Proofs (Chapters 7, 8 and 9)



Proof Techniques of P = Q



Proof Techniques of P = Q

* Direct proof:

Proposition If P, then Q.

Proof. Suppose P.

Therefore Q. N




Proof Techniques of P = Q

* Proof by cases:

* |tis a direct method of proving statements like
P,vP,Vv .. vP,=Q
which is equivalent to proving
(P,=Q)A(P,=Q)A(P;=Q) A ... A (P,= Q).



Proof Techniques of P = Q (contd.)

* Contrapositive proof (Indirect proof)
* Proving -Q = —P

Outline for Contrapositive Proof

Proposition If P, then Q.

Proof. Suppose ~ Q.

Therefore ~ P. |




Proof Techniques of P = Q (contd.)

e Contradiction proof.

Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ~ Q.

Therefore C A ~C. |




If-and-Only-If-Proof: P <= Q



If-and-Only-If-Proof: P <= Q

* |tis equivalent to proving (P=Q) A (Q=>P)



If-and-Only-If-Proof: P <= Q
 |tis equivalent to proving (P=Q) A (Q= P)

Outline for If-and-Only-If Proof

Proposition P if and only if @.

Proof.

[Prove P = @ using direct, contrapositive or contradiction proof.]
[Prove @ = P using direct, contrapositive or contradiction proof.] m




Example

e Suppose a and b are integers. Prove that
(a=b(mod6)) = (a=b(mod2))A (a=b (mod 3))



Example

e Suppose a and b are integers. Prove that
(@a=b(mod6)) = (a=b(mod?2))A (a=b (mod 3))
 We first prove that
o a=b(mod6)= (a=b(mod2))A (a=b (mod 3))



Example

e Suppose a and b are integers. Prove that
(a=b (mod6)) = (a=b(mod2))A (a=b (mod 3))
 We first prove that

o a=b(mod6)= (a=b(mod?2))A (a=b (mod 3))

This follows from the fact that if (a-b) is divisible by 6, (a-b) is
also divisible by 2 and 3.



Example

e Suppose a and b are integers. Prove that
(a=b (mod6)) = (a=b(mod2))A (a=b (mod 3))
 We first prove that

o a=b(mod6)= (a=b(mod?2))A (a=b (mod 3))

This follows from the fact that if (a-b) is divisible by 6, (a-b) is
divisible by 2 and 3.

 Next we prove that
o (a=b(mod2))A (a=b(mod3))= a=b(mod6).



Example

 Suppose a and b are integers. Prove that
(a=b(mod6)) <= (a=b(mod2))A (a=b(mod 3))

 We first prove that
o a=b(mod6)= (a=b(mod?2))A (a=b (mod 3))
This follows from the fact that if (a-b) is divisible by 6, (a-b) is
divisible by 2 and 3.
* Next we prove that
o (a=b(mod2))A (a=b(mod3))= a=b(mod6).

This again follows from the fact that if (a-b) is divisible by 2 and
3, (a-b) is divisible by 6.



Example

* For any integer n, nis odd if and only if n? is odd.



Example

* For any integer n, nis odd if and only if n? is odd.

* In order to prove this statement we must prove two
implications:
— if nis odd, n?is odd.
— if n2is odd, n is odd.

* Direct proof is easy to design.



Equivalent Statements

* Prove that the following statements are equivalent.
1) n—5is odd.
2) 3n+2is even.
3) n?—1is odd.



Equivalent Statements

* Prove that the following statements are equivalent.
1) n—5is odd.
2) 3n+2is even.
3) n?—1is odd.

e The above asserts that either the statements are all
true or the statements are all false.



Equivalent Statements

* Prove that the following statements are equivalent.
1) n—5is odd.
2) 3n+2is even.
3) n?—1is odd.

* The above asserts that either the statements are all
true or the statements are all false.

 The above theorem is equivalent to proving the
following implications:
a) (1)=(2)
b) (2) = (3)
c) 3)=(1)



Equivalent Statements

* Prove that the following statements are equivalent.
1) n—5is odd.
2) 3n+2is even.
3) n?—1is odd.

* The above asserts that either the statements are all
true or the statements are all false.

