Proofs (Chapters 7, 8 and 9)

Proof Techniques of P \Rightarrow **Q**

Proof Techniques of P \Rightarrow **Q**

• Direct proof:

Proposition If P, then Q.

Proof. Suppose P.

Therefore Q.

Proof Techniques of P \Rightarrow **Q**

- Proof by cases:
- It is a direct method of proving statements like
 P₁ ∨ P₂ ∨ ∨ P_n ⇒ Q
 which is equivalent to proving
 (P₁ ⇒ Q) ∧ (P₂ ⇒ Q) ∧ (P₃ ⇒ Q) ∧ ∧ (P_n ⇒ Q).

Proof Techniques of P \Rightarrow **Q (contd.)**

- Contrapositive proof (Indirect proof)
- Proving $\neg Q \Rightarrow \neg P$

Outline for Contrapositive Proof

```
PropositionIf P, then Q.Proof.Suppose \sim Q.\vdotsTherefore \sim P.
```

Proof Techniques of P \Rightarrow Q (contd.)

• Contradiction proof.

Outline for Proving a Conditional Statement with Contradiction

```
Proposition If P, then Q.
```

```
Proof. Suppose P and \sim Q.
```

```
Therefore C \wedge \sim C.
```

If-and-Only-If-Proof: P \Leftrightarrow Q

If-and-Only-If-Proof: P \Leftrightarrow Q

• It is equivalent to proving $(P \Rightarrow Q) \land (Q \Rightarrow P)$

If-and-Only-If-Proof: P \Leftrightarrow Q

• It is equivalent to proving $(P \Rightarrow Q) \land (Q \Rightarrow P)$

Outline for If-and-Only-If Proof

Proposition P if and only if Q.

Proof.

[Prove $P \Rightarrow Q$ using direct, contrapositive or contradiction proof.] [Prove $Q \Rightarrow P$ using direct, contrapositive or contradiction proof.]

Suppose a and b are integers. Prove that
 (a = b (mod 6)) ⇔ (a = b (mod 2))∧ (a = b (mod 3))

- Suppose a and b are integers. Prove that
 (a ≡ b (mod 6)) ⇔ (a ≡ b (mod 2))∧ (a ≡ b (mod 3))
- We first prove that

○ $a \equiv b \pmod{6} \Rightarrow (a \equiv b \pmod{2}) \land (a \equiv b \pmod{3})$

- Suppose a and b are integers. Prove that
 (a ≡ b (mod 6)) ⇔ (a ≡ b (mod 2))∧ (a ≡ b (mod 3))
- We first prove that

○ $a \equiv b \pmod{6} \Rightarrow (a \equiv b \pmod{2}) \land (a \equiv b \pmod{3})$

This follows from the fact that if (a-b) is divisible by 6, (a-b) is also divisible by 2 and 3.

- Suppose a and b are integers. Prove that
 (a = b (mod 6)) ⇔ (a = b (mod 2))∧ (a = b (mod 3))
- We first prove that

○ $a \equiv b \pmod{6} \Rightarrow (a \equiv b \pmod{2}) \land (a \equiv b \pmod{3})$

This follows from the fact that if (a-b) is divisible by 6, (a-b) is divisible by 2 and 3.

Next we prove that

○ $(a \equiv b \pmod{2}) \land (a \equiv b \pmod{3}) \Rightarrow a \equiv b \pmod{6}$.

- Suppose a and b are integers. Prove that
 (a ≡ b (mod 6)) ⇔ (a ≡ b (mod 2))∧ (a ≡ b (mod 3))
- We first prove that

 \circ a = b (mod 6) ⇒ (a = b (mod 2)) ∧ (a = b (mod 3))

This follows from the fact that if (a-b) is divisible by 6, (a-b) is divisible by 2 and 3.

• Next we prove that

○ $(a \equiv b \pmod{2}) \land (a \equiv b \pmod{3}) \Rightarrow a \equiv b \pmod{6}$.

This again follows from the fact that if (a-b) is divisible by 2 and 3, (a-b) is divisible by 6.

