Search(x,S) O(n) O(n) O(n) O(n) O(logn)
Insert(x,S) O(1) O(n) O(1) O(n) O(n)
Delete(x,S) O(n) O(n) O(n) O(n) O(n)
MakeEmptySet() O(1) O(1) O(1) O(1) O(1)
IsEmptySet(S) O(1) O(1) O(1) O(1) O(1)

0.2 Binary Search Trees (Chapter 12; CLRS)
A binary search tree (BST) is a binary tree with the following properties:

• Each node in the BST stores a key, and optionally, some auxiliary informa-
tion. We are assuming that all the keys are distinct.

• The key of every node in a BST is strictly greater than all the keys to the
left and strictly smaller than all the keys to the right.

The height of a BST is the length of the longest path from the root to a leaf.

• A tree with one node has height 0.

• An empty tree has height -1, by convention.

The minimum (maximum) element of S can be found by following the left
(right) child pointers from the root until a null link is encountered. The worst
running time is again O(h) where h is the height of the tree. Note that 0 ≤ h ≤
n−1.

0.2.1 Querying a BST

A BST is shown in Figure 1.
Given a pointer to the root of the BST and a key k, the following recursive

function returns the node that contains the key k.
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Figure 1: A binary search tree

=======================================

Function TreeSearch(r,k)

if r = null or k = key[r]

then return r

if k < key[r]

then return TreeSearch(leftChild[r],k)

else return TreeSearch(rightChild[r],k)

========================================

The worst case running time is proportional to the height of the tree, say h. In
the worst case, h could be as large as n−1. In the best case, h is blog2 nc.

0.2.2 Inserting into a BST

Insertions cause BST, representing a dynamic set, to change. We need to modify
the search tree maintaing the search tree property.

Here are the steps to follow for inserting a key k.
Insert(k,S)

1. Determine the leaf node v whose left or right child will store k.

2. If key[v]< k, k will be stored in the left subtree.

3. if key[v]> k, k will be stored in the right subtree.
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Figure 2: Determine the location in BST to insert 166

The following figures 2 and 3 depict the steps to insert 166.
Runtime Analysis

The Insert(k,S) costs O(h) time. Once the leaf node location is determined,
the remaining steps take O(1) (i.e. constant) time. Hence O(h) is the runtime cost
to insert an element into a BST of height h. Note that 0≤ h≤ n−1.

0.2.3 Deleting a key

Deletions also cause BST to change.
Here are the steps to follow to delete a key k from the BST.

Delete(k,S)

1. Determine the node z that stores k. This is done by calling Search(k,S).

2. If z is a leaf node (Figure 4(a)), we delete the node z.

3. If z has just one child (Figure 4(b)) we delete z and set the child node of z to
be the child node of the parent(z). This way the BST property is maintained
(why?).

4. If z has two children (Figure 4(c)), determine Successor(z) node y. Replace
the content of z with the content of y, and then delete node y. Note that the
successor node y can have at most one child (why?).

Runtime Analysis
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Figure 3: Insertion is complete. The updated tree is a BST.

• The time complexity is O(h) since Search(k,S) and Successor(z) both take
O(h) time in the worst case. Here h is the height of BST.

• In the best case, h ∈ O(logn).

• In the worst case, h ∈Θ(n).

• Challenge: Keep the height of BST, under insertion and deletion, to Θ(logn)
all the time, where n is the number of nodes in the tree.

unsorted , sorted, unsorted, sorted, sorted, BST, BST,
singly singly doubly doubly array worst best
linked linked linked linked case case

Search(x,S) O(n) O(n) O(n) O(n) O(logn) O(n) O(logn)
Insert(x,S) O(1) O(n) O(1) O(n) O(n) O(n) O(logn)
Delete(x,S) O(n) O(n) O(n) O(n) O(n) O(n) O(logn)
MakeEmptySet() O(1) O(1) O(1) O(1) O(1) O(1) O(1)
IsEmptySet(S) O(1) O(1) O(1) O(1) O(1) O(1) O(1)

1 Balanced Search Trees (2-3 Trees)
There are several important classes of problems where it is required to have the
dictionary operations in dynamic settings to run in logarithmic time in the worst
case.
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Figure 4: Deleting a node z (containing k) from a BST. In each of the following
cases, the node actually removed is lightly shaded. (a) If z no child, just remove
it. (b) If z has one child, we splice out z. (c) If z has two children, we splice out
y = Successor(z) which has at most one child, and then replace the contents of z
with the contents of y.

In the following we present a data structure that will allow us to process, on-
line, sequences of dictionary operations on sets. As we have observed, binary
search tree, initially balanced, can become unbalanced while executing a sequence
of INSERT and DELETE operations.

