1 Chapter 7

4. Given an integer *a*, then $a^2 + 4a + 5$ is odd if and only if *a* is even. Ans:

We want to prove: if *a* is even, then $a^2 + 4a + 5$ is odd. Suppose *a* is even, thus, a = 2k, for some integer *k*. $a^2 + 4a + 5 = (2k)^2 + 4 * 2k + 5 = 4k^2 + 8k + 5 = 2(2k^2 + 4k + 2) + 1$, Thus, $a^2 + 4a + 5$ is odd.

We want to prove: if $a^2 + 4a + 5$ is odd, then *a* is even. Suppose $a^2 + 4a + 5$ is odd, since 5 is odd, thus, $a^2 + 4a$ is even. Since 4a is even, thus, a^2 is even. Since a^2 is even, *a* is even.

In summary, we get that given an integer *a*, then $a^2 + 4a + 5$ is odd if and only if *a* is even.

6. Suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x. Ans: We want to prove: if $x^3 + x^2y = y^2 + xy$, then $y = x^2$ or y = -x.

Since $x^3 + x^2y = y^2 + xy$, we can get $x^3 + x^2y - y^2 - xy = (x^2 - y)(x + y) = 0$. Thus, we can get $y = x^2$ or y = -x.

We also want to prove: if $y = x^2$ or y = -x, then $x^3 + x^2y = y^2 + xy$. Since $y = x^2$ or y = -x, thus $(y - x^2)(y + x) = 0$. Since $(y - x^2)(y + x) = y^2 + xy - x^2y - x^3 = 0$. Then we can get $y^2 + xy = x^2y + x^3$.

In summary, we get that suppose $x, y \in \mathbb{R}$. Then $x^3 + x^2y = y^2 + xy$ if and only if $y = x^2$ or y = -x.

10. If $a \in \mathbb{Z}$, then $a^3 \equiv a \pmod{3}$.

Ans:

This is statement is true (corrected). We need to show that $a^3 - a$ is divisible by 3. We can write $a^3 - a = a(a^2 - 1) = a(a - 1)(a + 1)$. Any three consecutive integers will have one number divisible by 3. This proves the statement.

14. Suppose $a \in \mathbb{Z}$, Then $a^2 | a$ if and only if $a \in \{-1, 0, 1\}$.

Ans:

We want to prove: if $a^2|a$, then $a \in \{-1, 0, 1\}$. Since $a^2|a$, by definition, $a = k * a^2$, for some integer k and non-zero a. When $a \neq 0$, we have 1 = k * a. Since $k, a \in \mathbb{Z}$, we have a = 1, k = 1 and a = -1, k = -1. Thus, we get $a \in \{-1, 0, 1\}$. We then want to prove: if $a \in \{-1, 0, 1\}$, then $a^2|a$. Since $a \in \{-1, 0, 1\}$, when $a = -1, a^2 = 1$ divides a = -1, which is equal to -1. when $a = 1, a^2 = 1$ divides a = 1, which is equal to 1.

when a = 0,

0 can not divide 0!! Only if condition is not true.

- 20. There exists an $n \in \mathbb{N}$ for which $11|(2^n 1)$. **Ans:** Consider n = 10, then $2^n - 1 = 2^{10} - 1 = 1023 = 11 * 93$. Thus, the number n = 10 can make $11|(2^n - 1)$.
- 22. If $n \in \mathbb{Z}$, then $4|n^2$ or $4|(n^2-1)$. If n is even, then n = 2a. $n^2 = (2a)^2 = 4a^2$, by definition, $4|n^2$.

If n is odd, then n = 2a + 1. $n^2 - 1 = (2a + 1)^2 - 1 = 4a^2 + 4a = 4(a^2 + a)$, by definition, $4|(n^2 - 1)$.

In summary, we have shown that if $n \in \mathbb{Z}$, then $4|n^2$ or $4|(n^2-1)$.

28. Prove the division algorithm: If $a, b \in \mathbb{N}$, there exist unique integers q, r for which a = bq + r, and $0 \le r < b$. (A proof of existence is given in Section 1.9, but uniqueness needs to be established too.)

Ans:

The proof of existence has been given in Section 1.9. We omit the detailed proof of existence and only provide the uniqueness.

Suppose we have two sets of integers q, r and \bar{q} , \bar{r} that satisfies

$$a = bq + r$$
 and $0 \le r < b$

and

$$a = b\bar{q} + \bar{r}$$
 and $0 \le \bar{r} < b$.