 The above theorem is equivalent to proving the

following implications: The above statements are all

a) (1)=(2) true. Direct proof technique
b) (2)=(3) can be used to prove the
c) 3)=(1)

implications.



Proving dx R(x)

* An existence proof is a proof of a statement of the
form dx R(x).



Proving dx R(x)

* An existence proof is a proof of a statement of the
form dx R(x).

e Constructive proof:
— Establish R(c) for some c in the universe of x.



Proving dx R(x)

* An existence proof is a proof of a statement of the
form dx R(x).

e Constructive proof:
— Establish R(c) for some c in the universe of x.
* Nonconstructive proof

— Assume no c exists that makes R(c) true, and derive a
contradiction. In other words use a proof by contradiction.



Proving dx R(x)

* Example: Prove that if f(x) = x> + x — 5, there exists a
positive real number c such that f ‘(c) = 7.

* Insymbols: IxER, f(x) =7.



Proving dx R(x)

* Example: Prove that if f(x) = x> + x — 5, there exists a
positive real number c such that f ‘(c) = 7.

* Insymbols: IxER, f(x) =7.
o f'(x) = 3x? +1.
o Now f(x) = 7 implies x = =+/2
0c=+/2
o f( \/i )=17.



Example

* Prove

a,beN — 3Ik,le”Z, ged(a,b)=ak +b¥.



Example

* Prove

a,beN — 3Tk, le”Z, ged(a,b)=ak +b¥.

* Direct proof:
— Givenaandb, as stated, letA={ax+by:x,yEZ}.
— This set has both positive and negative integers, as well as zero.
— Let d be the smallest positive number of A.
— Sinced €A, disin the form d = ak +bl for some specifick, | € Z.
— d divides a and b. (why?)
— We can now show that d = gcd(a,b). (see the text, page 126)



Practice Problems from Chapter 7

* 3,4,6,7,10,13,14,17, 20, 22, 25, 28



Proofs Involving Sets (Chapter 8)

* Generally, a set A will be expressed in set-
builder notation A = {x:P(x)} where P(x) is
some statement about x.

— {x: x is an odd integer}
—{n & Z:nis odd}

—{(a,b) €Z xZ: b=a+5}

— {X & PowerSet(Z) : | X|=1}



 How to show a € {x: P(x)}?



 How to show a € {x: P(x)}?
— Show that P(a) is true.



 How to show a € {x: P(x)}?
— Show that P(a) is true.

* How to show that a € {x € S: P(x)}?
— Verify thata €S
— Show that P(a) is true.



 How to show a € {x: P(x)}?
— Show that P(a) is true.

* How to show that a € {x € S: P(x)}?
— Verify thata €S
— Show that P(a) is true.
 Example: Suppose A={x:xEN A 7 | x}.
— Show that 14 € A.
— Show that -14 & A.



How to prove AC B
* Direct approach: ifa € A, a €B.

Proof. Suppose a€ A.

Therefore a € B.

Thus a € A implies a € B,
so it follows that A < B.




How to prove AC B

« Contrapositive approach: if a & B, a & A.

Proof. Suppose a ¢ B.

Therefore a ¢ A.
Thus a ¢ B implies a ¢ A,
so it follows that A < B. |




Example

Prove that {x€Z:18|x} c{x€Z:6|x}.

Proof. Suppose a€{xeZ:18|x}.

This means that a € Z and 18]a.

By definition of divisibility, there is an integer ¢ for which a = 18c.
Consequently a = 6(3c), and from this we deduce that 6|a.
Therefore a is one of the integers that 6 divides, so a € {x€ Z:6|x}.

We've shown a € {x€Z:18|x} implies a € {n € Z:6|x}, so it follows that
fxeZ:18|x} c{xe Z:6]|x}. H



Example

Prove that if A and B are sets, then Z(A)u Z(B)c Z(AUB).

e Will be shown in the class.



Example 8.9

Example 8.9 Suppose A and B are sets. If Z(4)c #(B), then AcB.

e Solved in the text.



How to prove A=B

Proof.
[Prove that A < B.]
[Prove that B< A.]

Therefore, since AcB and BS A,
it follows that A = B. H




Example

e Givensets A, Band C, prove that Ax (BN C) =
(AxB) M (AxC).