There are many ways to maintain a balanced tree under dictionary operations.
The examples include AVL tree, 2-3 tree, splay trees, red-black tree, 2-3-4 tree,
B-trees etc. In the following we discuss the method of 2-3 trees. Manipulating
2-3 trees are conceptually simple.

Definition: Our 2-3 tree is a tree with the following properties.

• The tree consisting of a single vertex is a 2-3 tree.

• Each vertex which is not a leaf has 2 or 3 children. The children are labeled
first, second, third from left to right.

• Every path from the root to a leaf vertex is of the same length.
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• All the elements of the set S are stored at the leaf level.

Lemma 1.1 Let T be a 2-3 tree with height h. The number of vertices of T is
between 2h+1−1 and 3h+1−1

2 .

Proof Consider T to be a complete binary tree of height h. In this case, the
number of vertices is 20 +21 + . . .+2h which is 2h+1−1. Therefore, 2h+1−1 is
the lower bound on the number of vertices of a 2-3 tree with height h.

The upper bound on the number of vertices is realized when the branching
factor of every non-leaf vertex is three. In this case, the number of vertices of T is
30 +31 + . . .+3h which is 3h+1−1

2 .

The elements of S are stored at the leaves ordered by some linear order ≤,
as follows. If element a is stored to the left of element b, the a ≤ b must hold.
We will assume that the ordering of elements is based on one field of a record
that forms the element type: this field is called the key field. Each record has two
fields: key field, and the information field.

Interior vertices: We use the interior vertices of the tree to store information in
order to facilitate the operations to be performed on the elements placed at the
leaves. Every interior vertex v stores extra two pieces of information:

• L[v]: It is the largest element of S assigned to the subtree whose root is the
first child of v.

• M[v]: It is the largest element of S assigned to the subtree whose root is the
second child of v.

Figure 5 shows a 2-3 tree where the values of L and M are attached to the
interior vertices. Both the 2-3 trees store the same elements at the leaves.

It is easy to show that

Lemma 1.2 This implies that any 2-3 tree storing n elements at the leaves has
height O(logn).

In the following we assume that 2-3 tree T stores n elements of S at the leaves.
The lointer root points to the root node of T .
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Figure 5: 2-3 Tree

1.1 Notations
We will use the following notations for the rest of discussions.

S: Set of n objects. Each object is a 2-tuple (key,records).

T: Given 2-3 tree stores the elements of S at leaves.

root: The root node.

f[v :] The first child of v. If there is no child, f (v) = null.

s[v :] The second child of v.

t[v :] The third child of v. The third child is null if the degree of v is two.

p[v :] The parent node of v

L[v :] Largest element in the subtree rooted at f [v].

M[v :] Largest element in the subtree rooted at s[v].

1.2 Search(x,v)
Search the 2-3 tree T for the object with key x. The start vertex is v. Initially, v is
the root node. The operation fails if no such item is found.
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==============================================

SEARCH(x,r)

if r is a leaf then

if key[r] = x return r

else return null

endif

if x <= L[r] then return Search(x, f[r])

else

if r has two children or x <= M[r] then

return Search(x, s[r])

else return Search(x, t[r])

endif

endif

===============================================

It is easy to show that

Lemma 1.3 The cost of Search(x,root) is O(logn).

1.3 Insert(x,v)
To insert a new element x into a 2-3 tree, we must locate the position for the new
leaf u that will contain x. Which interior node is going to be the parent of a new
leaf? This is done by trying to locate element x in the tree. The search for x
terminates at a vertex z. The last interior vertex we see on the search is p[z], the
parent node of z. p[z] should be the parent of the new leaf. We need to make sure
that

• Number of children of p[z] should not be more than three.

• The L[] and M[] information of the vertices along the path from the root to
p[z]. All these vertices have z in its subtree.

1.3.1 Fixing the degree of p[z]

We consider the following two cases.

Case A: p[z] has only two leaves z1 and z2, and we make u a child of p[z].
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Subcase 1 x < key[z1]

• set t[p[z]] = s[p[z]] and s[p[z]] = f [p[z]],
• make u the first child of p[z], i.e. f [p[z]] = u,
• set key[u] = x, f [u] = s[u] = t[u] = null,
• set L[p[z]] = x and M[p[z]] = s[p[z]].

Subcase 2 key[z1]< x < key[z2]

• set t[p[z]] = s[p[z]], and
• make u the second child of p[z], i.e. s[p[z]] = u,
• set key[u] = x, f [u] = s[u] = t[u] = null,
• set L[p[z]] = f [p[z]] and M[p[z]] = x.

Subcase 3 key[z2]< x

• make u the third child of p[z], i.e. t[p[z]] = u,
• set key[u] = x, f [u] = s[u] = t[u] = null.

