SOLUTION TO QUESTION 1.17

Two integers \(x \) and \(y \) are given. \(x \) and \(y \) require \(n \) bit and \(m \) bit respectively. Two algorithms to compute \(x^y \) need to be analyzed.

Iterative: The pseudocode for this algorithm is as follows.

```plaintext
product = x;
for i = 2 to y do
    product = product * x
```

The result after the multiplication of two integers, one \(p \) bits long and another one \(q \) bits long requires \(pq \) bits to to store. Therefore, for a given \(i \), we are multiplying one \((i-1)n \) bits long integer with an \(n \) bit long integer. This multiplication cost is \((i-1)n^2 \). The resulting number after the multiplication is \(i.n \) bits long. Thus adding up all the multiplication cost we get

\[
\sum_{i=2}^{y} (i-1)n^2 \]

. Thus the complexity of the iterative algorithm is \(O(n^2y^2) \) which exponential in the input length of \(y \) which is \(m = \log_2 y \).

Recursive: The pseudocode for this algorithm is as follows:

```plaintext
function recursive(x,y)
    if y is even then return (x(\lfloor \frac{y}{2} \rfloor))^2.
    if y is odd then return x * (x(\lfloor \frac{y}{2} \rfloor))^2.
```

Computing \((x(\lfloor \frac{y}{2} \rfloor))^2 \) requires a multiplication involving two \(\frac{y}{2} n \) bits integers. The cost of this operation is \(\frac{y^2}{4} n^2 \) which is \(O(y^2 n^2) \). The recurrence relation for this recursive routine is

\[
T(y) = O(n) \text{ when } y \text{ is 1-bit long.}
T(y) = T(\frac{y}{2}) + O(y^2 n^2) \text{ otherwise.}
\]

Applying the Master Theorem we can conclude that \(T(y) \in O(y^2 n^2) \). The height of the recursion tree is \(\log_2 m \) and has \(\log_2 m \) nodes.

Thus both the algorithms have the same worst case complexity.