Solutions to Quiz 1 MACM 101 Total Marks: 50 Date: Week 3

- 1. (5 points) Write the following set by listing their elements between braces.
 - (a) $\{x \in \mathbb{Z} : -3 < x \le 2\}$ $\{-2, -1, 0, 1, 2\}$
 - (b) $\{x \in \mathbb{R} : sinx = 0\}$ $\{\dots, -2\pi, \pi, 0, \pi, 2\pi, \dots\}$
 - (c) $\{x \in \mathbb{R} : sin\pi x = 0\}$ $\{\dots, -2, -1, 0, 1, 2, \dots\}$
 - (d) $\{x \in \mathbb{R} : x^2 = 7\}$ $\{-\sqrt{7}, \sqrt{7}\}$
 - (e) $\{x \in \mathbb{Z} : | 2x | < 5\}$ $\{-2, -1, 0, 1, 2\}$
 - (f) $\{x \in \mathbb{Z} : -2 < x \le 7\}$ $\{-1, 0, 1, 2, 3, 4, 5, 6, 7\}$
 - (g) { $x \in \mathbb{Z} : -5 < x \le 2$ } {-4, -3, -2, -1, 0, 1, 2}
- 2. (5 points) Write the following set in set-builder notation.
 - (a) $\{0, 1, 4, 9, \ldots\}$ $\{x^2 : x \in \mathbb{Z}\}$
 - (b) $\{2,3,5,7,11,...\}$ $\{x : x \text{ is a prime number}\}$
 - (c) $\{3,4,5,6,7,8\}$ $\{x:-3 \le x \le 8\}$
 - (d) $\{-3, -2, -1, 0, 2, 3\}$ $\{x: -3 \le x \le 3 \text{ and } x \ne 1\}$

- (e) $\{0, 1, 8, 27, 64, 125, \ldots\}$ $\{x^3 : x \in \mathbb{Z}^+\}$
- (f) $\{0, -1, -4, -9, \ldots\}$ $\{-x^2 : x \in \mathbb{Z}\}$
- 3. (10 points) Suppose $A = \{0, 1\}$ and $B = \{1, 2\}$. Find $\mathscr{P}(A) = \{\phi, \{0\}, \{1\}, \{0, 1\}\}$ $\mathscr{P}(B) = \{\phi, \{1\}, \{2\}, \{1, 2\}\}$
 - $\mathscr{P}(A) \cap \mathscr{P}(B)$. $\{\phi, \{1\}\}$
 - $\mathscr{P}(A \cap B)$. $\{\phi, \{1\}\}$
 - $\mathscr{P}(A) \mathscr{P}(B).$ { $\{0\}, \{1,0\}\}$
- 4. (10 points) Let \mathbb{R} be the universal set. Let $A = \{1\}, B = (0, 1) = \{x : 0 < x < 1\}$

and $C = [0, 1] = \{x : 0 \le x \le 1\}$. Write down the following sets.

• $A \cup B;$ $A \cap B;$ $B \cap C;$ $A \cup C;$ $A \cap C$ (0,1] ϕ (0,1) [0,1] {1}

Are any of the pairs of sets A, B and C disjoint? A and B are disjoint.

- 5. (10 points) Let A, B and C be three arbitrary subsets of the universal set U. Use an element containment proof (i.e. prove that the left side is a subset of the right side and the right side is a subset of the left side) to prove the following:
 - $\overline{A \cup B} = \overline{A} \cap \overline{B}$. Let $x \in \overline{A \cup B}$ $\Rightarrow x \notin A \cup B$ $\Rightarrow x \notin \overline{A}$ and $x \notin \overline{B}$ $\Rightarrow x \in \overline{A}$ and $x \in \overline{B}$ $\Rightarrow x \in \overline{A} \cap \overline{B}$ So $\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}$.

Let $x \in \overline{A} \cap \overline{B}$

 $\Rightarrow x \in \overline{A} \text{ and } x \in \overline{B}$ $\Rightarrow x \notin A \text{ or } x \notin B$ $\Rightarrow x \notin A \cup B$ $\Rightarrow x \in \overline{A \cup B}$ So $\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}$ Since $\overline{A} \cap \overline{B}$ and $\overline{A \cup B}$ are both subsets of one another, so $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

- $\overline{A \cup B \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}$. Proved in the same way as above.
- 6. (10 points) Use the membership table method to determine which membership $\subseteq =, =, \supseteq$ is true for the following pair of sets.

• $(A-B) \cup (A-C), A-(B \cap C).$								
	Α	В	Ċ	(A-B)	(B-C)	(A-C)	A- $(B \cap C)$	$(A-B) \cup (A-C)$
	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0
	0	1	0	0	1	0	0	0
	0	1	1	0	0	0	0	0
	1	0	0	1	0	1	1	1
	1	0	1	1	0	0	1	1
	1	1	0	0	1	1	1	1
	1	1	1	0	0	0	0	0

From above , we see that A-(B \cap C) and (A - C) \cup (B - C) are equal .

•
$$(A-C) - (B-C), A-B.$$

А	В	С	(A-B)	(B-C)	(A-C)	(A-C)-(B-C)
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	1	0	0
0	1	1	0	0	0	0
1	0	0	1	0	1	1
1	0	1	1	0	0	0

From above table we see that (A-C)-(B-C) is the subset of (A-B).

- (B-C), (B-A) (C-A)
- 7. (Bonus) (10 points) Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. Let $(x, y) \in A \times (B \cap C)$ $\Rightarrow x \in A, y \in B \cap C$

 $\Rightarrow x \in A, y \in B \text{ and } y \in C$ $\Rightarrow x \in A, y \in B \text{ and } x \in A, y \in C$ $\Rightarrow (x,y) \in A \times B \text{ and } (x,y) \in A \times C$ $\Rightarrow (x,y) \in (A \times B) \cap (A \times C)$ So $A \times (B \cap C) \subseteq (A \times B) \cap (A \times C).$

Similarly let $(x, y) \in (A \times B) \cap (A \times C)$ $\Rightarrow (x, y) \in A \times B$ and $(x, y) \in A \times C$ $\Rightarrow x \in A, y \in B$ and $x \in A, y \in C$ $\Rightarrow x \in A, y \in B$ and $y \in C$ $\Rightarrow x \in A, y \in B \cap C$ $\Rightarrow (x, y) \in A \times (B \cap C)$ So $(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$. Since are both subsets of one another , so $A \times (B \cap C) = (A \times B) \cap (A \times C)$.