
CMPT 307 : Algorithms with numbers (Study Guide)
Should be read in conjunction with the text

September 13, 2019

The chapter is mainly concerned with problems involving very large integers.
Factoring and primality testing are two very important problems in number theory.

Suppose N is a given integer. We assume that N is very large. In binary system,
N can be represented using exactly dlog2(N +1)e bits. In decimal system, N can
be represented using exactly dlog10(N + 1)e decimal digits. Note that log2 N ∈
Θ(logb N) for any constant base b ≥ 2. You should know how they are exactly
related. In the following, we use n as the number of bits used to represent N. An
algorithm, that takes N as input (requiring n bits), runs in polynomial time if the
running time is O(nk) where k is a constant integer. An O(N) time algorithm is in
effect an exponential time algorithm in n, the input size. As a matter of fact, any
O(Nα),α > 0 time algorithm is an exponential time algorithm.

1 Arithmetic operations
Let N1 and N2 be two n-bit integers. The running times to compute the following
operations using the grade-school arithmetic are as follows.

• N1 +N2: takes O(n) time (requiring at most n+1 bits),

• N1−N2: takes O(n) time (requiring at most n+1 bits),

• N1 ∗N2: takes O(n2) time (requiring at most 2n bits), and

• N1/N2: takes O(n2) time (requiring at most 2n bits).

Multiplying (dividing) N by 2k (2−k) takes O(n) time since 2kN (2−kN) is
equivalent to shifting the n bits representing N to the left (right) by k bits. The
result can be stored using n+ k (n− k) bits. We have assumed k ≤ n.

Note that both multiplication and division can be computed recursively. These
can be described as follows:

• Multiplication Compute x.y,where y≥ 0.

x.y =

{
2(x.b y

2c) if y is even
x+2(x.b y

2c) if y is odd

1



Apply the above algorithm on the input: x = 17 and y = 21. Show the
various stages of the recursive algorithm described in Figure 1.1 of the text.

• Division When x is divided by y, y ≥ 1, we get x = qy+ r where q is the
quotient and r < y is the remainder. The division algorithm is described
in Fig. 1.2 in the text. Try to determine, like multiplication, the recursive
definition of division.

1.1 Evaluating xN: x and N are m and n bit integers, respec-
tively

If we compute xN = x×x× . . .×x (N times), the number of multiplications needed
is N− 1. This approach leads to an exponential time algorithm. The number of
bits required to store the result is Nm, which is exponential. We can reduce the
number of multiplications from N to n as follows.

Let N be (bnbn−1 . . .b2b1b0)2 in the binary system. Now we can write xN as:

xN =
i=n

∏
i=0

bi× x2i
.

At most 2n multiplications are needed to compute xN (why?).
The above algorithm is the same as the following recursive algorithm (why?).

xN =

{
(xb

N
2 c)2 if N is even

x(xb
N
2 c)2 if N is odd

Note that the space requirement to store the result is still exponential in n. In
the following we show that modular arithmetic is an arithmetic system that deals
with restricted ranges of integers.

2 Modular arithmetic
x modulo N (or x mod N) is the remainder when x is divided by N. When two
integers x and y are such that x mod N = y mod N, we say x and y are congruent
modulo N and we write x≡ y(mod N). Thus

Lemma For a positive integer x and a natural number N, if r = a mod N, then

• a≡ r(mod N);

2



• r ∈ {0,1,2, . . . ,N−1}.

mod N relation divides the set of integers Z into N equivalent classes. When
N = 3, the classes are:

[0] = {i|i≡ 0(mod N)}= {. . . ,−6,−3,0,3,6, . . .}

[1] = {i|i≡ 1(mod N)}= {. . . ,−5,−2,0,1,4, . . .}

[2] = {i|i≡ 2(mod N)}= {. . . ,−4,−1,0,2,5, . . .}

2.1 Substitution rule
The following two rules define how we perform modular addition and multiplica-
tion. Suppose x≡ x′(mod N) and y≡ y′(mod N).

Modular addition: x+ y≡ x′+ y′(mod N)

Modular multiplication: xy≡ x′y′(mod N)

Modular addition and multiplication respectively cost O(n) and O(n2) as well.
Suppose we know a ≡ b(modN). Then the modular multiplication rule im-

plies that

a2 ≡ b2(mod N),

a3 ≡ b3(mod N),

...