Note that L or M values of some of the proper ancestors of p[z] may have to
be changed.

Example If we insert the element 2 into the 2-3 tree of Figure 6(a), we get
the 2-3 tree of Figure 6(b).

Figure 6: Insertion into a 2-3 tree: (a) tree before insertion; (b) tree after inserting
2.

Case B: p[z] already has three leaves. We make u the appropriate child of p[z]
(i.e. the elements must be in sorted order). Vertex p[z] now have four chil-
dren. We need to split the vertex p[z]. We create a new vertex g. We

12



associate the first two children as the children of p[z], and make the two
rightmost children into children of g. We then make g a sibling vertex of
p[z] by making g a child of p[p[z]]. If the parent of p[z] has two children,
we stop here. If the parent of p[z] had three children, we must repeat this
process recursively until all the vertices in the tree have at most three chil-
dren. If the root node is given four sons, we create a new root with two new
children, each of which has two of the four children of the former root.

Example If we insert 4 into 2-3 tee of Figure 6(a), we get Figure 7.

Figure 7: Tree of Fig. 6(a), after 4 is inserted.

1.4 Delete(x,r)
An element x can be deleted from a 2-3 tree in essentially the reverse of the manner
by which an element is inserted. Let z be the leaf node containing x. There are
three cases to consider.

1. If z is the root, remove z. In this case x was the only element in the tree.

2. If p[z] (the parent node of z) has three children, remove z.

3. If p[z] has two children, f [p[z]] and s[p[z]] (one of them is z which needs to
be deleted), there are two possibilities:

(a) p[z] is the root. Remove p[z] and z, and leave the remaining son as the
root.
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(b) p[z] is not the root. Suppose p[z] has a sibling vertex g to its left. A
sibling to the right is handled similarly. If g has two children, make
the remaining child the third child of g, remove z, and call the deletion
procedure recursively to delete p[z]. If g has three children, make the
rightmost son t[g] be the left son of p[z] and remove z from the tree.

Example: Let us delete element 4 from 2-3 tree 7. The leaf labeled 4 is a child of
c which has two children. Thus we make the leaf labeled 5 as the rightmost child
of vertex b, remove the leaf labeled 4, and then recursively remove vertex c.

Vertex c is the child of vertex a, which has two sons. The vertex a′ is the right
sibling of a. Thus by symmetry, we make b the leftmost child of a′, remove vertex
c, and the recursively remove vertex a.

Vertex a is a son of the root. Applying case 3(a), we leave a′ as the root of the
remaining tree, which is shown in Figure

Figure 8: Tree of Fig. 7, after 4 is deleted.

We leave a formal specification of the deletion process as an exercise along
with the proof that it can be executed in at most O(logn) steps on a tree with n
leaves.

Remark We have seen so far that each of the instructions Insert, Delete, Min and
Search can be executed on a 2-3 tree with n leaves in at most O(logn) steps per
instruction when L and M values are used.

1.5 Concatenate(S1,S2)
The instruction Concatenate(S1,S2) takes as input two sequences S1 and S2 such
that every element of S1 is less than every element of S2, and produces a merged
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(concatenated) sequence S1S2. We assume that Si is represented by 2-3 tree Ti, i =
1,2. The sorted sequences are stored at the leaves.

The merging process algorithm can be described as follows.

Case 1: Height(T1) = Height(T2): • Create a new root r;

• Make Root[T1] and Root[T2] the first and the second son of r;

• Determine L and M values of r.

Case 2: Height(T1) > Height(T2): • Let v be the vertex on the rightmost path
of T1 such that Depth(v) = Height(T1)−Height(T2);

• p[v] is the parent node of v. Make Root(T2) a child of p[v] immediately
to the right of v;

• If p[v] has four children, fix the structure using the method similar to
the insertion operation.

Case 3: Height(T1) < Height(T2): The treatment is very similar.

Lemma 1.4 Concatenate(S1,S2) can be implemented in O(logn) time. We as-
sume that S1 and S2 are available in 2-3 trees. The result is left in a 2-3 tree, and
every element of S1 is smaller than every element of S2.

2 Hashing
A hash table is an effective data structure for implementing dictionaries. Hashing
has Θ(n) worst case complexity, but performs extremely well in practice. We will
see that number theory plays an important role in the design of hash functions.

Hashing describes a way to store the elements of a set in a table by breaking
the universe of possible keys. The position of the data element in the table is given
by a function from the key. This can be visualized in Figure 9.

A sample of an implementation of hash table in JAVA is given in Figure 10.
The following issues we should be aware of:

Size of the hash table: Only a small subset of all possible keys of the universe
we need to store.

