
CMPT 307 (Fall 2019)

1 Growth of Functions (Chapter 0 of the text).
We note that analyses of algorithms being

• too precise is problematic, and

• too sloppy is unacceptable.

There is a need for an analytical tool that is based on the right simplifications. We
are interested in determining the growth rate of the running times of algorithms as
the problem size gets larger and larger to infinity. Consider the following exam-
ples.

• f (n) = n2 has quadratic growth rate, i.e. if the problem size n is doubled,
the running time is increased four times.

• f (n) = 100n2 also has quadratic growth rate.

• f (n) = 100n2 + 12n also has quadratic growth rate for large n (asymptoti-
cally).

All the three examples above can be grouped together to say that each one of them
has O(n2) running time (growth rate).

Let f ,g : N→ N be two increasing (positive) functions where N is the set of
positive integers. The following asymptotic notations are commonly used in the
analysis.

O(g(n)) = { f (n) | growth rate of f (n) is no more than that ofg(n) }

= { f (n) | ∃ c,n0 > 0, ∀ n≥ n0 f (n)≤ c g(n) }
Ω(g(n)) = { f (n) | growth rate of f (n) is at least that ofg(n) }

= { f (n) | ∃ c,n0 > 0, ∀ n≥ n0 f (n)≥ c g(n) }
Θ(g(n)) = { f (n) | growth rate of f (n) is the same as that ofg(n) }

= { f (n) | ∃ c1,c2,n0 > 0, ∀ n≥ n0 c1g(n)≤ f (n)≤ c2 g(n) }

Note that Θ(g(n)) = O(g(n))∩Ω(g(n)).

1



1.1 Alternate definitions
Let f (n) and g(n) be the functions as defined above. Let

limn→∞

f (n)
g(n)

= c.

We can then show that

• 0 < c < ∞ if and only if (iff) f (n) ∈Θ(g(n)).

• c = 0 iff f (n) ∈ O(g(n)).

• c = ∞ iff f (n) ∈Ω(g(n)).

Example: Show that logb n ∈Θ(log2 n) for any b > 1.

Note that (change of basis) logb n =
log2 n
log2b . We now get the result easily

through the application of limits.

In order take the limit when limn→∞ f (n) and limn→∞g(n) are either both zero or
both infinity, the following rule called the L’Hospital Rule is very convenient. It
says that

limn→∞

f (n)
g(n)

= limn→∞

f ′(n)
g′(n)

.

Here f ′(n) is the derivative of f (n) with respect to n. This process is repeated if
limn→∞ f ′(n) and limn→∞g′(n) are either both zero or both infinity as well.

2



Example: Show that n
√

n ∈Ω(n logb n) for any positive constant b.

Example: Show that
n
∑

i=1
i2 ∈Θ(n3).

Example: Show that log(n!) ∈ Θ(n logn). Note that there is no mention of the
base to the logarithm. The statement is true for any positive constant base.

1.2 Approximation by integrals
The last two problems can be solved using the method of integration. Let us solve
the last example.

We want to show that logn! ∈Θ(n logn).

We can write logn! = log[n(n−1)(n−2) . . .3.2.1] =
n
∑

i=1
log i =

n
∑

i=2
log i, since

log1 = 0. We now show that

•
n
∑

i=1
log i≥ c1×n logn,∀ n≥ n1 for some positive constants c1 and n1.

•
n
∑

i=1
log i≤ c2×n logn,∀ n≥ n2 for some positive constants c2 and n2, and

Consider the following figure where f (x) is an arbitrary increasing function
defined over the range [m−1..∞]. We can write (why?)∫ n

m−1
f (x)dx≤

n

∑
i=m

f (i) [Figure(a)]

and

n

∑
i=m

f (i)≤
∫ n+1

m
f (x)dx [Figure(b)]

3



For our problem, m = 2 and f (x) = logx. Therefore, we have established that∫ n

1
logxdx≤

n

∑
i=2

log i [Figure(a)]

n

∑
i=2

log i≤
∫ n+1

2
logxdx [Figure(b)]

We know that ∫
loge x dx = x loge x− x.

The rest of the stuffs should be easy to show that logn! ∈Θ(n logn).

4



Using this approach we can show (you should try) that for any integer k ≥ 1,

n

∑
i=1

ik ∈Θ(nk+1).

1.3 Some common running times of programs
The following table lists some of more common running times for programs and
their informal names. Note that O(1) is a shorthand for “some constant”.

Big-Oh Informal name
O(1) constant
O(logn) logarithmic
(n) linear
O(n logn) n log n
O(n2) quadratic
O(n3) cubic
O(2n) exponential

1.4 Logarithms in running times
From integral calculus, we know that loge n =

∫ n
1

1
x dx. It frequently appears in the

analyses of divide-and-conquer algorithms. Computer scientists generally think
of “ logn” as meaning log2 n, rather than loge n or log10 n. Note that the value of
log2n is the number of times n can be divided by 2 to get down to 1. When n = 2k,
log2 n = k.

1.5 An useful reference
I find the following article very useful. This should be read and consulted in case
you need some ideas on how to analyze the running times of algorithms.

The Running Time of Programs by J. Ullman
infolab.stanford.edu/~ullman/focs/ch03.pdf

5



1.6 Practice Questions
1. Problems 0.1, 0.2, 0.3 from the text (page 9-10).

2. Consider the following piece of code:

sum = 0;

for (i=1; i<= f(n); i++)

sum +=i;

where f (n) is a function call. Give a tight big-oh bound on the running of
this piece of code as a function of n, on the assumption that

(a) The running time of f (n) is O(n), and the value of f (n) is n!

(b) The running time of f (n) is O(n), and the value of f (n) is n

(c) The running time of f (n) is O(n2), and the value of f(n) is n

(d) The running time of f (n) is O(1), and the value of f(n) is 0

6