• For any integer n, n is odd if and only if n² is odd.

- For any integer n, n is odd if and only if n² is odd.
- In order to prove this statement we must prove two implications:
 - if n is odd, n^2 is odd.
 - if n^2 is odd, n is odd.
- Direct proof is easy to design.

- Prove that the following statements are equivalent.
 - 1) n-5 is odd.
 - 2) 3n+2 is even.
 - 3) $n^2 1$ is odd.

- Prove that the following statements are equivalent.
 - 1) n-5 is odd.
 - 2) 3n+2 is even.
 - 3) $n^2 1$ is odd.
- The above asserts that either the statements are all true or the statements are all false.

- Prove that the following statements are equivalent.
 - 1) n-5 is odd.
 - 2) 3n+2 is even.
 - 3) $n^2 1$ is odd.
- The above asserts that either the statements are all true or the statements are all false.
- The above theorem is equivalent to proving the following implications:
 - a) (1) ⇒ **(2)**
 - b) (2) \Rightarrow (3)
 - c) $(3) \Rightarrow (1)$

- Prove that the following statements are equivalent.
 - 1) n-5 is odd.
 - 2) 3n+2 is even.
 - 3) $n^2 1$ is odd.
- The above asserts that either the statements are all true or the statements are all false.
- The above theorem is equivalent to proving the following implications:
 - a) (1) ⇒ **(2)**
 - b) (2) ⇒ (3)
 - c) $(3) \Rightarrow (1)$

The above statements are all true. Direct proof technique can be used to prove the implications.

Proving $\exists x R(x)$

• An **existence proof** is a proof of a statement of the form $\exists x R(x)$.

Proving **J**x R(x)

- An **existence proof** is a proof of a statement of the form $\exists x R(x)$.
- Constructive proof:
 - Establish R(c) for some c in the universe of x.

Proving **J**x R(x)

- An **existence proof** is a proof of a statement of the form $\exists x R(x)$.
- Constructive proof:
 - Establish R(c) for some c in the universe of x.
- Nonconstructive proof
 - Assume no c exists that makes R(c) true, and derive a contradiction. In other words use a proof by contradiction.

Proving $\exists x R(x)$

- Example: Prove that if f(x) = x³ + x 5, there exists a positive real number c such that f '(c) = 7.
- In symbols: $\exists x \in R, f'(x) = 7$.

Proving $\exists x R(x)$

- Example: Prove that if f(x) = x³ + x 5, there exists a positive real number c such that f '(c) = 7.
- In symbols: $\exists x \in R, f'(x) = 7$.

$$\circ$$
 f'(x) = 3x² +1.

• Now f'(x) = 7 implies x = $\pm \sqrt{2}$

$$\circ c = \sqrt{2}$$

$$\circ f'(\sqrt{2}) = 7.$$

• Prove

$a, b \in \mathbb{N} \implies \exists k, \ell \in \mathbb{Z}, \operatorname{gcd}(a, b) = ak + b\ell.$

• Prove

$a, b \in \mathbb{N} \implies \exists k, \ell \in \mathbb{Z}, \operatorname{gcd}(a, b) = ak + b\ell.$

• Direct proof:

- Given a and b, as stated, let $A = \{ax + by : x, y \in Z\}$.
- This set has both positive and negative integers, as well as zero.
- Let d be the smallest positive number of A.
- Since $d \in A$, d is in the form d = ak + bl for some specific k, $l \in Z$.
- d divides a and b. (why?)
- We can now show that d = gcd(a,b). (see the text, page 126)

Practice Problems from Chapter 7

• 3, 4, 6, 7, 10, 13, 14, 17, 20, 22, 25, 28

Proofs Involving Sets (Chapter 8)

- Generally, a set A will be expressed in setbuilder notation A = {x:P(x)} where P(x) is some statement about x.
 - {x: x is an odd integer}
 - $\{n \in Z: n \text{ is odd}\}$
 - $\{(a,b) \in Z \times Z: b=a+5\}$
 - $\{X \in PowerSet(Z) : |X|=1\}$

• How to show $a \in \{x: P(x)\}$?