...

ak ≡ bk(mod N), for positive k

2.2 Modular exponentiation
We are interested in computing xy mod N where x,y,N are all n-bit integers.

This is very similar to evaluating xy. The recursive algorithm we can use is

xy(mod N)≡

{
(xb

y
2 c)2 (mod N) if y is even

x(xb
y
2c)2(mod N) if y is odd

3



The pseudocode of the above algorithm is given in Figure 1.4 of the text. The
space complexity in this case is O(n) (note that it is exponential when evaluating
just xy). Thus modular exponentiation can be done in cubic time in n (why?). The
space requirement is linear in n. This is one of the great advantages of modular
arithmetic.
Example: Reduce d = 1829764 mod 11.
Ans: we can write

1829764 = 4.100 +6.101 +7.102 +9.103 +2.104 +8.105 +1.106

≡ 4.1+6.10+7.1+9.10+2.1+8.10+1.1 (mod 11)
≡ 4+60+7+90+2+80+1 (mod 11)
≡ 244 (mod 11)
≡ 2 (mod 11)

Using simple division by 11 for the reduction will result in an exponential time
algorithm. The above algorithm is O((logN)2).

2.3 Greatest Common Divisor
Given two integers a and b, determine the largest integer that divides both of them.
The largest integer is know as the greatest common divisor (gcd). gcd(14,35) is 7.
Two integers a and b are called relatively prime if gcd(a,b)=1. The gcd algorithm
is guided by the following rule.

Euclid Rule: If x and y are positive integers with x≥ y, then gcd(x,y)= gcd(y,x mod
y).

The algorithm presented in Fig. 1.5 of the text follows immediately from the
definition. The running time of the algorithm is dependent on the number of times
the routine Euclid is called. For the analysis purpose, let us rewrite the algorithm
in Fig. 1.5 as:

function Euclid-modified(a,b)

Input: two integers a, b with a >= b >=0

Output: gcd(a,b)

if b = 0 return a

r1 = a mod b

if r1 = 0 return b

r2 = b mod r1

4



return Euclid-modified(r1, r2)

The lemma in page 21 of the text shows that r1 < a
2 and r2 < b

2 . This im-
plies that Euclid-modified will be called at most O(n) times. Each call of Euclid-
modified requires the evaluation of a mod function which costs O(n2) running
time. Therefore, the time complexity of Euclid(a,b) or Euclid-modified(a,b) is
O(n3).

2.3.1 Computing gcd(252, 198)

If we apply Euclid(252, 198) we get the following.

1. 252 = 1×198+54

2. 198 = 3×54+36

3. 54 = 1×36+18

4. 36 = 2×18+0

Thus 18 is the greatest common divisor of 252 and 198.
Next we show that 18, the gcd of 252 and 198, can be expressed in terms of

252 and 198.

1. 18 = 54−1×36 (from step 3)

2. 18 = 54− (198−3×54) = 4×54−1×198 (from step 2)

3. 18 = 4× (252−1×198)−1×198 = 4×252−5×198 (from step 1)

Thus 18 = 4×252−5×198. As a matter of fact one can show that
Lemma: (page 22 of the text) There exist integers x and y such that gcd(a,b) =
ax+by.

The converse is also true.
Lemma: (page 21 of the text) If d divides both a and b, and d = ax+by for some
integers x and y, then necessarily d = gcd(a,b).

5



2.3.2 How do you compute gcd(a,b) = ax+by?

The recursive algorithm in Fig. 1.6 in the text computes it. It is based on the
following observations.

The first two steps of the computation of gcd(a,b) are

1. a = tb+(a mod b) where t = ba
bc is the quotient

2. gcd(b,a mod b)

Suppose we recursively compute gcd(b,a mod b) = x′b+y′(a mod b), which
is gcd(a,b) = x′b+ y′(a mod b). Now a mod b = a− tb from step 1. Therefore,
gcd(a,b) = x′b+y′(a− tb) = y′a+(x′− ty′)b = y′a+(x′−ba

bcy
′)b. Thus we can

compute x,y such that gcd(a,b) = ax+by in O(n3) time (why?).

2.4 Modular division
We say that x is the multiplicative inverse of a mod N if ax ≡ 1(modN). Note
that for even N, when a = 2, there does not exist any x such that 2x≡ 1(mod N).

Suppose gcd(a,N) = 1, i.e a and N are relatively prime. We know from the
previous section that there exists integers x and y such that 1= ax + Ny. Therefore,
ax = 1(mod N).

