Proofs using contrapositive and contradiction methods)

March 3, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use the method of contrapositive proof to prove the following :

Use the method of contrapositive proof to prove the following : Q 4: Suppose a,b,c $\in \mathbb{Z}$. If a doesn't divide bc , then a doesn't divide b.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Use the method of contrapositive proof to prove the following : Q 4: Suppose a,b,c $\in \mathbb{Z}$. If a doesn't divide bc , then a doesn't divide b.

Proof

- Equivalent contrapositive statement: if a divides b, a divides bc.
- Suppose *a* divides *b*.
- So a divides any multiple of b
- ▶ Thus *a* divides *bc*, *c* an integer.
- The contrapositive statement is true.
- So if a doesn't divide bc is true, then a doesn't divide b is also true.

Q 12: Suppose $a \in \mathbb{Z}$, If a^2 is not divisible by 4, then a is odd.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Q 12: Suppose $a \in \mathbb{Z}$, If a^2 is not divisible by 4 , then a is odd.

Proof

- Equivalent contrapositive statement: if a is even, then a² is divisible by 4.
- Suppose a is even.
- So a = 2k, k is an integer.
- Thus $a^2 = 4k^2$
- So a² is divisible by 4.
- The contrapositive statement is true.
- So If a^2 is not divisible by 4 is true, then a is odd is also true.

Prove either by Direct or Contrapositive proof.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Prove either by Direct or Contrapositive proof. Q 24: If $a = b \pmod{n}$ and $c = d \pmod{n}$, then $ac = bd \pmod{n}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Prove either by Direct or Contrapositive proof. Q 24: If $a = b \pmod{n}$ and $c = d \pmod{n}$, then $ac = bd \pmod{n}$. Proof : **Using Direct proof** Let a = nr + b and c = ns + d, r, s are integers. So ac = (nr + b)(ns + d). i.e ac = (rsn + dr + bs)n + bd. Thus $ac = bd \pmod{n}$. This completes the proof.

Q 28: If $n \in \mathbb{Z}$ then 4 doesn't divide $(n^2 - 3)$

Proof: bf Using contrapositive proof.

Contrapositive statement: if 4 divides $(n^2 - 3)$, then n is not an integer.

$$(n^2-3) = (n+\sqrt{3})(n-\sqrt{3}).$$

In order for 4 to divide $(n^2 - 3)$, n cannot not be an integer. One of the factors must be even.

Thus $n \notin \mathbb{Z}$.

This completes the proof.

Prove by the method of Contradiction .

Prove by the method of Contradiction .

Q 4: Prove that $\sqrt[3]{2}$ is irrational.

Proof:

Suppose $\sqrt[3]{2}$ is a rational number such that $\sqrt[3]{2} = a/b$ where a and b are integers having no common factor.($\neg(\sqrt[3]{2}$ is irrational)) $\Rightarrow 2 = a^3/b^3$ $\Rightarrow 2h^3 = a^3$ \Rightarrow Thus a^3 is even \Rightarrow thus a is even. Let a = 2k, k is an integer. So $2b^3 = 8k^3$ $\Rightarrow h^3 = 4k^3$ So b is also even. But a and b had no common factors. Thus we arrive at a contradiction. So $\sqrt[3]{2}$ is irrational.

(日) (同) (三) (三) (三) (○) (○)

Q 8: Suppose a,b, and $c \in \mathbb{Z}$, if $a^2 + b^2 = c^2$, then a or b is even.

Q 8: Suppose a,b, and $c \in \mathbb{Z}$, if $a^2 + b^2 = c^2$, then a or b is even. Proof: **Proof by contradictiction** Suppose $a^2 + b^2 = c^2$ and a,b are odd. Let a=2m+1 and b=2n+1 since they are both odd, m and n are integers.

 $a^{2} + b^{2} = (2m + 1)(2n + 1)$ i.e. $a^2 + b^2 = 4(m^2 + n^2 + n + m) + 2$. i.e. $a^2 + b^2 = 4X + 2$, X is an integer. Now $c^2 - 2 = 4X$ Therefore, c is even Let c = 2r, r is an integer. So $4r^2 = 2(2X + 1)$ $2r^2 = (2X + 1)$ which is a contradiction (the lhs is even, and the rhs is odd) Thus if $a^2 + b^2 = c^2$, then a or b is even.

Q 14: If A and B are two sets , then $A \cap (B - A) = \phi$.

<□ > < @ > < E > < E > E のQ @

Q 14: If A and B are two sets , then $A \cap (B - A) = \phi$. Proof by contradiction

Suppose $A \cap (B - A) \neq \phi$. Therefore, there exist an $x \in A \cap (B - A)$. $\Rightarrow x \in A$ and $x \in (B - A)$ $\Rightarrow x \in A$ and $x \in B$ and $x \notin A$ Now we arrive at a contradiction as x cannot both belong and not belong to A

So A \cap (*B* - *A*) = ϕ