Set Theory Tutorial 1

January 17, 2015

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Write each of the following sets by listing elements between braces

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solution

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

Solution

• Simplifying the equation we get $:x(x^2+5x+6)=0$

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

Solution

• Simplifying the equation we get $:x(x^2+5x+6)=0$

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

Solution

• Simplifying the equation we get $:x(x^2+5x+6)=0$

► x=0,-2,-3

Write each of the following sets by listing elements between braces Q 8: $\{x \in R : x^3 + 5x^2 = -6x\}$

Solution

• Simplifying the equation we get $:x(x^2+5x+6)=0$

x=0,-2,-3 So the solution is {0,-2,-3 }

Q 10: $\{x \in R : cosx = 1\}$

Q 10:
$$\{x \in R : cosx = 1\}$$

Solution

Q 10:
$$\{x \in R : cosx = 1\}$$

Solution We know that for the values $2n\pi$ (where n is an integer), cosx=1

Q 10:
$$\{x \in R : cosx = 1\}$$

Solution We know that for the values $2n\pi$ (where n is an integer), cosx=1 so the solution is {..., -2π , 0, 2π , ...}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Write in set-builder notation

Write in set-builder notation Q 28: { . . ., -3/2, -3/4, 0, 3/4, 3/2, . . .}

Write in set-builder notation Q 28: { . . ., -3/2, -3/4, 0, 3/4, 3/2, . . .} Solution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write in set-builder notation

Q 28: { . . ., -3/2, -3/4, 0, 3/4, 3/2, . . .} Solution

Here we see that the elements of set forms an arithmetic series with difference of 3/4 between them

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Write in set-builder notation

Q 28: { . . ., -3/2, -3/4, 0, 3/4, 3/2, . . .} Solution

Here we see that the elements of set forms an arithmetic series with difference of 3/4 between them So in set builder form , we can write it as :{3x/4: $x \in Z$ }

Find the following Cardinalities

Find the following Cardinalities Q 38: $\{x \in N : 5x \le 20\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find the following Cardinalities Q 38: $\{x \in N : 5x \le 20\}$ Solution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find the following Cardinalities Q 38: $\{x \in N : 5x \le 20\}$ Solution

x can hold the values of 1,2,3 and 4 to satisfy $5x \le 20$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Find the following Cardinalities Q 38: $\{x \in N : 5x \le 20\}$ Solution

x can hold the values of 1,2,3 and 4 to satisfy $5x \le 20$ So the solution set is $\{1,2,3,4\}$.

Find the following Cardinalities Q 38: $\{x \in N : 5x \le 20\}$ Solution x can hold the values of 1,2,3 and 4 to satisfy $5x \le 20$

So the solution set is $\{1,2,3,4\}$. Hence the cardinality is 4

Write out the indicated sets by listing their elements between braces. Q 6: $\{x \in R : x^2 = x\} X \{x \in N : x^2 = x\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Q 6: $\{x \in R : x^2 = x\} X \{x \in N : x^2 = x\}$ Solution:

Q 6:
$$\{x \in R : x^2 = x\} X \{x \in N : x^2 = x\}$$

Solution:
Let A= $\{x \in R : x^2 = x\} = \{0,1\}$
Let B= $\{x \in N : x^2 = x\} = \{1\}$

}

Q 6:
$$\{x \in R : x^2 = x\}$$
 X $\{x \in N : x^2 = x\}$
Solution:
Let A= $\{x \in R : x^2 = x\} = \{0,1\}$
Let B= $\{x \in N : x^2 = x\} = \{1\}$
So AXB = $\{(0,1), (1,1)\}$

Write out the indicated sets by listing their elements between braces. Q $8{:}\{0{,}1\}^4$

Write out the indicated sets by listing their elements between braces. Q $8{:}\{0{,}1\}^4$ Solution

Write out the indicated sets by listing their elements between braces. Q $8{:}\{0{,}1\}^4$ Solution Let A={0,1}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Write out the indicated sets by listing their elements between braces. Q $8:\{0,1\}^4$ **Solution** Let A= $\{0,1\}$ So our set should be $\{(w,x,y,z): w \in A, x \in A, y \in A, z \in A\}$

Q 8: $\{0,1\}^4$ Solution

Let $A = \{0,1\}$ So our set should be $\{(w,x,y,z): w \in A, x \in A, y \in A, z \in A\}$ $\{(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,0,1,1),(0,1,0,0),(0,1,0,1),(0,1,1,0),(0,1,1,0),(1,0,0,1),(1,0,1,1),(1,0,0),(1,1,0,0),(1,1,0,1),(1,0,1,1),(1,1,1,1)\}$ is the required set.

