Relations (Chapter 11)

A few slides have been taken from the sites
http://cse.unl.edu/~choueiry/S13-235/

http://www.math-cs.gordon.edu/courses/
mat231/notes.html
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Relations

e Suppose A ={1,2,3,4,5,6}
* Considertheset L={(x,y):x,yEAand x <y}

* L=1(1,2),(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5),
(2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)}
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Relations

e Suppose A ={1,2,3,4,5,6}

e Consider the set D={(x,y): x,y € A and x|y}
 D={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4)

(2,6), (3,3), (3,6), (4,4), (5,5), (6,6)}



Relations

Suppose A ={1,2,3,4,5,6}

Consider the set L={(x,y): x,y € Aand x <y}

L=1{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6),
(3,4), (3,5), (3,6), (4,5), (4,6), (5,6)}

Consider the set D={(x,y): x,y € A and x|y}

D={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4) (2,6),
(3,3), (3,6), (4,4), (5,5), (6,6)}

The symbol < is usually used to denote the relationship
between the elements of L.

Similarly, the symbol | is generally used to denote the
relationship between the elements of A.

L, DC AxA.



Relation of a set

* Defn: Arelation R on aset Ais asubsetRC A xA.
We often abbreviate the statement (x,y) € R as xRy.
The statement (x,y) & R is abbreviated as xRy.



Relation of a set

* Defn: Arelation R on aset Ais asubsetRC AxA.
We often abbreviate the statement (x,y) € R as xRy.
The statement (x,y) & R is abbreviated as xRy.

Suppose A ={1,2,3,4}. The following are all relations on A:
o R={(1,1),(2,2),(3,3),(4,4)}
o $={(1,1),(1,3),(2,2),(2,4),(3,1),(3,3),(4,2),(4,4)}
o T ={(3,4)}
o U=1{(1,4),(2,3),(2,1)}

since each one is a subset of A x A.

* Relation may or may not have meaning associated
with them



Examples of Relations

We have seen that < relation on A ={1,2,3,4,5,6} is given
by

— L=1{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4),
(3,5), (3,6), (4,5), (4,6), (5,6)}

We have also seen that | relation on A ={1,2,3,4,5,6} is
given by

— D={(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4) (2,6), (3,3),
(3,6), (4,4), (5,5), (6,6)}

LM D={(1,2), (1,3), (1,4), (1,5), (1,6), (2,4), (2,6), (3,6)}.
LN D={(x,y)::x,y€E Aand x<yand x|y}
Note that L M D is a relation.



Relations

Binary relations R defined on a set A
RCAXA:n=2

RC RxR:real plane

R € R* x R*: Interior of the first quadrant

(a,b) € R is an element of R.

— In the text infix notation aRb is also used.



Relations as Subsets

Question : Suppose we have relations on {1,2} given
by R ={(1,1), (2,2)}, $ ={(1,1),(1,2)}. Find:

ne union R US

ne intersection RM' S

ne symmetric difference R @S
ne difference R-S

ne complement of R

[
—4 4 4 4 -



Relations as Subsets

Answer: (R=1{(1,1),(2,2)}, S=1{(1,1),(1,2)})

* RUS={(1,1),(1,2),(2,2)}
* RNS={(1,1)}

* R®S={(1,2),(2,2)}

* R-S={(2,2)}

* R={(1,2),(2,1)}




Representing Relations

* There are multiple ways to represent relations.

1. We have already seen that relations can be enumerated,
i.e. they are listed as sets.



Representing Relations

* There are multiple ways to represent relations.

1. We have already seen that relations can be enumerated,
i.e. they are listed as sets.

2. Adirected graph can represent a relation R on A. Each
node (vertex) in the graph represents an element of A
and an arrow from vertex x to vertex y indicates (x,y) € R.
For example, using set A and relations L and D from the
previous slides, we have

L: “less than” D: “divides”
2 —> 3 Q’ 0

LA, LA
\

N
X &

6 <——5 6 5
Y N




Representing Relations

3. ArelationRonA={a,, a,, ..., a,,} can be represented
by the zero-one matrix Mg = [m;] with
m; = 1if (a, a;) €ER, and
m; =0if (a;, ;) & R.

Note that for creating this matrix we first need to determine
the elements that represent the rows. This mapping is
arbitrary.



Representing Relations

Consider the relation L considered earlier.