 We should be able to show that
—Ax(BNC)C(AxB)N(AxC), and
—(AxB)N(AXxC)CAx(BNCQC).



An alternate solution

* Given sets A, B and C, prove that
Ax(BMNC)=(AxB)N(AxC).

e Ax(BMNC)=
={(x,y): (xEA) A (yEBNC(C)} (def. of x)
={(x,y): (x€EA) A (([yEB) Aly € (C))} (def. of N)

={(x,y): (xEeA)A(yEB)) A ((xEA) A(yEC(C))} (rearranging)
= (AxB) N (AxC)

* The proof is complete



Perfect Numbers

* Very old number theory topic.

 The problem involves adding up the positive divisors
of natural numbers.



Perfect Numbers

Very old number theory topic.

The problem involves adding up the positive divisors
of natural numbers.

Positive divisors of 12 that are less than 12:
—1,2,3,4,6

— They add up to 16 which is greater than 12.
Positive divisors of 15 are

—1,3,5

— They add up to 9 which is less than 15.
Positive divisors of 6 are

—1,2,3

— They add up to 6!



Perfect Numbers

Very old number theory topic.

The problem involves adding up the positive divisors
of natural numbers.

Positive divisors of 12 that are less than 12:
—1,2,3,4,6

— They add up to 16 which is greater than 12.
Positive divisors of 15 are

—1,3,5

— They add up to 9 which is less than 15.

Positive divisors of 6 are 6 is called a
—-1,2,3 perfect number.

— They add up to 6!



Definition of Perfect Numbers

A number p € N is perfect if it equals the sum of the
positive divisors less than it self.

6 is perfect since6=1+2 + 3.
28 is perfect since28=1+2+4 +7 + 14.
496 is perfect since 496 = 1+2+4+8+16+31+62+124+248

What is the next number?
— 8128, then ?

Euclid (323—283 BC) looked at this problem first.



Perfect Numbers

* Let P be the set containing the perfect numbers.
o P={p € N: p is perfect}.

e LetA={2"%2"-1):n &N, and 2"-1 is a prime number}



First few entries of A

n | 2r1 | 2n—1 | 27 1(2n 1)
1 1 1 *

2 2 3 6

3 4 7 28

4 8 15 *

5 16 31 496

6 32 63 %

7 64 127 8128

8 | 128 | 255 %

9 | 256 | 511 %

10 | 512 | 1023 %

11 | 1024 | 2047 %

12 | 2048 | 4095 %

13 | 4096 | 8191 | 33,550,336



A Theorem on Perfect Numbers

* Theorem 8.1: If
— A={2"1(2"-1): n €N, and 2"-1 is a prime number} and
— P={p € N: pis perfect },
— then ACP.

e Set theory was invented over 2000 years after Euclid
died.



Practice problems from Chapter 8

* 1,2,6,7,13,15, 19, 20, 27, 29



Disproof

We considered so far: given statement, prove that it
IS true.

How do you prove that a statement is false?

There is a very simple procedure that proves a
statement is false.

The procedure is called disproof.



There are three types of statements.

Known to be true

(Theorems & propositions)

Truth unknown

(Conjectures)

Known to be false

Examples:

Pythagorean theorem

Fermat’s last theorem
(Section 2.1)

The square of an odd
number is odd.

(0.0
1
The series ) — diverges.
p=1k

Examples:

All perfect numbers are
even.

Any even number greater
than 2 is the sum of two
primes. (Goldbach’s
conjecture, Section 2.1)

There are infinitely many
prime numbers of form
2" — 1, with n e N.

Examples:

All prime numbers are
odd.

Some quadratic equations
have three solutions.

0=1

There exist natural
numbers a,b and ¢
for which a2 + b3 = ¢3.




How to disprove P?



How to disprove P?

* Prove =P.

* Now we can use the standard proof methods: direct
proof, contrapositive proof, proof by contradiction.



Disproving Universal Statements:
Counterexamples

* Universally quantified statement Vx € S, P(x)
* |ts negationis =(Vx €S, P(x)) = dx €S, =P(x).