The above observations give us an algorithm to compute the multiplicative
inverse of a mod N. First compute gcd(a,N). If it is not equal to 1, the multi-
plicative inverse does not exist. Otherwise, compute 1 = ax+Ny (it is always
possible). Then return x as the multiplicative inverse. This can be done in O(n3)
time (why?).

3 Primality testing
Fermat’s little theorem is the most important theorem for the Primality testing
problem. It says

Fremat’s little theorem: If p is a prime, for every a,1≤ a< p, ap−1≡ 1(mod p).
Proof: Consider the sequence a× 1(mod p),a× 2(mod p), . . . ,a× (p− 1)(mod
p) for any 1 ≤ a < p. We can show that (look at the text) none of these is zero,
and no pair is equal. Therefore,

p−1

∏
i=1

a× i≡
p−1

∏
i=1

i(mod p).

6



The above simplifies to
ap−1 ≡ 1(mod p).

Fermat’s little theorem is important in the design of primality testing algo-
rithms (without factoring).

We are interested in solving the problem:
Given an integer N, efficiently decide if it is a prime.

We are interested in an algorithm that takes O(logO(1)N)(i.e. O((logN)k,k constant))
time.

3.1 School Method
The primality of N is tested by dividing all numbers < N or better, ≤

√
N. This

method requires
√

N divisions, i.e. 2
1
2 log2 N divisions which is exponential in

log2 N. We need a better algorithm.

3.2 A simple algorithm based in Fermat’s Little Theorem (FLT)
The algorithm for primality testing is:

1. Randomly select m different a′s (set M), then test if aN−1 ≡ 1(mod N).

2. If any one of the tests does not satisfy aN−1 ≡ 1(mod N), return N is com-
posite.

3. Otherwise, return N is prime.

The running time of the algorithm is O(m.n2) which is quadratic in n when m is a
constant.

Clearly, the above algorithm is correct when the output message is “ N is
composite ”. If the output message is “ N is prime”, N need not be prime. This
can happen in one of the following two ways.

3.2.1 There exists an integer t < N where tN−1 6≡ 1(mod N) and M does not
contain any such t.

It is shown in the text that if N is not a prime, then tN−1 ≡ 1(mod N) can happen
for at most half of the values of t < N. Since a′s are selected randomly, the
probability of M not containing a single element t such that tN−1 6≡ 1(modN)

7



is 1
2k , where k is the size of M. We can therefore reduce this one-sided error

by applying FLT many times, by randomly picking several values of a < N and
testing them all. Thus

Pr(above algorithm returns yes when N is not prime)≤ 1
2k .

3.2.2 There are composite numbers with the property that for every a < N,
aN−1 ≡ 1(mod n)

These numbers are called Carmichael numbers. 561= 3×11×17 is a Carmichael
number. On Carmichael numbers, the primality test algorithm described above
will fail. These numbers are pathologically rare. These numbers can be taken care
of separately. We will not deal with them. We can claim that in a Carmichael-free
universe, with probability 1

2k , the algorithm returns the correct answer.

4 Diffie-Hellman (D-H) Algorithm
The D-H key agreement protocol (1976) was the first practical method for estab-
lishing a shared secret over an unsecured channel. The current RSA protocol is
slightly different. The protocol can be visualized as follows:

The steps of the D-H protocol between Alice and Bob are as follows.

1. Alice and Bob agreed on two public keys: a prime number p and a base g.

2. Alice chooses a secret number A, and sends Bob (gA mod p).

8



3. Bob chooses a secret number B, and sends Alice (gB mod p).

4. Alice computes ((gB mod p)Amod p).

5. Bob computes ((gA mod p)Bmod p).

6. Both Alice and Bob have the same key which they can use to encrypt and
decrypt the data. Not that p and g are public keys. The secret keys were
never transmitted.

An example

• Alice and Bob agrees on p = 23 and g = 5.

• Alice chooses his private key A = 6 and sends Bob 56 mod 23 = 8.

• Bob chooses his private key B = 15 and sends Alice 515 mod 23 = 19.

• Alice computes 196 mod 23 = 2.

• Bob computes 86 mod 23 = 2.

Note that (gB mod p)Amod p = ((gBA mod p) mod p). Similarly, (gA mod
p)B mod p = ((gAB mod p) mod p).

Consider the difficulty of deciphering when A,B, p,g are very large (requiring
hundreds of bits).

9


