MACM 101 : Quiz 2.1 (Wednesday/Thursday) (Full Marks 50) Time: 40 minutes

- 1. (5) Decide if the following are statements. If yes then state if it is True or False.
 - (a) sets \mathbb{Z} and \mathbb{N} It's not a statement.
 - (b) $\mathbb{N} \notin \mathscr{P}(\mathbb{N})$ It's a statement and it is true.
 - (c) 4+x=5It's not a statement, because the truth value depends on the variable *x*.
 - (d) 1+1=3 if and only if 2+2=3 It's a statement and it's true.
 - (e) If it's raining then it's raining It's a statement and it's true.
 - (f) If 1 = 0 then 3=4 It's a statement and it's true.
 - (g) $100 \le 2^n$ It's not a statement, because the truth value depends on the variable *n*.
 - (h) $p \lor \neg p$ is a tautalogy. It's a statement and it's true.
- 2. (5) Express each statement in the form "If P, then Q" :
 - (a) For a function to be continuous, it is sufficient that it is differentiable If a function is differentiable, then it's continuous.
 - (b) A geometric series with ratio r converges if | r |< 1.If a geometric series ratio | r |< 1, then the geometric series converges.
 - (c) It is not hot whenever it is sunny If it is sunny, then it is not hot.
 - (d) You get a good grade only if you studyIf you want to get a good grade, then you should study.
 - (e) Studying is sufficient for passing If you are studying, then you will pass.
 - (f) The team wins if the quarterback can pass If the quarterback can pass, then the team wins.
 - (g) You need to be registered in order to check out library books. If you are registered, then you can check out library books.
 - (h) The beach erodes whenever there is a storm If there is a storm, then the beach erodes.
 - (i) It is necessary to have a valid password to log on to the server If you want to log on the server, then you should have a valid password.
- 3. (5) Write down the truth tables for the following statements:

(a) $[\neg p \land (p \lor q)] \rightarrow q$

р	q	$\neg p$	$p \lor q$	$\neg p \land (p \lor q)$	$[\neg p \land (p \lor q)] \to q$
Т	Т	F	Т	F	Т
Т	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

(b) $(p \oplus q) \land (p \oplus \neg q)$

р	q	$\neg q$	$p\oplus q$	$p \oplus \neg q$	$(p\oplus q)\wedge (p\oplus \neg q)$
Т	Т	F	F	Т	F
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	F

(c) $((p \rightarrow q) \land \neg p) \rightarrow \neg q$

р	q	$\neg p$	$\neg q$	$p \rightarrow q$	$((p \rightarrow q) \land \neg p)$	$((p \to q) \land \neg p) \to \neg q$
Т	Т	F	F	Т	F	Т
Т	F	F	Т	F	F	Т
F	Т	Т	F	Т	Т	F
F	F	Т	Т	Т	Т	Т

(d) $((p \rightarrow \neg q) \land \neg p)$

р	q	$\neg p$	$\neg q$	$p \rightarrow \neg q$	$(p \rightarrow \neg q) \land \neg p$
Т	Т	F	F	F	F
Т	F	F	Т	Т	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

(e) $(q \lor r) \Leftrightarrow (r \land q)$

q	r	$q \lor r$	$r \wedge q$	$(q \lor r) \Leftrightarrow (r \land q)$
Т	Т	Т	Т	Т
Т	F	Т	F	F
F	Т	Т	F	F
F	F	F	F	Т

(f) $(p \oplus q) \rightarrow (p \land q)$

р	q	$p \wedge q$	$p\oplus q$	$(p\oplus q)\to (p\wedge q)$
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	F	Т	F
F	F	F	F	Т

4. (10) Using the laws of logic, decide whether or not the following pair is logically equivalent.

(a) $P \Rightarrow Q$ and $\neg (P \lor \neg Q)$

left side =
$$\neg P \lor Q$$
 (1)

(2)

right side =
$$\neg P \land \neg (\neg Q)$$
 (3)

$$= \neg P \land Q \tag{4}$$

Thus, the left side and the right side are not logically equivalent.