Disproving Universal Statements:
Counterexamples

Universally quantified statement Vx € S, P(x)

Its negation is =(Vx €S, P(x)) =3dx €S, =P(x).
We just need an element x € S that makes —=P(x)
true.

i.e. an x that makes P(x) false.



Disproving Universal Statements:
Counterexamples

Universally quantified statement Vx € S, P(x)

Its negation is =(Vx €S, P(x)) =3dx €S, =P(x).
We just need an element x € S that makes —=P(x)
true.

i.e. an x that makes P(x) false.

The outline of proof:

How to disprove VxeS,P(x).

Produce an example of an x€ S
that makes P(x) false.




Disproving Universal Statements:
Counterexamples

* The outline of proof:

How to disprove VxeS,P(x).

Produce an example of an x €S
that makes P(x) false.

How to disprove P(x) = Q(x).

Produce an example of an x that
makes P(x) true and Q(x) false.




Disproving Universal Statements:
Counterexamples

* |n both the outlines, the statement is disproved
simply by citing an example that shows that the

statement is not true.
* The special name for this example is called a
counterexample.



Example:

e Conjecture: For every n €, the integer f(n) = n2-n+11
IS prime.

n|—3 -2 -1 0 1 2 3 4 &5 o6 7 8 9 10

f(n)|23 17 13 11 11 13 17 23 31 41 53 67 83 101



Example:

e Conjecture: For every n €, the integer f(n) = n2-n+11
IS prime.

n|—3 -2 -1 0 1 2 3 4 &5 o6 7 8 9 10

f(n)|23 17 13 11 11 13 17 23 31 41 53 67 83 101

* Disproof: The statement “For every n €, the integer
f(n) = n?-n+11 is prime” is false since f(11) = 121 =
11.11 is not a prime.



Disproving Existence Statements

* Disproving an existence statement: Ax € S, P(x)



Disproving Existence Statements

* Disproving an existence statement: Ax € S, P(x)
 To disprove it, we have to prove its negation.
* The negationis =(dx €S, P(x)) = Vx €S, =P(x).



Disproving Existence Statements

Disproving an existence statement: dx € S, P(x)
To disprove it, we have to prove its negation.
The negation is =(dx €S, P(x)) = Vx € S, =P(x).

This negation is universally quantified. An example
does not suffice.

We must use direct, contrapositive or contradiction
proof to prove the conditional statement

If Vx €S, then =P(x)



Disproof by Contradiction

 To disprove P, we must prove —P.

* To prove =P with contradiction, we assume that
- =P =P is true and deduce a contradiction.



Example

* Disprove the conjecture:
o (Example 9.5): There is a real number x for which x*< x <
X2,
o (9(11)): If a, b &N, then a+b < ab.
* True or false:

o (9(12)) If a, b, c & N and ab, bc and ac all have the same
parity, then a, b and c all have the same parity.



Practice problems of Chapter 9

* 1,2,3,18, 19, 22, 23, 29, 34.



Congruence of Integers

* Definition: Given integers a and band ann €N,
we say that a and b are congruent modulo n if
a and b have the same remainders when a and

b are divided by n.

— In other words, n | (a-b).
— We express a=b (mod n)
—9=1(mod4)

— 109 =4 (mod 3)

— 14 # 8 (mod 4)



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).
— If n|(b-a), n|(a-b), vice versa.

e Ifa, bandcareintegers such that a=b (mod n) and
b =c(mod n), then a=c(nodn).



Some properties of congruent modulo n

* For all integers a, a =a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).
— If n|(b-a), n|(a-b), vice versa.

e Ifa, bandcareintegers such that a=b (mod n) and
b =c(mod n), then a=c(nodn).

— Given n|(a-b) and n|(b-c). Now (a-c) = (a-b) + (b-c).
Therefore, n|(a-c).



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)

e (Easy) since(a— c)- (b—d)=(a—b)+ (d—c)
o ac= bd (mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)

* (Easy)since(a—c)- (b—d)=(a—b)+(d—-c)
o ac= bd (mod n)

* Givena-b=t.nandc—-d=1t'.n

e Therefore,a=b+t.n,andc=d+t'n

* Hence ac = bd + n(bt’ + dt + tt’'n).

e This implies that (ac —bd) is divisible by n.

e ac= bd (mod n)



