MACM 101 : Quiz 4 (Tuesday- D1) (Full Marks 22) Time: 40 minutes

- 1. (9 points) Consider the following theorem: If *a* is an odd number, $a^2 + 2a + 5$ is even.
 - (a) Give a direct proof of the theorem.

Suppose *a* is an odd number, a^2 is odd, 2a is even, 5 is odd, thus $a^2 + 2a + 5$ is even.

(b) Give a contrapositive proof of the theorem.

Suppose $a^2 + 2a + 5$ is odd, we know 2a is even, 5 is odd, so a^2 is even. Then *a* is even

(c) Give a proof by contradiction of the theorem.

a is an odd number, suppose $a^2 + 2a + 5$ is odd, then we have a^2 is odd, 2a is even. Then 5 must be an even number in order to make $a^2 + 2a + 5$ odd. We have a contradiction since 5 is odd number.

- 2. (5 points) Prove the following theorem.
 - For all positive integers *n*: *n* is even if and only if $3n^2 + 8$ is even.

Suppose *n* is even, then n^2 is even, $3n^2$ is even, 8 is even, so $3n^2 + 8$ is even

Suppose $3n^2 + 8$ is even, we know 8 is even, so $3n^2$ is even. Thus *n* is even.

• Given an integer *n*, then $n^3 + n^2 + n$ is even if and only if *n* is even.

Suppose *n* is even, then n^3 , n^2 , *n* all even. Thus $n^3 + n^2 + n$ is even. Suppose $n^3 + n^2 + n$ is even, since n^3 , n^2 , *n* are of the same parity. Then *n* is even.

• Prove that $\sqrt{2}$ is irrational.

Proof by contradiction Suppose $\sqrt{2}$ is rational. Then $\sqrt{2} = a/b$ for some integer a,bBy squire both sides of the equation we have $a^2 = 2b^2$ Then *a* is even. Suppose a = 2k for some integer *k* Then we have $4k^2 = 2b^2$, Thus $b = 2k^2$, Then *b* is even. We derive a contradiction that *a* and *b* have common factor 2. Thus $\sqrt{2}$ is irrational.

- 3. (5 points) Show that the following statements are equivalent.
 - $p_1: n$ is an even integer
 - $p_2: (n+1)$ is an odd integer
 - $p_3: n^2$ is an even integer.

If *n* is an even integer, then n + 1 is an odd integer. If n + 1 is an odd integer, *n* is even. So p_1 and p_2 are equivalent.

If *n* is an even integer, then n^2 is an even integer. If n^2 is an even integer, *n* is even. So p_1 and p_3 are equivalent.

So p_1 , p_2 , p_3 are equivalent.

- 4. (3 points) Disprove by counterexample the following proposition.
 - The product of two irrational numbers is always irrational.

 $\sqrt{2}$ is irrational number, and $\sqrt{2}^2 = 2$ which is rational.

• If $x, y \in \mathbb{R}$, then |x+y| = |x| + |y|.

Let x = 1 and y = -1. Then |x + y| = 0 but |x| + |y| = 2

- 5. (Bonus Question) (5 points)
 - If p is a prime and 0 < k < p, $p \mid {p \choose k}$.

We know $\frac{p!}{k!(p-k)!} = {p \choose k} = \frac{1*2*...*p}{1*2*...*(p-k)}$, since k < p, all the factors in the denominator less than p, so they do not cancel the p in the numerator. So $p \mid {p \choose k}$.

• If $n \in \mathbb{N}$, $\binom{2n}{n}$ is even.

We are asked to choose N items from a set of 2N items. Suppose the items we choose form a set A. Then 2N - A is also a solution. Thus the solution comes in pairs. $\binom{2n}{n}$ is even.