(b) $P \land Q \Rightarrow R$ and $P \Rightarrow (Q \Rightarrow R)$.

left side =
$$\neg (P \land Q) \lor R$$
 (5)

$$= \neg P \lor \neg Q \lor R \tag{6}$$

right side =
$$P \Rightarrow (\neg Q \lor R)$$
 (7)

$$= \neg P \lor (\neg Q \lor R) \tag{8}$$

Thus, the left side and the right side are logically equivalent.

(c) $\overline{\overline{p \vee (q \wedge r)}} \vee \overline{p \wedge \overline{q}}$ and $p \wedge \overline{q}$. (Note that we have used $\overline{*}$ to indicate $\neg *$).

left side =
$$\overline{p \lor (q \land r)} \land \overline{\overline{p \land \overline{q}}}$$
 (9)

$$= (p \lor (q \land r)) \land (p \land \overline{q}) \tag{10}$$

$$= (p \land (p \land \overline{q})) \lor ((q \land r) \land (p \land \overline{q})) (distributive \ law)$$
(11)

$$= \left(p \wedge \overline{q}\right) \tag{12}$$

The two terms in eqn. (11) are connected by a \vee . The second term is false since it involves $q \wedge \overline{q}$.

(d)
$$(p \land q) \lor (q \land r) \lor (q \lor r)$$
 and $q \land (p \lor r)$.

left side =
$$(p \land q) \lor ((q \land r) \lor q \lor r)$$
 (13)
= $(p \land q) \lor ((q \land r) \lor q) \lor r)$ (14)

$$= (p \land q) \lor ((q \land r) \lor q) \lor r) \tag{14}$$

$$= (p \land q) \lor (q \lor r) \tag{15}$$

$$= (p \wedge q) \lor q \lor r \tag{16}$$

$$= q \lor r \tag{17}$$

Since $q \land (p \lor r) \subseteq (q \lor r)$, the left side and the right side are not logically equivalent.

- 5. (10) Express the statements in predicate/Symbolic logic:
 - (a) Every integer greater than 2 is the sum of two primes. Let P(x): *x* is the sum of two primes. $\forall x \in \mathbb{Z}, x > 2, p(x).$

- (b) For every prime number p there is another prime number q with q > p. Let P(p,q): q > p
 U: the universal set of prime numbers
 ∀p ∈ U, ∃q ∈ U, P(p,q).
- (c) Every user has access to electronic mail box Let p(x): x has access to electronic mail box.
 ∀x, p(x)
- (d) No rabbit knows Calculus Let U be the universal set of rabbits Let p(x): x knows Calculus, x ∈ U ∀x ∈ U, ¬p(x)
- (e) There is a student in the class who has taken more than 21 credits and has received all A's
 Let U be the universal set of students in the class
 Let p(x): x has taken more than 21 credits, x ∈ U.
 Let q(x): x has received all A's, x ∈ U.
 ∃x ∈ U, p(x) ∧ q(x)
- (f) Every course is taken by at least one student Let U be the universal set of courses Let p(x): x is taken by at least one student, x ∈ U. ∀x ∈ U, p(x)
- (g) If a person is friendly, then that person is not angry. Let *U* be the universal set of persons Let p(x): *x* is friendly, $x \in U$. Let q(x): *x* is not angry, $x \in U$. $\forall x \in U, p(x) \rightarrow q(x)$
- 6. (5) Express the statement in predicate/symbolic logic. Form the negation of the statement.
 - (a) Either x = 0 or y = 0. Let p(x): x = 0 p(x) ∨ p(y)
 The negation of the statement is as following: ¬(p(x) ∨ p(y)) which is equivalent to ¬ p(x) ∧ ¬p(y), or: Both x and y are non-zero.
 - (b) Integers a and b are both nonnegative. Let p(x): x is nonnegative, x ∈ Z p(a) ∧ p(b)
 The negation of the statement is as following: ¬(p(a) ∧ p(b)) ⇔ ¬p(a) ∨ ¬p(b)
 - (c) If f is a polynomial and its degree is greater than 1, the f' is not constant. Let U : universe of polynomials; d(f) : degree of f is greater than 1; r(f) : the derivative of f is continuous.