L=1(1,2),(1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5),
(2,6), (3,4), (3,5), (3,6), (4,5), (4,6), (5,6)}

el e R e R e R e R e
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Representing Relations

Consider the relation D considered earlier.

D=1(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,4) (2,6),
(3,3), (3,6), (4,4), (5,5), (6,6)}

d. 2. 3. 4. 5. .6

1: 1 1 1 1 1 1

2: 0 1 0 1 O 1
D=|3: 0 0 1 0 0 1
4: 0 0 O 1 0 O

5: 0 0 0 0 1 O

6: 0 O 0 0 O 1




Questions:

* Consider a set A with n elements. How many different
relations are there on A?

 Q.6: Congruence modulo 5 is a relation on set N (set of
positive integers). Let R be the relation.
— R={(a,b) | a, bENand a=b (mod 5)}
— R={(0,0), (0,5), (0,10), (1,6), (1,112), ...}

In the following exercises, subsets R of R2 =R xR or Z2=7Z x Z are indicated by
gray shading. In each case, R is a familiar relation on R or Z. State it.

Q000 Q 00 o0 0O 0 @o Q@ 000
0@ 0o o O 0 0o
Q@ 0o 00 0@ 0 o0

o Q@ 000

* Q

12, 4 13.



Properties of Binary Relations

* Let R be a binary relationon A (i.,e. RC A xA)
— Ris reflexive if for all a €A, (a,a) €ER.
— R is symmetric if (a,b) €R, (b,a) €ER.
— Ris transitive if (a,b) €R, (b,c) €R, then (a,c) €R.
— R is antisymmetric if (a,b) ER and (b,a) ER, a =Dh.



Properties of Relations in Graphs

* How do each of the properties of relations show up in
graphs of relations?
 The graph of a reflexive relation will have a loop edge at

each node.



Properties of Relations in Graphs

* How do each of the properties of relations show up in
graphs of relations?
* The graph of a reflexive relation will have a loop edge at

each node. O

X "

* The graph of a symmetric relation will not have an edge
from x to y unless there is also an edge from y to x.



Properties of Relations in Graphs

* The graph of an antisymmetric relation will not have
any symmetric pairings. If there is an edge from x to y,
there cannot be an edge fromy to x.

* For A={1,2,3,4,5,6}, R={(1,1), (2,2), (3,3), (4,4), (5,5),
(6,6)} is a relation which is reflexive, symmetric and
antisymmetric.

* A graph is symmetric if there is no antisymmetric edge.
Similarly, a graph is antisymmetric if there is no
symmetric edge.



Properties of Relations in Graphs

 The graph of a transitive relation will have an edge from
x to z whenever there is an edge from x to y and an
edge fromy to z.




Examples

Consider the following relations on the set {1,2,3,4}. Determine which
ones are reflexive, symmetric, antisymmetric or transitive.

) )

o R5 —
{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)}
© Rg = {(3a4)}



Ry

Ry = {(17 1)7 (17 2)3 (27 1)a (27 2)7 (37 4)7 (43 1)7 (4a 4)}

St
—3

Not reflexive since (3, 3) is not in Ry (no loop edge on 3).
Not symmetric since (3,4) € Ry but (4,3) ¢ R;.
Not antisymmetric since both (1,2) and (2,1) are in R;.

Not transitive because (3,4) and (4,1) are both in Ry but (3,1) (a
“short-cut” edge) is not.



R,

Ry = {(17 1)7 (17 2)7 (27 1)}

e

@ O

o Not reflexive; (2,2) ¢ R».
@ Symmetric; there are no non-symmetric connections.

@ Not antisymmetric.

o Not transitive because (2,1) and (1,2) are both in R, but (2,2) is
not.



R3

Rs ={(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)}

—b
3

Reflexive.
Symmetric.

Not antisymmetric.
Not transitive; (4,1),(1,2) € R3 but (4,2) ¢ Rs.



R4
Ry = {(27 l)a (37 1)7 (37 2)7 (47 1)7 (47 2)7 (4= 3)}

Q—2
S

Not reflexive.
Not symmetric.

Antisymmetric; no symmetric pairs.

Transitive.



Rs

Rs = {(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)}

>

Reflexive.

)
@ Not symmetric.

@ Antisymmetric; no symmetric pairs.
)

Transitive.



RS
Rs ={(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4), (4,4)}
0 i
This is the “less than or equal
o Reflexive. to” relation on A={1,2,3,4}

@ Not symmetric.