We want to show that $\bar{q} = q$ and $\bar{r} = r$. We then have

$$b(\bar{q}-q)+\bar{r}-r=0.$$

Since $0 \le r < b$ and $0 \le \bar{r} < b$, we have $-b < r - \bar{r} < b$. From this we obtain

$$-1 < \bar{q} - q = \frac{r - \bar{r}}{b} < 1.$$

Since $\bar{q} - q \in Z$, and $\bar{q} - q < 1$, this implies that

$$\bar{q}-q=0.$$

This in turn implies that

 $\bar{r} - r = 0.$

2 Chapter 8

Use the methods introduced in this chapter to prove the following statements.

2. Prove that $\{6n : n \in \mathbb{Z}\} = \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$ **Ans:** Suppose $x \in \{6n : n \in \mathbb{Z}\}$, thus $x \in \mathbb{Z}$ and x = 6n. Thus x = 2c and x = 3k for some integer c, k. $x \in \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$ We've shown $\{6n : n \in \mathbb{Z}\} \subseteq \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$ Suppose $x \in \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$, By the definition of intersection, $x \in \mathbb{Z}$ and x = 2k and x = 3c, for some integer k, c. Thus x = 2k * 3c, x = 6b, for some integer b. We get $x \in \{6n : n \in \mathbb{Z}\}$. We've shown $\{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\} \subseteq \{6n : n \in \mathbb{Z}\}$. In summary, we get $\{6n : n \in \mathbb{Z}\} = \{2n : n \in \mathbb{Z}\} \cap \{3n : n \in \mathbb{Z}\}$.

- 6. Suppose *A*, *B* and *C* are sets. Prove that if $A \subseteq B$, then $A C \subseteq B C$. **Ans:** Suppose $x \in A - C$, by definition, we have $x \in A$ and $x \notin C$. Because $A \subseteq B$, thus $x \in B$. thus, $x \in B$ and $x \notin C$, i.e., $x \in B - C$. We have shown that $x \in A - C$ implies $x \in B - C$, so it follows that $A - C \subseteq B - C$.
- 20. Prove that $\{9^n : n \in \mathbb{Q}\} = \{3^n : n \in \mathbb{Q}\}$ **Ans:** Suppose $x \in \{9^n : n \in \mathbb{Q}\}$, thus $x = 9^n$ and $n \in \mathbb{Q}$. $x = 3^{2n} = 3^k, k = 2n, k \in \mathbb{Q}$. It follows that $x \in \{3^n : n \in \mathbb{Q}\}$. We have shown that $x \in \{9^n : n \in \mathbb{Q}\}$ implies $x \in \{3^n : n \in \mathbb{Q}\}$, so it follows that $\{9^n : n \in \mathbb{Q}\} \subseteq \{3^n : n \in \mathbb{Q}\}$.

Suppose $x \in \{3^n : n \in \mathbb{Q}\}$, thus, $x = 3^n$ and $n \in \mathbb{Q}$. $x = 3^n = 9^{n/2} = 9^k, k = n/2, k \in \mathbb{Q}$. It follows that $x \in \{9^n : n \in \mathbb{Q}\}$. We have shown that $x \in \{3^n : n \in \mathbb{Q}\}$ implies $x \in \{9^n : n \in \mathbb{Q}\}$, so it follows that $\{3^n : n \in \mathbb{Q}\} \subseteq \{9^n : n \in \mathbb{Q}\}$.

In summary, we get $\{9^n : n \in \mathbb{Q}\} = \{3^n : n \in \mathbb{Q}\}.$

3 Chapter 9

Each of the following statements is either true or false. If a statement is true, prove it. If a statement is false, disprove it. These exercises are cumulative, covering all topics addressed in Chapters 1-9.

- 2. For every natural number *n*, the integer $2n^2 4n + 31$ is prime. **Ans:** False (corrected). $2n^2 - 4n + 31$ is not prime when n = 31. (Disproof through counterexample.)
- 18. If $a, b, c \in \mathbb{N}$, then at least one of a b, a + c, and b c is even. Ans: True.

Because at least two of a, b, c are both even or both odd, thus, at least one of a - b, a + c, and b - c is even.

- 22. If p and q are prime numbers for which p < q, then $2p + q^2$ is odd. **Ans:** True. Because q is a prime number, and q is not the smallest prime, q is an odd number. Thus, q^2 is odd. 2p is even. Thus, $2p + q^2$ is odd.
- 34. If $X \subseteq A \cup B$, then $X \subseteq A$ or $X \subseteq B$. Ans: True. This is by definition.