Address calculation: The keys are not necessarily integers. The index of the
table being computed depends on the the size of hash table.
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Figure 9: The universe of key is divided into m containers (buckets). The figure
is tan from CLRS.

The hashing process can be visualized as follows Figure 11.

Definition Let U be the universe of all possible keys, and {B0,B1,B2, . . . ,Bm−1},
a set of m buckets for storing the elements from U . The hash function is a map-
ping

h : U →{0,1,2, . . . ,m−1},

mapping each key s ∈U to a number h(s).

The respective key goes to bucket Bh(s). The bucket number h(s) is also called
hash address. The complete set of buckets is called hash table.

2.1 Examples
1. The division method h(k) = k mod m is a simple hash function that can be

used when the keys of the records are integers. The table size m must be
chosen carefully.

How to choose m?

• if m is even and h(k) is even, keys will be stored in even locations. It
is not a good idea.

• m = 2p yields the bucket number using the lower p bits of k.
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Figure 10: Implementation of hash table in JAVA. The slide is taken from the
lecture notes of Prof. Th. Ottmann.

• Selecting m to be a prime number not close to a power of 2 is typically
a good choice.

Rule: Choose m prime not too close to the exact power of 2 is often a good
choice.

Suppose we wish to allocate a hash table to hold roughly n= 2000 character
strings, where a character has 8bits. Suppose we don’t mind examining an
average of 3 elements in an unsuccessful search. We allocate a hash table
of size 701. This number is chosen becausee it is a prime near 2001/3, but
not a power of 2. Therefore, our hash function is h(k) = k mod 701.

2. The multiplicative method is another simple rule. First the key (in base 2)
is multiplied by a constant value A such that 0 < A < 1, and p = log2 m bits
are selected for the hash function value from somewhere in the fractional
part of the resulting base-2 numeral (generally the leftmost p bits). Random
numbers are generated in a similar manner.
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Figure 11: Hashing process

Consider a hash table of size m = 16. The address size p = logm = 4 bits
and keysize w = 6 bits. Let A = .1010112 be the fractional constant. Given
a key k = 0110112, we calculate A.k = 010010.0010012. Then take i =
.00102, low end four bits in the fractional part, as the index of the hash table.
It is suggested by Donald Knuth (The Art of Computer Programming, Vol.
3) A=0.6180339887... as a good choice as a multiplier. He also suggests
that the value of m, the table size should be a prime number

2.2 Possible ways of treating collisions
Collisions are treated differently in different methods. A data object with key s is
in collision with another object with key s′ id h(s) = h(s′), i.e. both objects have
been mapped to the same index of the hash table.

There are two common methods for resolving collisions:

Chaining: Here each bucket is maintained as a linked list. All the objects whose
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keys are mapped to the same bucket are chained together. The search for a
key is nothing but searching a specific linked list.

Open addressing: Colliding elements are stored in other vacant buckets in the ta-
ble. A collision resolution scheme assigns a sequence α0 = h(s),α1,α2, . . .
of addresses to each key. The insertion algorithm inspects the cell in the
order indicated until it finds an empty slot in the table.

2.2.1 Analysis

We have a hash table T with m slots that stores n objects. In the worst case, the
bound for a key search is O(n). However, hashing method has an extremely good
average case behaviour under simple uniform hashing. Under this assumption,
any given key of the universe is equally likely to hash into any of the m slots,
independently of where any other element has hashed to.

We define the load factor α for T as n/m. Let n j denote the length of the

chain T [ j] so that n =
n
∑
j=0

n j. The expected value of n j is E[n j] = α = n/m.

During the search for a key, the amount of work involved is

• Compute the hash value which costs O(1), and

• Search a list of expected size α

Theorem 2.1 For the chaining resolution scheme, the expected cost of an unsuc-
cessful search is Θ(1+α) under the assumption of simple uniform hashing.

For a successful search, the analysis is slightly different, but the bound is still
the same (see CLRS: Theorem 11.2). Therefore,

Theorem 2.2 Under the assumption of uniform hashing, the expected cost of each
dictionary operation is Θ(1+α) for the chaining resolution scheme. This cost is
constant if n ∈ O(m).

In open-address hashing, n must be less than m. Therefore, the load factor
α < 1. Please refer to section 11.4 of CLRS for the details of the following two
theorems.

Theorem 2.3 Given an open-address hash table with load factor α = n/m < 1,
the expected cost of an unsuccessful search is at most 1

1−α
, assuming uniform

hashing.
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Theorem 2.4 Given an open-address hash table with load factor α < 1, the ex-
pected number of probes in a successful search is at most

1
α

loge
1

1−α
,

assuming uniform hashing and assuming that each key in the table is equally likely
to be searched.
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