&l w — I\) )

@ Antisymmetric; no symmetric pairs.

@ [ransitive.



Re = {(37 4)}

Not reflexive.
Not symmetric.

Antisymmetric.

Transitive.

@®—O



Examine the following table:

Relationon Z | < < = | Jf £

Reflexive no yes yes yes no no
Symmetric | n0o no yes no no yes
Antisymmetric | yes yes yes yes no no
Transitive |yes yes yes yes no no




Visualizing the Properties

A: Reflexive. Upper-Left corner to Lower-
Right corner diagonal is all 1’s. EG:

Mg =

Q: How about if R is symmetric?



Visualizing the Properties

A: A symmetric matrix. i.e., flipping across
diagonal does not change matrix. EG:




Visualizing the Properties

* Not symmetric

M, =\

o O O O
o O O O

* This matrix is also not antisymmetric



Example 11.8

* Proposition Let n € N. The relation = (mod n) on the
set Z is reflexive, symmetric and transitive.

(It will be proved in the class)



Counting the number of relations

Consider set A where |A|=n.

# of relations on A =

# of reflexive relations on A =

# of symmetric relations of A=

# of antisymmetric relations on A =
# of transitive relations on A = hard



Counting the number of relations

Consider set A where |A|=n.

# of relations on A = 21"

# of reflexive relations on A = 2in"™n -n}

# of symmetric relations of A= 2{n(n+1)/2}

# of antisymmetric relations on A = 3{n(n-1)/2}7n
# of transitive relations on A = hard



Practice problems

e Section11.0:1,3,4,5,8
e Section11.1:2,3, 7,38, 10, 13, 15



Equivalence Relation

Consider the set of every person in the world

Now consider a R relation such that (a,b)&ER if a and
b are siblings.

Clearly this relation is

— Reflexive

— Symmetric, and

— Transitive

Such as relation is called an equivalence relation

Definition: A relation on a set A is an equivalence
relation if it is reflexive, symmetric, and transitive




Equivalence relation on set A={-1,1,2,3,4}

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=) SRR {-1}, {1}, {2},
R1={(-1,-1),(1,1),(2,2),(3,3),(4,4)} B D {3}, {4}
“has same parity as” DD

‘ o,
Rz ={(-1,-1),(1,1),(2,2),(3,3),(4,4), ‘. . {-1,1,8}, {2,4}

(_ 1’ 1)’(1’ _1)’(_1, 3)’ (3’ _1),
(1,3),(3,1), (2,4),(4,2)} & O

“has same sign as”

R3={(-1,-1),(1,1),(2,2),(3,3),(4,4),
1,2),(2,1),(1,3),(3,1),(1,4),(4, 1),
(2,3),(3,2),(2,4),(4,2),(1,3),(3, 1)}

{-1}, {1,2,3,4}

“has same parity and sign as”
{-1}, {1,3}, {2,4}
R4 ={(-1,-1),(1,1),(2,2),(3,3),(4,4),

(1,3),(3,1),(2,4),(4,2)}

Figure 11.2. Examples of equivalence relations on the set A ={-1,1,2,3,4}



Equivalence Relations: Example 1

 Example: Let R={ (a,b) | a,b&ER and a<b}
— Is R reflexive?
— Is it transitive?
— Is it symmetric?

No, it is not. 4 isrelated to 5 (4 < 5)
but 5 is not related to 4

Thus R is not an equivalence relation



Equivalence Relations: Example 2

 Example: Let R={ (a,b) | a,b&Z and a=b}
— Is R reflexive?
— Is it transitive?
— Is it symmetric?
— What are the equivalence classes that partition Z?



Equivalence Relations: Example 3

* Example: For (x,y),(u,v) ER?, we define
R={ ((x,y),(u,v)) | (x*+y*=u?+v?}
 Show that R is an equivalence relation.

 What are the equivalence classes that R
defines (i.e., what are the partitions of R?)?



Equivalence Relations: Example 3

* Example: For (x,y),(u,v) ER?, we define
R={ ((x,y),(u,v)) | x*+y*=u’+v?}

Two points are related if they lie on a circle with the
center at the origin.

 Show that R is an equivalence relation.

 What are the equivalence classes that R
defines (i.e., what are the partitions of R?)?

(concentric circles with the center at the origin)



Equivalence Class (1)

* Definition: Let R be an equivalence relation on a set
A and let a €A. The set of all elements in A that are
related to a is called the equivalence class of a. We
denote this set [a], or just [a] if it is clear what R is.

