2-3 Trees

- Leaf nodes contain data item and all leaves are at the same level.
- Each internal nonleaf node:
 - Has 2 or 3 children.
 - Two search values:
 - Largest item in left subtree.
 - Largest item in middle subtree.
- Smallest 2-3 tree:
 - Only one leaf node.
- Balanced and ordered.
height of tree

- n data items

- all nodes have two children
 \[\text{height} = \lceil \log_2(n+1) \rceil - 1 \]

- all nodes have three children
 \[\text{height} = \lfloor \log_3(2n+1) \rfloor - 1 \]

Time:
- For a general tree, \(O(\text{height}) \)
 \[\log_3(2n+1) - 1 \leq \text{height} \leq \lfloor \log_2(n+1) \rfloor - 1 \]

Time to search 1 key: \(O(\text{height}) \)

Time to list all elements in sorted order: \(O(n) \).
Insertions in 2-3 trees

- Insert new leaf in its appropriate place.
- Repeat until all nonleaf nodes have 2 or 3 children
 - If there is a node with 4 children, split the parent into two parent nodes with 2 children each.
 - If the root node is split, add a new root.
- Adjust the search values along insertion paths.

Example

Insert 5

\[\begin{array}{c}
\text{5} \\
\text{5} \\
\end{array}\]

Insert 21

\[\begin{array}{c}
\text{5} \\
\text{5} \\
\text{21} \\
\end{array}\]

Insert 8

\[\begin{array}{c}
\text{5} \\
\text{5} \\
\text{8} \\
\text{21} \\
\end{array}\]

Insert 63

\[\begin{array}{c}
\text{5} \\
\text{5} \\
\text{8} \\
\text{21} \\
\text{63} \\
\end{array}\]

Insert 69

\[\begin{array}{c}
\text{5} \\
\text{5} \\
\text{8} \\
\text{21} \\
\text{63} \\
\text{69} \\
\end{array}\]
Insert 32

\[
\begin{array}{c}
\text{5} & \text{8} & \text{21} & \text{32} & \text{63} & \text{69} \\
\end{array}
\]

\[
\begin{array}{c}
\text{5} & \text{8} & \text{21} & \text{32} & \text{63} & \text{69} \\
\end{array}
\]

Insert 7, 19, 25

\[
\begin{array}{c}
\text{5} & \text{8} & \text{19} & \text{21} & \text{25} & \text{32} & \text{63} & \text{69} \\
\end{array}
\]

\[
\begin{array}{c}
\text{5} & \text{8} & \text{19} & \text{21} & \text{25} & \text{32} & \text{63} & \text{69} \\
\end{array}
\]

Time to insert is \(O(\text{height})\)
Deletions in 2-3 trees

Delete \(x \) from the tree; \(p(x) \): parent of \(x \).

- If \(x \) is the root: delete \(x \)
- If \(p(x) \) has 3 children, delete \(x \)
- If \(p(x) \) has 2 children (one is \(x \) and the other child is \(y \))
 - If \(p(x) \) is the root

 \[
 \begin{array}{c}
 p(x) \\
 \text{(}a\text{)} \\
 \text{ } \\
 \text{(}c\text{)} \\
 \end{array}
 \Rightarrow \begin{array}{c}
 3
 \end{array}

 - If \(p(x) \) is not the root node. Let \(l \) be the left sibling and let \(r \) be the right sibling of \(p(x) \); (note \(l \) or \(r \) may not exist)

\[\begin{array}{c}
\text{3 children}
\end{array}\]
\[\begin{array}{c}
l \text{ has} \\
\text{3 children}
\end{array}\]
\[\begin{array}{c}
l \text{ has} \\
3 \text{ children}
\end{array}\]
\[\begin{array}{c}
\text{Replace } x \text{ by the 3rd child}
\end{array}\]
l has two children a b x s

Steps:
- remove x
- combine p(x) with l
- make s a child of l
- rename p(x) to l
- recursively remove x
Example

delete 47

delete 63

10:69
Example

```
32:69
  /    \
10:32  47:69
   /    \
5:8   21:32  36:47  63:69

   /    \
5 8 10 21 32 36 47 63 69
```

```
32:69
  /    \
10:32  47:69
   /    \
5:8   21:32  36:63

   /    \
5 8 10 21 32 36 63 69
```