
Chapter 1: Sets

Definition of sets and their representations
A set is a collection of distinct objects. For example

• Set of students in a class

• Set of alphabets in English language

Each object of a set is called its element. A set can be represented in a variety of
ways.

1. A set can be described by enclosing a list of distinct elements in braces.
For example, {2,4,6,8} is a set containing 4 elements, the numbers 2, 4, 6
and 8. Some sets have infinitely many elements. For example, consider the
collection of all integers,

{....,−4,−3,−2,−1,0,1,2,3, ....}

Here the dots indicate a pattern of numbers that continues forever in both
the positive and the negative directions. A set is called an infinite set if it
has infinitely many elements; otherwise it is called a finite set.

2. A special notation called set-builder notation is used to describe sets that
are too complex to enumerate between the braces. Consider the infinite
set of even integers E = {....,−6,−4,−2,0,2,4,6, ...}. In the set-builder
notation, this set can be written as

E = {n|n is an even integer } or E = {n : n is an even integer}

Examples:
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• {n|n is a prime integer}= {2,3,5,7,11,13,17, ...}
• {x|x is an integer |x|< 4}= {−3,−2,−1,0,1,2,3}

3. A set can be described by combining other sets using connectives defining
particular set operations such as union (∪), intersection (∩), etc. Suppose
A = {1,2,3,4,5,6} and B = {0,2,4,6,8}. Then the sets C = A∪ B and
D = A∩B are

C = {0,1,2,3,4,5,6,8} and D = {2,4,6}

4. A set can be defined by a recursive definition that identifies a few item
explicitly, and then provides rules on how to obtain the other members from
the ones already defined. Here is an example of defining the set B of all
binary strings.

‘0’ ∈ B; ‘1’ ∈ B
B = {‘0’‖u, ‘1’‖u : u ∈ B}

Here ‖ is used to denote concatenation of strings.

This approach will be explained in more detail later in the course.

We generally use capital letters to denote sets and lowercase letters to indicate the
elements of a set.

Sets need not have just the numbers as elements. The set B = {T,F} con-
sisting of two letters, representing “true” and “false”. The set V = {a,e, i,o,u}
consists of lowercase vowels. The set D = {(0,0),(1,0),(1,1),(0,1)} contains
the four corner points of a unit square in the x− y coordinate plane. Thus (0,0)
is an element of D which is written as (0,0) ∈ D. Similarly, (1,1) ∈ D etc., but
(1,2) /∈ D. Consider another set A = {1,{1},{2}}. Here 1 and {1} are two dis-
tinct elements of A. Therefore 1 ∈ A, {1} ∈ A, but 2 /∈ A. Other examples of sets
are A = {{1,2},{3,4,5,6},{7}}. B = {a,{a},{{a}}}, C = {X ∈ A : |X |< 2}.

The symbol {x,y} denotes the set containing two elements x and y. In this
case, the set {x,y} is sometimes called unordered set since {x,y} and {y,x}
represent the same set. An ordered pair is a list (x,y) of two things x and
y, enclosed in parentheses and separated by a comma. If x and y are distinct,
(x,y) 6= (y,x). We can generalize the above idea by writing (x1,x2, ...,xn) as an
ordered list (called ordered n-tuple) consisting of n elements x1,x2, . . . ,xn. Note
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that {(1,2),(2,1),(2,2)} is the set containing three elements where each element
is an ordered pair.

The cardinality or size of a set X is the number of elements X has. This
number is denoted by |X |. If the set is infinite, the cardinality is infinite.

The empty set is the set that has no elements. We denote it as Φ. So Φ = {}.
Observe that |Φ|= 0.

There are some sets or types of sets that come up so often that they are given
special names and symbols.

• The natural numbers: N= {1,2,3,4,5,6, ...}

• The integers: Z= {....,−3,−2,−1,0,1,2,3,4, ...}

• The rational numbers: Q= {x : x = m
n , where m,n ∈ Z and n 6= 0}

• The real numbers: R (set of all real numbers on the number line) (note:√
2 ∈ R)

There are some other special sets that you will recall. Given two real numbers
x,y ∈ R with a ≤ b, we can form various intervals on the number line. A few of
them are given below.

• Closed interval: [a,b] = {x ∈ R : a≤ x≤ b}

• Open interval : (a,b) = {x ∈R : a < x < b} (the endpoints are not elements
of the set)

• Half open interval: [a,b) = {x ∈ R : a≤ x < b}

Try the problems in section 1.1 of the text.
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Set theory includes the following definitions:

Subsets: Set A is a subset of another set B if every element of A is also an element
of B. We write A⊆ B. We write A 6⊆ B if A is not a subset of B. In this case
there exists at least one element of A which is not an element of B. Note
that Φ⊆ A and A⊆ A for any set A. A few more samples are given below.

• {2,3,7} ⊆ {2,3, ,4,5,6,7}
• {2,3,7} 6⊆ {2,4,5,6,7}
• {2,3,7} ⊆ {2,3,7}
• N⊆ Z⊆Q⊆ R

Proper subset: A is a proper subset of B, denoted by A⊂ B, if A is a subset of B
and |A|< |B|. Thus Φ⊂ A and A 6⊂ A for any non-empty set A.