• How to show $a \in \{x: P(x)\}$?

- Show that P(a) is true.

• How to show $a \in \{x: P(x)\}$?

- Show that P(a) is true.

- How to show that $a \in \{x \in S: P(x)\}$?
 - Verify that $a \in S$
 - Show that P(a) is true.

- How to show $a \in \{x: P(x)\}$?
 - Show that P(a) is true.
- How to show that $a \in \{x \in S: P(x)\}$?
 - Verify that $a \in S$
 - Show that P(a) is true.
- Example: Suppose A = $\{x: x \in N \land 7 \mid x\}$.
 - Show that $14 \in A$.
 - Show that -14 \notin A.

How to prove $A \subseteq B$

• Direct approach: if $a \in A$, $a \in B$.

Proof. Suppose $a \in A$. : Therefore $a \in B$. Thus $a \in A$ implies $a \in B$, so it follows that $A \subseteq B$. ■

How to prove $A \subseteq B$

• Contrapositive approach: if $a \notin B$, $a \notin A$.

Proof. Suppose $a \notin B$. : Therefore $a \notin A$. Thus $a \notin B$ implies $a \notin A$, so it follows that $A \subseteq B$. ■

Prove that $\{x \in \mathbb{Z} : 18 | x\} \subseteq \{x \in \mathbb{Z} : 6 | x\}.$

Proof. Suppose $a \in \{x \in \mathbb{Z} : 18 | x\}$.

This means that $a \in \mathbb{Z}$ and 18|a.

By definition of divisibility, there is an integer *c* for which a = 18c. Consequently a = 6(3c), and from this we deduce that 6|a.

Therefore *a* is one of the integers that 6 divides, so $a \in \{x \in \mathbb{Z} : 6 | x\}$.

We've shown $a \in \{x \in \mathbb{Z} : 18 | x\}$ implies $a \in \{n \in \mathbb{Z} : 6 | x\}$, so it follows that $\{x \in \mathbb{Z} : 18 | x\} \subseteq \{x \in \mathbb{Z} : 6 | x\}$.
Example

Prove that if *A* and *B* are sets, then $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$.

• Will be shown in the class.

Example 8.9

Example 8.9 Suppose A and B are sets. If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

• Solved in the text.

How to prove A = B

Proof. [Prove that $A \subseteq B$.] [Prove that $B \subseteq A$.] Therefore, since $A \subseteq B$ and $B \subseteq A$, it follows that A = B.

Example

- Given sets A, B and C, prove that A x (B ∩ C) = (A x B) ∩ (A x C).
- We should be able to show that
 - $-A \times (B \cap C) \subseteq (A \times B) \cap (A \times C)$, and
 - $-(A \times B) \cap (A \times C) \subseteq A \times (B \cap C)$.

An alternate solution

Given sets A, B and C, prove that

 $A \times (B \cap C) = (A \times B) \cap (A \times C).$

- A x (B ∩ C) =
 - $= \{(x,y): (x \in A) \land (y \in B \cap C)\}$ (def. of x)
 - $= \{(x,y): (x \in A) \land ((y \in B) \land (y \in C))\}$ (def. of \cap)
 - = {(x,y): ((x \in A) \land (y \in B)) \land ((x \in A) \land (y \in C))} (rearranging)
 - = (A x B) ∩ (A x C)
- The proof is complete

- Very old number theory topic.
- The problem involves adding up the positive divisors of natural numbers.

- Very old number theory topic.
- The problem involves adding up the positive divisors of natural numbers.
- Positive divisors of 12 that are less than 12:
 - 1,2,3,4,6
 - They add up to 16 which is greater than 12.
- Positive divisors of 15 are
 - 1,3,5
 - They add up to 9 which is less than 15.
- Positive divisors of 6 are
 - 1, 2, 3
 - They add up to 6!