section 1.3

Find the subsets of Q 2. $\{1,2,\phi\}$

section 1.3

Find the subsets of Q 2. $\{1,2,\phi\}$ $\phi,\{1\},\{2\},\{1,2\},\{\phi\},\{\phi,1\},\{\phi,2\},\{1,2,\phi\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Find the subsets of Q 2. $\{1,2,\phi\}$ $\phi,\{1\},\{2\},\{1,2\},\{\phi\},\{\phi,1\},\{\phi,2\},\{1,2,\phi\}$ Q 4. ϕ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
Find the subsets of Q 2. \{1,2,\phi\}
\phi,\{1\},\{2\},\{1,2\},\{\phi\},\{\phi,1\},\{\phi,2\},\{1,2,\phi\}
Q 4. \phi
The subset of \phi is \phi
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

```
Find the subsets of

Q 2. \{1,2,\phi\}

\phi,\{1\},\{2\},\{1,2\},\{\phi\},\{\phi,1\},\{\phi,2\},\{1,2,\phi\}

Q 4. \phi

The subset of \phi is \phi

Q 14. R^2 is the subset of R^3
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Find the subsets of Q 2. $\{1,2,\phi\}$ $\phi,\{1\},\{2\},\{1,2\},\{\phi\},\{\phi,1\},\{\phi,2\},\{1,2,\phi\}$ Q 4. ϕ The subset of ϕ is ϕ Q 14. R^2 is the subset of R^3 False $R^2 = \{(x,y) : x \in R, y \in R\},$ $R^3 = \{(x,y,z) : x \in R, y \in R, z \in R\}$

Find the subsets of Q 2. {1,2, ϕ } ϕ ,{1},{2},{1,2},{ ϕ },{ ϕ ,1},{ ϕ ,2},{1,2, ϕ } Q 4. ϕ The subset of ϕ is ϕ Q 14. R^2 is the subset of R^3 False $R^2 = \{(x, y) : x \in R, y \in R\},$ $R^3 = \{(x, y, z) : x \in R, y \in R, z \in R\}$ Q 16. { (x,y) : $x^2 - x = 0$ } $\subset \{(x, y) : x - 1 = 0\}$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Find the subsets of Q 2. $\{1,2,\phi\}$ ϕ , {1}, {2}, {1,2}, { ϕ }, { ϕ ,1}, { ϕ ,2}, {1,2, ϕ } Q 4. ϕ The subset of ϕ is ϕ Q 14. R^2 is the subset of R^3 **False** $R^2 = \{(x, y) : x \in R, y \in R\},\$ $R^3 = \{(x, y, z) : x \in R, y \in R, z \in R\}$ Q 16. { (x,y) : $x^2 - x = 0$ } \subset { (x, y) : x - 1 = 0 } As the value of x in the first set is 0 and 1 whereas in the second set it is just 1, so the above statement is **False**

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Find the indicated set Q 6: $P(\{1,2\})X P(\{3\})$

Find the indicated set Q 6: $P({1,2})X P({3})$ Solution

Find the indicated set Q 6: $P(\{1,2\})X P(\{3\})$ Solution $P(\{1,2\})=\{\phi,\{1\},\{2\},\{1,2\}\}$ $P(\{3\})=\{\phi,\{3\}\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Find the indicated set Q 6: $P(\{1,2\})X P(\{3\})$ **Solution** $P(\{1,2\})=\{\phi,\{1\},\{2\},\{1,2\}\}$ $P(\{3\})=\{\phi,\{3\}\}$ So the required solution is $\{(\phi,\phi),(\phi,\{3\}), (\{1\},\{3\}), (\{1\},\phi), (\{2\},\{3\}), (\{2\},\phi), (\{1,2\},\phi), (\{1,2\},\{3\})\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

1. Section 1.1 Q 48.

Sketch the graph $\{(x, y) : x, y \in R, y > 1\}$ Solution

As y can take any value and \times can take only values greater than 1. So the graph can be as follows

2. Section 1.2 Q 20 Sketch the graph $\{(x, y) \in R^2 : x^2 + y^2 \le 1\}X[0, 1]$ Solution Here the first set represents a circle with radii less than or equal to 1. When we find its cross product with [0,1], it represents the set

 $\{(x, y, z) : (x, y) \in R^2 : x^2 + y^2 \le 1, z \in [0, 1]\}$. So we can say that it gives rise to a solid cylinder with length 1. Thus the resulting graph is

3. Section 1.5 (5)

Sketch the sets X=[1,3] X [1,3] and Y=[2,4]X[2,4] on the plane R^2 . On separate drawings shade X \cup Y, X \cap Y, X-Y, Y-X

 [1,3]X[1,3] means (x,y) such that its x coordinates can take all real values from 1 to 3 and so can y. So the resultant graph is a square with vertices (1,1),(1,3),(3,1),(3,3).

Similarly [2,4]X[2,4] will have the graph as follows:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So $X \cup Y$ is denoted by the blue colored portion:

 $X \cap Y$ is denoted by the grey portion

X-Y is denoted by the grey portion.

Y-X is denoted by the grey portion

4. Section 1.5 Q 8

Sketch the sets $X = \{(x, y) : x, y \in R, X^2 + y^2 \le 1\}$ and $Y = \{(x, y) : x, y \in R, 0 \le y \le -1\}$ on the plane R^2 . On separate drawings shade $X \cup Y, X \cap Y$, X-Y, Y-X **Solution**: The graph of X will represent a circle with radius equal to 1

The graph of Y is as follows

So $X \cup Y$ is denoted by the blue colored portion:

 $X \cap Y$ is denoted by the grey portion

X-Y is denoted by the grey portion.

Y-X is denoted by the blue portion

5. Section 1.7 Q 5.

Draw Venn diagrams for $A \cup (B \cap C)$ and $(A \cup B) \cap (A \cup C)$. Based on your drawings, do you think $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. Solution

Thus from above we see that the distributive law is true .

Confusions on the following questions during the tutorial are cleared in the text:

Section 1.3 $[Q14]R^2$ is the subset of R^3 This is false, the reason is what we discussed in the tutorial

Section 1.8 [Q13] The answer is correct. The union part is true but the intersection part is false. For the intersection part, make a counter example. For example J={1,2}, I{1,2,3}, A1={1,2}, A2={2,3}, A3={1,3} The the intersection of all the J sets(that is farshow are arrest and arrest arrest

the intersection of A1 and A2) would be $\{2\}$ and the intersection of all the I sets(that is the intersection of A1, A2 and A3) would be empty set. So false.

For the quiz coverage, the professor has already announced in the lecture.