[a]l, ={s | (a,5)ER, s€EA]}



Some examples:

@ Suppose R = {(a, b) : a and b were born in the same month} and is
defined on the set of people in this room. Then

[a] = {b: b was born in the same month as a}.

e Suppose A ={1,2,3,4} and
R=1{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)}. We can
list the equivalence class for each element of A as

[1] — {132}a [2] — {la 2}a [3] — {37 4}a [4] — {374}



Equivalence relation on set A={-1,1,2,3,4}

Relation R Diagram Equivalence classes
(see next page)

“is equal to” (=) SRR {-1}, {1}, {2},
R1={(-1,-1),(1,1),(2,2),(3,3),(4,4)} B D {3}, {4}
“has same parity as” DD

‘ o,
Rz ={(-1,-1),(1,1),(2,2),(3,3),(4,4), ‘. . {-1,1,8}, {2,4}

(_ 1’ 1)’(1’ _1)’(_1, 3)’ (3’ _1),
(1,3),(3,1), (2,4),(4,2)} & O

“has same sign as”

R3={(-1,-1),(1,1),(2,2),(3,3),(4,4),
1,2),(2,1),(1,3),(3,1),(1,4),(4, 1),
(2,3),(3,2),(2,4),(4,2),(1,3),(3, 1)}

{-1}, {1,2,3,4}

“has same parity and sign as”
{-1}, {1,3}, {2,4}
R4 ={(-1,-1),(1,1),(2,2),(3,3),(4,4),

(1,3),(3,1),(2,4),(4,2)}

Figure 11.2. Examples of equivalence relations on the set A ={-1,1,2,3,4}



Equivalence Class (2)

The elements in [a], are called representatives of the
equivalence class

Theorem: Let R be an equivalence class on a set A.
The following statements are equivalent

1. aRb (i.e. (a,b) € R)

2. [a]=[b]

3. [a] N [b] =

Proof: We first show that (1) = (2)



Equivalence Class (3)

* We will prove that [a] = [b] by showing that [a] C [b]
and [b] C [a].
— Suppose ¢ € [a].
— Thus (a,c) €R.
— Because (a,b) € R, and R is symmetric, therefore (b,a) € R.

— Thus (b,a) € R and (a, c) € R, and R is transitive, therefore
(b,c) € R.

— Because of the symmetric property of R, (c,b) € R as well.
— This implies that c € [b].

— Therefore [a] C [b].

— The proof for [b] C [a] is similar.

— Hence [a] = [b] .



Equivalence Class (4)

* (2)=3):[al=[b]=[a] N [b] = J
— Let a, b € A such that [a] = [b]. Since a € [a], we know that
it also belongs to [b].
— This means that a € [a] N [b].

— This implies [a] N [b] # &



Equivalence Class (5)

* (3) = (1):[a] N [b] = T = (a,b) ER.
— Let c & [a] M [b] . c exists since [a] N [b] is non-empty.

— Therefore, c € [a] and ¢ € [b] Since a € [a], we know that
it also belongs to [b].

— Thus (c,a) € R and (c,b) €R.
— Ris symmetry: (a,c) € R and (b,c) €R.
— R is transitive: (a,b) € R.



Partitions (1)

* Equivalence classes partition the set A into
disjoint, non-empty subsets A, A,, ..., A,

* A partition of a set A satisfies the properties
— Uk_ A=A
—A N A =0 foriz]
— A = O foralli



Partitions (2)

 Example: Let R be a relation such that (a,b)ER if a
and b live in the same province/ territories, then R is
an equivalence relation that partitions the set of
people who live in Canada into 13 equivalence

classes



Partitions (2)

e Theorem:

— Let R be an equivalence relation on a set S. Then the
equivalence classes of R form a partition of S.

— Conversely, given a partition A, of the set S, there is a
equivalence relation R that has the set A, as its equivalence
classes. (An example is shown in the class.)



Partitions: Visual Interpretation

 Example: Let A={1,2,3,4,5,6,7} and R be an
equivalence relation that partitions A into A,;={1,2},
A,={3,4,5,6} and A,={7}
— Draw the 0-1 matrix
— Draw the digraph
— (It will be shown in the class.)



Relations between the sets

* The relations we have seen so far have been

relations on a set. We can also define relations
between the sets.

e Definition: Areal R fromaset AtosetBisa
subset of AxB,i.e RC AxB.