Equal sets: Sets A and B are equal if A⊆ B and B⊆ A.

Power set: If A is a set, the power set of A is another set, denoted as P(A), and
defined to be the set of all subsets of A. In symbols, P(A) = {X : X ⊆ A}.
For example, suppose A = {1,2,3}. Then

P(A) = {Φ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.

Note that the cardinality (size) of the set P(A) is 2|A| for any finite set A.
We will see this in detail later. Observe one fact. We have seen that P(A) =
{Φ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} where A = {1,2,3}. Sup-
pose B = {1,2,3,4}. Clearly, all the subsets of A are also the subsets of B.
Thus we need to add, on top of P(A), all the subsets of B that contain the
element 4. This is easy to achieve by listing the elements of P(B).

P(B) = { Φ, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}
{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}}

Clearly, |P(B)|= 2|P(A)|.

Try the problems in sections 1.3 and 1.4 of the text.
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Operations on sets
Let A and B be two arbitrary sets.

Union: The union of A and B is the set A∪B = {x : x ∈ A or x ∈ B}.

Intersection: The intersection of A and B is the set A∩B = {x : x ∈ A and x ∈ B}.

Difference: The difference of A and B is the set A−B = {x : x ∈ A and x /∈ B}.

Symmetric Difference (page 136 of Grimaldi’s book) The symmetric difference
of A and B is the set A4 B = {x : (x ∈ A and x /∈ B) or (x /∈ A and x ∈ B)}.
It can be shown that A4 B = (A−B)∪ (B−A).

Example 1.5 of the text:

Suppose A = {a,b,c,d,e}, B = {d,e, f} and C = {1,2,3}.

1. A∪B = {a,b,c,d,e, f}
2. A∩B = {d,e}
3. A−B = {a,b,c}
4. B−A = { f}
5. A∩C = Φ

6. A−C = A

7. (A∩C)∪ (A−C) = {a,b,c,d,e}

Example 1.6 of the text:

5



Complement: The definition requires the concept of universal set. The universal
set is the set of all elements from which the members of each set must be
chosen. Consider the set of prime numbers P = {2,3,5,7,11,13, ...}. We
can easily claim that 422 /∈ P. We have an unstated assumption that P⊆ N
because N is the most natural setting in which to discuss the prime numbers.
In this context N is the universal set.

The complement of a set A with respect to the universal set U is the set
A =U−A.

The complement of P defined above is P = {1,4,6,8,9,10, ....}. Thus P is
the set of composite numbers (which can be factored) and 1.

Some identities: Let A and B be two arbitrary sets. We can the show that
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1. A∪B = B∪A

2. A∩B = B∩A

3. A−B 6= B−A

4. if A∩B = φ , then A and B have no elements in common.
Thus | A∪B |=| A |+ | B |.

5. If B⊆ A then

(a) A∪B = A
(b) A∩B = B
(c) A⊆ B

Try the problems in sections 1.5 and 1.6 of the text.
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Venn Diagram

This concept was introduced by John Venn. It is the diagramatic representation
of sets. The universal set is represented by a rectangle and the sets are represented
by circles inside the rectangles.

In the above Diagrams the circles represent two sets having some elements in
common Set operations in Venn Diagram: Let A and B be two arbitrary sets.
Let U be the universal set.

• A∪B: The shaded part represents the union.

• A∩B: The shaded part represents the intersection.
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• A−B: the shaded part represents the difference.

• A4B: the shaded part represents the symmetric difference.

• A =U−A: The shaded part represents the complement.

• B⊆ A

• A = B
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Try the problems in section 1.7 of the text.
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Indexed Sets

Suppose we are interested in working with three sets. Instead of using A, B
and C as the names of the set, we can use indexed sets A1, A2 and A3. This way
we can label many sets in consistent manner.

Generalized Union and Intersection: Suppose A1,A2, ...,An are sets. Then

A1∪A2∪A3∪ . . .∪An = {x : x ∈ Ai for at least one set Ai, for 1≤ i≤ n},
A1∩A2∩A3∩ . . .∩An = {x : x ∈ Ai for every set Ai, for 1≤ i≤ n},

We can write

n⋃
i=1

Ai = A1∪A2∪A3∪ . . .∪An;
n⋂

i=1

Ai = A1∩A2∩A3∩ . . .∩An

Other ways to write the above sets:

⋃
i∈{1,2,...,n}

Ai = A1∪A2∪A3∪ . . .∪An;
⋂

i∈{1,2,...,n}
Ai = A1∩A2∩A3∩ . . .∩An

⋃
1≤i≤n

Ai = A1∪A2∪A3∪ . . .∪An;
⋂

1≤i≤n

Ai = A1∩A2∩A3∩ . . .∩An

⋃
i∈I

Ai = A1∪A2∪A3∪ . . .∪An;
⋂
i∈I

Ai = A1∩A2∩A3∩ . . .∩An; I = {1,2,3, ...,n}

These definitions can be applied to infinite collections of sets as well. For
instance suppose that Bn = {kn : k = 2,3,4, ...} (set of multiples of n greater than
n). Then

∞⋃
n=2

Bn = B2∪B3∪B4∪ ....= {4,6,8,9,10,12,14,15, ...}

which is the set of composite positive numbers (numbers which can be factored).

