
CMPT 307 (Fall 2019)

1 Analysis of Algorithms (You should also read Chap-
ter 2 of CLRS).

This topic is concerned primarily with

• memory requirement, called space complexity, analysis of algorithms

• time requirement, called time complexity, analysis of algorithms

We will focus on time complexity only since the techniques used to measure
this complexity subsume the techniques to determine the space complexity.

In order to measure the time complexity, we will not use the execution time
of the program as the measure of work done by the algorithm, since the execution
time

1. varies with the computer

2. is dependent on the programming language

3. is affected by biased implementation

4. is a time consuming process

The objective is to find a measure of work that tells us things about the ef-
ficiency of the algorithm independent of computer, programming language, the
programmer etc.

1.1 Our computer (model of computation)
Our computer has

• unlimited random access memory

• no Input/Output mechanism. The input data reside in the memory at the
beginning of the computation, and the output data are left in the memory at
the end.
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• no underflow/overflow. This means that the word size is arbitrarily large.

• the same execution time for an operation, whether it is a comparison, addi-
tion, or multiplication etc.

The time complexity of an algorithm is measured as a function of the problem
size. The problem sizes of some examples are:

Searching for an element in a list of n elements n
Sorting a list of n elements n
Multiplying two matrices of sizes m×n and n× p m,n, p
Determining whether an element x is a prime number number of bits to represent x

1.2 Counting
There are two acceptable approaches in the counting process.

Worst case: We obtain the bound on the largest possible counts on input of a
given size. It generally captures efficiency in practice. We will be mostly
concerned with this bound.

Average Case We obtain the bound on the average possible counts on random
input of a given size. It is hard (sometimes impossible) to accurately model
real instances by random distributions. Algorithm tuned for a certain distri-
bution may perform poorly on other inputs.

Let Dn be the set of all inputs of size n. Let I denote one particular input
instance. Let t(I) denote the time the algorithm takes to solve problem P with
input I. Let W (n) and A(n) denote the worst case and average complexity of the
algorithm to solve P respectively. Then W (n) and A(n) can be written as follows.

W (n) = maxI∈Dnt(I) and A(n) =
∑

∀I∈Dn
t(I)

|Dn|

We now discuss the following sections in our quest for counting in order to
analyze algorithms.

• Operation counts

• Step counts

• Counting Cache misses (this will be discussed later)
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1.2.1 Operation Counts

One way to estimate the time complexity of a method is to select one or more
operations, such as add, multiply, and compare and determine how many of each
is done. For this to work we need to determine the dominant operations and then
just count them.

Let us consider some examples. For each of the problems, we identify the
worst case situation when the algorithm is made to work the most. We then per-
form the operation count for that given scenario.
A: Largest Element:

The function Max finds the maximum element of a set of n elements. There
are n elements stored in an array. The array is assumed to be in the memory. The
output is the index of the maximum element, and is left in the memory.

Function Max(T[1..n])

{

if (n < 1) return -1;

index = 1;

for i = 2 to n

{

if (T[index] < T[i]) then index = i;

i++;

}

return index;

}

Function Max works the most when the elements are listed in the array in
increasing order. In this situation, the instruction index = i will be executed n−1
times. If the focus is on the comparison operation, then for an array of size n, in
the worst case, function Max will perform n−1 comparisons. We also notice that
i++ will execute in total n− 1 additions as well. Thus we can conclude that the
worst case operation count is proportional to n, the size of the input. Therefore,
function Max has linear complexity in the worst case situation. This implies that
if the input size is doubled, the execution time of function Max is also doubled.

In the average case we notice that the instruction index=i will not be executed
n− 1 times. May be on an average, about half of the times it will be executed.
Still the statement i++ will be executed n−1 times. Therefore, the average case
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complexity of function Max is still linear.

B: Sequential Search

The following function searches an array of n elements for a key. Again the ar-
ray is assumed to be in the memory. The output is the index of the array containing
the key.

Function Search(T[1..n], key)

{

i = 1;

while (i <= n & T[i] != key)

{

i++;

}

if (i = n + 1) then return -1

else return i;

}

The worst case scenario is when the key is not in the array. In this case i++
will be executed n times. The dominant operation is the comparison operation.
Therefore, the time complexity of the algorithm is proportional to the number of
the comparison operation count. This implies that the worst case complexity of
Search is linear.

The average case complexity can be estimated as follows. We count the num-
ber of comparisons. Clearly, it is the average of the cases: when the index of the
search key is at location 1, or location 2, or location 3, so on. The total compari-
son cost is 1+2+3+ ....+n which is n(n+1)

2 . Therefore, the average complexity
of Search is n(n+1)/2

n = n+1
2 . Note that we have assumed that all the elements are

distinct and each is searched for with equal frequency.
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C: Insertion Sort

Insertion sort is performed by inserting one element at a time to a partially
sorted list. An array of n elements is given. The algorithm sorts the elements in
increasing order. The algorithm is an in-place algorithm. A sorting algorithm is
said to be in-place if it requires very little additional space besides the initial array
holding the elements that are to be sorted.