Relations between the sets

 Example: Suppose A =1{1,2} and
B=2(A)={9,{1},{2},{1,2}}.
* LetR={(1, {1}), (2,{2}), (1, {1,2}), (2, {1,2})} & AxB
be a relation from A to B.

e The relation R is the familiar relation &.

A B
ST
1eq—be {1}
2-\§§ {2}
Dby

Figure 11.3. A relation from A to B



Partial Orders
(Section 9.6 of Rosen’s text)

* Definition: A relation R on a set A is a partial order if
it is reflexive, antisymmetric and transitive.

 Example: Let R be a relation on N such that (a,b) €ER
if and only if a £ b. It can be shown that R is a partial

order.
* We often use the symbol = for a partial order.



Posets

* Definition: A set A together with a partial order
relation R is called a partial ordered set or poset and
is denoted by (A,R).

 Example: Suppose R is the relation ‘divides’. We can
show that (N, R) is a poset.



Comparability and total orders of a
poset (S,R)

e Definition: The elements a and b of a poset (S,R) are
called comparable if either (a,b) €ER or (b,a) €R.
Note that both cannot belong to R. When a and b are
elements that neither (a,b) ER nor (b,a) ER,aand b
are called incomparable.

 Example: Consider the poset (Z,R) where Z is the set
of integers and R indicates the relationship divide’.
— 3 and 6 are comparable
— 3 and 5 are not comparable.



Comparability and total orders of a
poset (S,R)

* Definition: If (S,R) is a poset, and every two elements
a and b of S are comparable, (S,R) is called a totally
ordered set, and R is called a total order.

 Example: (Z, <) is a totally ordered set.



Hasse Diagram to represent posets.

Consider the partial order on § = {1,2,3} given by (a,b) € R if a < b.
We could construct a directed graph of this relation as shown below.

25




Hasse Diagram to represent posets.

Original graph

Partial orders are

Partial orders are

reflexive so we can transitive so we

omit loop edges

can omit ‘‘short
cut” edges

)]Q)\J

If we always draw
arrows up, we can
omit arrowheads.
This is called a

Hasse Diagram.

:j 3 )




Hasse Diagram Example
Exercise: Construct the Hasse Diagram for ({2, 5, 8, 10,20}, |).

20




Hasse Diagram Example

Exercise: Construct the Hasse Diagram for ({2,5,8,10,20},|).

The maximal elements
of this poset are the
“tops;” In this case

(8,20}

The minimal elements
20 are the “bottoms;” in
this case {2,5}.




Hasse Diagram Example

Exercise: Construct the Hasse Diagram for ({2, 5,8, 10,20}, |).

The maximal elements
of this poset are the
“tops;” In this case

{8,201,

If there is a single
maximal element it is
the greatest element.
If there is more than one
maximal element then
there is no greatest
element.

The minimal elements
are the “bottoms:” in

this case {2,5}.

If there is a single
minimal element it is
the least element. If
there is more than one
minimal element then
there is no least
element.



Practice problems:

* Show that (P(A), ©) is a poset. Draw the Hasse
diagram of (P({a,b,c}, ). Determine the greatest
and the least elements of the poset.

« Suppose Ris definedas: R={(a,b) | a, b&E Z and
a+b is even}.
— Is (Z, R) a poset?
* Consider the “divides’ relation on the set A =(1,2,2?,
23, ..., 2"}
1. Prove that this relation is a total order on A.
2. Draw the Hasse diagram for this relation when n=3.

* Problems from Rosen Text (9.6): 3, 7, 9, 14, 15, 33
(a), (b), (c), (d), 41.



Practice problems:

e Section11.2:3,4,5,6,9, 12, 15
* Section11.3:2,3,4
* Section11.4:4,6,7, 8



The Integers modulo n

We have shown that, forn € N, = (mod n) on
set Z is reflexive, symmetric and transitive, i.e.
it is an equivalence relation.

The equivalence relation = (mod n) on Z for a given
n € N is particularly important in mathematics.

This relation partitions the integers.
Consider the case when n="5.



The Integers modulo 5

 The equivalence relation = (mod 5) partitions Z into
the following five disjoint sets.