Try the problems in section 1.8 of the text.
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Manipulations of sets

Notice: This topic is not covered in the text. The topic is covered in Grimaldi’s
book (Section 3.2) and in Rosen’s book (section 2.2). One way of manipulating
sets is to express them in different ways. The purpose may be to simplify the rep-
resentation, or to compare two different representations. Laws of set theory are
established to facilitate the manipulations of sets. These laws allow transforma-
tion of compound expressions of sets into different but equivalent expressions.

Laws Of Set Theory

1. Double Complement

A = A

2. De-Morgan’s Law

(a) A∪B = A∩B

(b) A∩B = A∪B

3. Commutative Law

(a) A∪B = B∪A

(b) A∩B = B∩A

4. Associative Law

(a) A∪ (B∪C) = (A∪B)∪C

(b) A∩ (B∩C) = (A∩B)∩C

5. Distributive Law

(a) A∪ (B∩C) = (A∪B)∩ (A∪C)

(b) A∩ (B∪C) = (A∩B)∪ (A∩C)

6. Idempotent Law

(a) A∪A = A

(b) A∩A = A

7. Identity Law
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(a) A∪φ = A

(b) A∩φ = φ

8. Inverse Law

(a) A∪A =U

(b) A∩A = φ

9. Dominating Law

(a) A∪U =U

(b) A∩φ = φ

10. Absorbtion Law

(a) A∪ (A∩B) = A

(b) A∩ (A∪B) = A

A Venn diagram is simply a graphical visualization of membership associa-
tion. This allows us to understand certain situations. Clearly, Venn diagram looses
its effectiveness when the number of involved sets is more than 3. All the above
mentioned laws can be established using element arguments. Below formal proofs
of the second of DeMorgan’s Laws and the first Distributive Law are provided.

Showing A∩B = A∪B (DeMorgan’s Law)

The argument consists of two parts. We first show that A∩B ⊆ A∪B, and
then show that A∪B ⊆ A∩B. The result then follows from the definition of set
equality.

Part 1: Let x be an arbitrary element of A∩B. This means that x /∈ A∩B, which
implies that x /∈ A and x /∈ B. Therefore, x ∈ A or x ∈ B, that is x ∈ A∪
B. Thus we see that every element of A∩B is an element of A∪B. The
definition of subset implies that A∩B⊆ A∪B.

Part 2: Let an arbitrary element x ∈ (A∪B). This means that x ∈ A or x ∈ B,
which implies that x /∈ A and x /∈ B. This implies that x /∈ A∩B. Therefore,
x ∈ A∩B. The definition of subset implies that A∪B ⊆ A∩B. Notice that
the arguments for the second part are the same as the first part, except in
reverse order.
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Showing A∪ (B∩C) = (A∪B)∩ (A∪C) (Distributive Law)

Again the arguments consist of two parts. We first show that A∪ (B∩C) ⊆
(A∪B)∩ (A∪C), and then show that (A∪B)∩ (A∪C)⊆ A∪ (B∩C).

Part 1: Let x be an arbitrary element of A∪ (B∩C). This means that x ∈ A or
x ∈ B∪C. If x ∈ A, x ∈ (A∪B) and x ∈ (A∪C). This implies that x ∈
(A∪B)∩ (A∪C). Therefore, when x ∈ A, A∪ (B∩C)⊆ (A∪B)∩ (A∪C).

If x ∈ B∩C, x ∈ B and x ∈ C. This implies that x ∈ (A∪ B)∩ (A∪C).
Therefore, when x /∈ A, then also A∪ (B∩C)⊆ (A∪B)∩ (A∪C).

Part 2: Let x be an arbitrary element of (A∪B)∩(A∪C). Therefore, x∈A∪B and
x∈A∪C. If x∈A, x∈A∪(B∩C). If x /∈A, x∈B and x∈C. This means that
x∈B∩C, that is, x∈A∪(B∩C). Therefore, (A∪B)∩(A∪C)⊆A∩(B∪C).

The element arguments given here have four components. First choose the
element, then apply the definitions which is then followed by drawing inferences.
The last component is about reaching the conclusion.
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The Cartesian Product
The Cartesian product of two sets A and B is another set, denoted as A×B

and defined as A×B = {(a,b) : a ∈ A,b ∈ B}.
Note that generally A×B is not the same as B×A.
The name “Cartesian product” comes from a geometric interpretation. If for

instance A = B =R, A×B can be interpreted as all the points in the plane (Fig. (a)
below), since a point in the plane is uniquely described by an ordered pair of real
numbers, namely it Cartesian coordinates - x-coordinate and y-coordinate. Figure
(b) is A×B where A = R and B = N. Figure (c) is N×N.

The Cartesian product of a set with itself, i.e. A×A, may also be denoted by
A2.

Try the problems in section 1.2 of the text.

Sections 1.9 and 1.10 of the text will be skipped for
the time being. We will visit them later.
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