- Very old number theory topic.
- The problem involves adding up the positive divisors of natural numbers.
- Positive divisors of 12 that are less than 12:
 - 1,2,3,4,6
 - They add up to 16 which is greater than 12.
- Positive divisors of 15 are
 - 1,3,5
 - They add up to 9 which is less than 15.
- Positive divisors of 6 are
 - 1, 2, 3
 - They add up to 6!

6 is called a perfect number.

Definition of Perfect Numbers

- A number p ∈ N is **perfect** if it equals the sum of the positive divisors less than it self.
- 6 is perfect since 6 = 1 + 2 + 3.
- 28 is perfect since 28 = 1 + 2 + 4 + 7 + 14.
- 496 is perfect since 496 = 1+2+4+8+16+31+62+124+248
- What is the next number?
 - 8128, then ?
- Euclid (323–283 BC) looked at this problem first.

- Let P be the set containing the perfect numbers.
 P= {p ∈ N: p is perfect}.
- Let $A = \{2^{n-1}(2^n-1): n \in N, and 2^n-1 \text{ is a prime number}\}$

First few entries of A

n	2^{n-1}	$2^{n} - 1$	$2^{n-1}(2^n-1)$
1	1	1	*
2	2	3	6
3	4	7	28
4	8	15	*
5	16	31	496
6	32	63	*
7	64	127	8128
8	128	255	*
9	256	511	*
10	512	1023	*
11	1024	2047	*
12	2048	4095	*
13	4096	8191	33,550,336

A Theorem on Perfect Numbers

- Theorem 8.1: If
 - A = $\{2^{n-1}(2^n-1): n \in N, and 2^n-1 \text{ is a prime number}\}$ and
 - $P = \{p \in N: p \text{ is perfect }\},\$
 - then $A \subseteq P$.
- Set theory was invented over 2000 years after Euclid died.

Practice problems from Chapter 8

• 1, 2, 6, 7, 13, 15, 19, 20, 27, 29

Disproof

- We considered so far: given statement, prove that it is true.
- How do you prove that a statement is false?
- There is a very simple procedure that proves a statement is false.
- The procedure is called **disproof**.

There are three types of statements.

Known to be true (Theorems & propositions)	Truth unknown (Conjectures)	Known to be false
Examples:	Examples:	Examples:
 Pythagorean theorem Fermat's last theorem (Section 2.1) The square of an odd number is odd. The series ∑_{k=1}[∞] 1/k diverges. 	 All perfect numbers are even. Any even number greater than 2 is the sum of two primes. (Goldbach's conjecture, Section 2.1) There are infinitely many prime numbers of form 2ⁿ − 1, with n ∈ N. 	 All prime numbers are odd. Some quadratic equations have three solutions. 0 = 1 There exist natural numbers a, b and c for which a³ + b³ = c³.

How to disprove P?

How to disprove P?

- Prove ¬P.
- Now we can use the standard proof methods: direct proof, contrapositive proof, proof by contradiction.

- Universally quantified statement $\forall x \in S, P(x)$
- Its negation is $\neg (\forall x \in S, P(x)) \equiv \exists x \in S, \neg P(x).$

- Universally quantified statement $\forall x \in S, P(x)$
- Its negation is $\neg (\forall x \in S, P(x)) \equiv \exists x \in S, \neg P(x)$.
- We just need an element x ∈ S that makes ¬P(x) true.
- i.e. an x that makes P(x) false.

- Universally quantified statement $\forall x \in S, P(x)$
- Its negation is $\neg (\forall x \in S, P(x)) \equiv \exists x \in S, \neg P(x)$.
- We just need an element x ∈ S that makes ¬P(x) true.
- i.e. an x that makes P(x) false.
- The outline of proof:

How to disprove $\forall x \in S, P(x)$.

Produce an example of an $x \in S$ that makes P(x) false.

• The outline of proof:

How to disprove $\forall x \in S, P(x)$.

Produce an example of an $x \in S$ that makes P(x) false.

How to disprove $P(x) \Rightarrow Q(x)$.

Produce an example of an x that makes P(x) true and Q(x) false.