0]={x€Z:n|(x—0)}=1{..,-10,-5,0,5,10,15,...}
N={x€Z:n(x-1)}=1{...,—9,-4,1,6,11,16,...}
) ={xeZ nl(x—2)}={..., -8 -3,271217,...}
3 ={xecZ:n(x-3)}=1{..,-7,-238,13,18,...}
A ={xecZ: n(x—Hy=1{..,—6,-1,4,9,14,19,...}

 We can define a new set

Z;={[0], [1], [2], [3], [4]}
which we call the integers modulo 5.



The Integers modulo 5

To get familiar with Zs, let's try a few simple operations.

Consider 2 € [2] and 4 € [4]:
@ 2+4=06and6 €[]
@ 2-4=28and 8 € [3].

Next consider 7 € [2] and one from 19 € [4]:
o 7419 =26 and 26 € [1]
o 7-19=133 and 133 € [3].

On the one hand, the sum of numbers from [2] and [4] was a number from

[1] while on the other hand the product of numbers from [2] and [4] was a
number from [3].



The Integers modulo 5

Let's try two pairs from another set of equivalence classes, say [2] and [3].
24+3=5€0] and 2:-3=6¢€]l].

Working with different numbers from the same classes we find

-34+3=0€(0] and —-3-3=-9€][l].

Once again, it seems that when we add a number from [2] to a number
from [3] we obtain a number from [0]. Similarly, when we multiply a
number from [2] by a number from [3] we find the product is from [1].



The Integers modulo 5

Just as when you first learned addition and multiplication, it is helpful to
construct addition and multiplication tables for Zs.

+ 110 [1 [2] [3] [4 0 1] [2] [3] [4
0| [0] [1] [2 [3] [4 0] | [0] [o] [0] [0] [0
1| 1] [2 [3] [4] [0 10 (1] 2] (3] [4
2] | [2] [3] [4] [0] [L 21 1[0 [2] [4] [t [3
3] | [3] [4 [0 [1] [2 3|10 3] 1] [4] [2
A4 [0 [ 2] 38 47000 [4 81 2 [

Notice the patterns in each of the tables. In particular, notice that while
the order changes, every row and every column contain all five values [0],

1], [2], [3], and [4].



The Integers modulo 5

These examples suggest that we can define addition
and multiplication for Z; as
[a] + [b] = [a +b]
[a].[b]=[a.b]
Note that [a] and [b] are sets not numbers.
Moreover, [a] + [b] = [b] + [a], and [a].[b] = [b].[a].
We can also define [a] — [b].



The Integers modulo n

 Returning to the general case, we can make the
following definition.

Definition 11.6 Let neN. The equivalence classes of the equivalence
relation = (mod »n) are [0],[1],[2],...,[n—1]. The integers modulo n is the
set Z, = {[01,[1],2],...,[n-1]}. Elements of Z, can be added by the rule
la]+[b]=[a+b] and multiplied by the rule [a]-[b] = [ab].



Diffie-Hellman Key Exchange

Consider the following problem:
@ Two people (or computers) need to communicate securely.

@ They have access to a symmetric cypher (the same key is used for
encryption and decryption).

@ They have not yet agreed on a key (they may not have ever met or
communicated before).

The challenge here is "how can these two people decide on a key to use
without anyone being able to capture it?"

The first effective public key exchange method is known as
Diffie-Hellman Key Exchange after the researchers that discovered it.



Diffie-Hellman Key Exchange

Because they were used in the original description of the algorithm,
Diffie-Hellman key exchange is usually described assuming that Alice and
Bob want to use a symmetric cipher and so need to exchange a private key.

o

o

Alice and Bob agree on two numbers g and p with 0 < g < p. These
numbers are not private and can be known by anyone.

Alice picks a private number 0 < a and computes @ = g? mod p.
Alice sends o to Bob.

Meanwhile, Bob picks a private number 0 < b and computes
B = gP mod p. He then sends 3 to Alice.

Alice computes k = 42 mod p and Bob computes k = a? mod p.

Both of them obtain the same number k which can then be used as
the secret key.



Diffie-Hellman Key Exchange

Example: Alice and Bob agree on g = 327 and p = 919.

Alice chooses a = 400; this is her private key. She then computes
a = 327400 mod 919 = 231. This is Alice's public key and can be
known by anyone. She can send this number to Bob in cleartext.

Bob chooses b = 729 for his private key and computes

B = 3277% mod 919 = 162 and sends this number (his public key) to
Alice.

Alice computes k = 162490 mod 919 = 206.
Bob computes k = 2317%° mod 919 = 206.

k = 206 is the secret key that both Alice and Bob will use to encrypt
their messages to each other.