 $\begin{array}{l} \forall f \ d(f) \Rightarrow r(f) \\ \text{The negation of the statement is} \\ \neg(\forall f \ d(f) \Rightarrow r(f)) \Leftrightarrow \exists f, \neg(\neg d(f) \lor r(f)) \Leftrightarrow \exists f, \ (d(f) \land \neg r(f)). \end{array}$

- (d) There exists a real number *r* such that $r^2 = 2$. let p(x): $x^2 = 2$ $\exists r \in \mathbb{R}, p(r)$ The negation of the statement is as following: $\neg (\exists r \in \mathbb{R}, p(r)) \Leftrightarrow \forall r \in \mathbb{R}, \neg p(r)$
- 7. (10) Find a proposition with the truth table

р	q	?
Т	Т	F
Т	F	Т
F	Т	Т
F	F	Т

$$(p \land (\neg q)) \lor ((\neg p) \land q) \lor ((\neg p) \land (\neg q))$$

- 8. (Bonus)(10) Consider the statement *P* : Given any subset *X* of \mathbb{R} , there exists a subset *Y* of \mathbb{R} for which $X \cap Y = \Phi$ and $X \cup Y = \mathbb{R}$.
 - (a) Express the statement in predicate/Symbolic logic. Is the statement *P* true or false?

 $\forall X \subseteq \mathbb{R}, \exists Y \subseteq \mathbb{R}, (X \cap Y = \Phi) \land (X \cup Y = \mathbb{R})$

It is True. Given any subset \mathbb{R} , let $Y = \overline{X}$ where \overline{X} is the complement of X. Now \overline{X} is another subset of \mathbb{R} . Now $X \cap Y$ is empty and $X \cup Y$ is \mathbb{R} .

(b) Form the negation $\neg P$ symbolically. Write your answer as an English statement.

 $\neg (\forall X \subseteq \mathbb{R}, \exists Y \subseteq \mathbb{R}, X \cap Y = \Phi \land X \cup Y = \mathbb{R}) \\ \Leftrightarrow \exists X \subseteq \mathbb{R}, \forall Y \subseteq \mathbb{R}, X \cap Y \neq \Phi \lor X \cup Y \neq \mathbb{R}) \\ \text{There exists a subset } X \text{ of } \mathbb{R}, \text{ such that for every subset } Y \text{ of } \mathbb{R}, \text{ the intersection of } X \text{ and } Y \text{ is not the empty set or the union of } X \text{ and } Y \text{ is not the rational number set } \mathbb{R}. \end{cases}$

- 9. (Bonus)(10) Consider the statement *P* : Given any nonzero $x \in \mathbb{R}$, there exists an element $y \in \mathbb{R}$ for which xy = 1.
 - (a) Express the statement in predicate/Symbolic logic. Is the statement *P* true or false?

Let p(x,y): xy = 1. $\forall x \in \mathbb{R} (x \neq 0 \Rightarrow \exists y \in \mathbb{R}, p(x,y))$ True

(b) Form the negation $\neg P$ symbolically. Write your answer as an English statement.

$$\neg \forall x \in \mathbb{R} (x \neq 0 \Rightarrow \exists y \in \mathbb{R}, p(x, y))$$

$$\Leftrightarrow \exists x, \neg(\neg(x \neq 0) \lor \exists y, p(x, y))$$

 $\Leftrightarrow \exists x, (x \neq 0) \land (\forall y, \neg p(x, y))$ There exists a nonzero real *x* for which $xy \neq 1$ for every real number *y*.