- In both the outlines, the statement is disproved simply by citing an example that shows that the statement is not true.
- The special name for this example is called a **counterexample.**

Example:

Conjecture: For every n ∈, the integer f(n) = n²-n+11 is prime.

n	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
f(n)	23	17	13	11	11	13	17	23	31	41	53	67	83	101

Example:

Conjecture: For every n ∈, the integer f(n) = n²-n+11 is prime.

n	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
f(n)	23	17	13	11	11	13	17	23	31	41	53	67	83	101

Disproof: The statement "For every n ∈, the integer f(n) = n²-n+11 is prime" is false since f(11) = 121 = 11.11 is not a prime.

Disproving Existence Statements

• Disproving an existence statement: $\exists x \in S, P(x)$

Disproving Existence Statements

- Disproving an existence statement: $\exists x \in S, P(x)$
- To disprove it, we have to prove its negation.
- The negation is $\neg (\exists x \in S, P(x)) \equiv \forall x \in S, \neg P(x)$.

Disproving Existence Statements

- Disproving an existence statement: $\exists x \in S, P(x)$
- To disprove it, we have to prove its negation.
- The negation is $\neg (\exists x \in S, P(x)) \equiv \forall x \in S, \neg P(x)$.
- This negation is universally quantified. An example does not suffice.
- We must use direct, contrapositive or contradiction proof to prove the conditional statement

If $\forall x \in S$, then $\neg P(x)$

Disproof by Contradiction

- To disprove **P**, we must prove **¬P**.
- To prove ¬P with contradiction, we assume that
 ¬P = P is true and deduce a contradiction.

Example

- Disprove the conjecture:
 - (Example 9.5): There is a real number x for which x⁴ < x < x².
 - (9(11)): If a, b \in N, then a+b < ab.
- True or false:
 - \circ (9(12)) If a, b, c ∈ N and ab, bc and ac all have the same parity, then a, b and c all have the same parity.

Practice problems of Chapter 9

• 1, 2, 3, 18, 19, 22, 23, 29, 34.

Congruence of Integers

- Definition: Given integers a and b and an n ∈ N, we say that a and b are congruent modulo n if a and b have the same remainders when a and b are divided by n.
 - In other words, n | (a-b).
 - We express $a \equiv b \pmod{n}$
 - $-9 \equiv 1 \pmod{4}$
 - $-109 \equiv 4 \pmod{3}$
 - 14 ≠ 8 (mod 4)

• For all integers $a, a \equiv a \pmod{n}$.

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

If a and b are integers such that a = b (mod n), b = a (mod n).

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

 If a and b are integers such that a = b (mod n), b = a (mod n).

If n|(b-a), n|(a-b), vice versa.

 If a, b and c are integers such that a = b (mod n) and b = c (mod n), then a = c (nod n).

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

 If a and b are integers such that a = b (mod n), b = a (mod n).

If n|(b-a), n|(a-b), vice versa.

- If a, b and c are integers such that a = b (mod n) and b = c (mod n), then a = c (nod n).
 - Given n|(a-b) and n|(b-c). Now (a-c) = (a-b) + (b-c).
 Therefore, n|(a-c).

 (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then

 \circ (a + c) \equiv b + d (mod n)

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) = b + d (mod n) (easy)

 $\circ a - c \equiv b - d \pmod{n}$

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) \equiv b + d (mod n) (easy)
 - $\circ a c \equiv b d \pmod{n}$
 - (Easy) since (a c) (b d) = (a b) + (d c)

 \circ ac = bd (mod n)

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) = b + d (mod n) (easy)
 - $\circ a c \equiv b d \pmod{n}$
 - (Easy) since (a c) (b d) = (a b) + (d c)
 - \circ ac = bd (mod n)
 - Given a-b = t.n and c d = t'.n
 - Therefore, a = b+ t.n, and c = d + t'n
 - Hence ac = bd + n(bt' + dt + tt'n).
 - This implies that (ac –bd) is divisible by n.
 - $ac \equiv bd \pmod{n}$