Function InsertSort(T[1..n])

{

for i = 2 to n

{

x = T[i];

j = i - 1;

while (j > 0 & x < T[j])

{

T[j+1] = T[j];

j--;

}

T[j+1] = x;

}

}

The worst case scenario is when the while loop is executed i times during the
ith for loop. This happens when the input list has elements in decreasing order (try
with a simple example). In the worst case, the while loop (comparison operation)
will be executed i times when i= 2,3, ...,n. Therefore, the total comparison cost is
i=n
∑

i=2
i which is n(n+1)

2 −1. This says that as the input size is doubled, the comparison

cost is quadrupled. Thus the running time of InsertionSort is quadratic.

1.3 Step Counts
The operation-count method of estimating time complexity counts only the domi-
nant operations. In the step-count method, we count for the time spent in all parts
of the algorithm. The step count is a function of the problem size.

It is assumed that each step takes one unit time to execute. This time is in-
dependent of the problem size. Thus a step like return a+ b+ b ∗ c+(a+ b−
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c)/(a+ b)+ 4; also takes one unit of time. We also count a statement such as
x = y as a single step.

The tables below give the step counts of the three algorithms mentioned above.

A: Largest Element:

=======================================================================

Statement | Frequency (worst case)

=======================================================================

Function Max(T[1..n]) | 0

{

if (n < 1) return -1; | 1

index = 1; | 1

for i = 2 to n | n-1

{

if (T[index] < T[i]) then index = i; | n-1

i++; | n-1

}

return index; | 1

}

=======================================================================

Total step count | 3n

=======================================================================

6



B: Sequential Search

=======================================================================

Statement | Frequency (worst case)

=======================================================================

Function Search(T[1..n], key) | 0

{

i = 1; | 1

while (i <= n & T[i] != key) | n

{

i++; | n

}

if (i = n + 1) then return -1 | 1

else return i;

}

========================================================================

Total step count | 2n + 2

========================================================================

C: Insertion Sort

========================================================================

Statement | Frequency (worst case)

========================================================================

Function InsertSort(T[1..n]) | 0

{

for i = 2 to n | n-1

{

x = T[i]; | n-1

j = i - 1; | n-1

while (j > 0 & x < T[j]) | 1+2+3+ ... + n-1

{

T[j+1] = T[j]; | 1+2+3+ ... + n-1

j--; | 1+2+3+ ... + n-1

}

T[j+1] = x; | n-1
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}

}

=========================================================================

Total step count | 4(n-1) + 3n(n-1)/2

=========================================================================

The frequency of an executed statement is called the order of magnitude of
the statement. The order of magnitude of an algorithm is the sum of the order
of magnitude of all of its statements.

1.4 Discussion
An algorithm may contain thousands of statements. It is not practical to find the
order of magnitude of all of its statements. Since we are interested in finding the
growth of the running time as the input size increases, we identify a subset of
statements which dominates the running time of the algorithm. In InsertionSort
routine we realize that the most of the work, in relative terms, is done in the
while loop. Thus just by focussing on that piece, we notice that the running time
of the algorithm is quadratic. In some way we are interested in determining the
growth rate of the running time ignoring the constants and lower order terms. This
complexity is known as the the asymptotic complexity meaning the growth rate
of the running time of the algorithm as the problem size gets larger and larger to
infinity. Therefore the worst case asymptotic complexities of Max, Search and
InsertionSort routines are O(n),O(n) and O(n2) respectively.
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1.5 Examples
1. The following program tests if an array of elements of size n has any value

duplicated. There are two nested loops. Therefore, the asymptotic be-
haviour is quadratic.

1.6 Rule of thumb
1. Simple programs can be analyzed by counting the nested loops. A single

loop over n items yields linear complexity. A loop within a loop generally
yields quadratic complexity. A loop within a loop within a loop generally
yields a cubic complexity.

2. Given a series of for loops that are sequential, the slowest of them deter-
mines the asymptotic behaviour of the program. Two nested loops followed
by a single loop is asymptotically the same as the nested loops alone. Here
the nested loops dominate the simple loop.

3. Improving the asymptotic behaviour of the algorithm often increases its per-
formance in a significant way. This is much more than any smaller optimiza-
tions such as a faster programming language.

9



1.7 Effects of Increasing Input Size
The following table is obtained from https://cs.lmu.edu/~ray/notes/alganalysis/.
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1.8 Effects of Faster Computer
Again the following tables are obtained from https://cs.lmu.edu/~ray/notes/

alganalysis/.
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1.9 Example discussed in the class
In the following figure, there are four cases whose step counts we need to compute.
Looking at the cases, we see that in the worst case the step sum++ is the dominant
step. We have discussed the cases 1,2, and 3 have been discussed in the class. I
will analyze case 4 here. In the class I have missed an important observation
(thanks to the student for noting this).
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Case 4 is very similar to Case 3 except for the line 24. The if statement in line
24 will be true when j = i,2i,3i, . . . ,(i− 1) ∗ i. Number of times line 26 will be
executed is then

i=n−1

∑
i=0
{i+2i+3i+ . . .+(i−1)∗ i}
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