Proofs (Chapter 4, 5 and 6)



Proofs

e A proof of a mathematical statement is logical

argument which establishes the truth of a
statement.

 We will cover a variety of methods of proofs.

e There are terms which we should know while
proving things.



Terminology

A theorem is a statement that can be shown to be true (via a
proof).

A proof is a sequence of statements that form an argument.

Axioms or postulates are statements taken to be self evident
or assumed to be true.

A lemma (plural lemmas or lemmata) is a theorem useful
within the proof of a theorem.

A corollary is a theorem that can be established from
theorem that has just been proven.

A proposition that is true is usually a ‘less’ important
theorem.

A conjecture is a statement whose truth value is unknown.

The rules of inference are the means used to draw
conclusions from other assertions, and to derive an argument
or a proof.




Theorems: Example

* Theorem (Divisor theorem)

— Let g, b, and c be integers. Then
 Ifa|bandalcthen al(b+c)
* If a|bthen a|bc for all integers ¢
e Ifalbandb]|c, thenalc

e Corrollary:

— If a, b, and c are integers such that a|b and a|c, then a|
mb+nc whenever m and n are integers

— By part 2 it follows that a|mb and a|nc.
— By part 1 it follows that a| (mb+nc).

* What is the assumption? What is the conclusion?



Definitions

An integer n is even if n=2a for some integer a € Z.

A.n integer nis odd if n=2a + 1 for some integer a €
Z.

Two integers have the same parity if they are both
even or they are both odd. Otherwise, they have
opposite parity.

Other definitions...



Divisors

* Consider three integers a, b and ¢, a # 0, such
that b = ac. In this case we say that a divides
b.

* We writea | b.
 We also say that b is a multiple of a.



Divisors (Examples)

* Which of the following is true?
~12] 12
~13]0
—~013
—121 |11
—111] 121



* Accepted facts we will use as obvious
(axioms):
—In algebra,a+b=b+a
— Laws of algebra
— Laws of set theory
— Laws of inference



Euclidean Geometry

Points and lines are our universe.

Definition: Two angles are supplementary if
the sum of the angles is 180 degrees.

Axiom: Given two points, there is exactly one
line.

Theorem: If the two sides of a triangle are
equal, the angles opposite them are equal.

Corollary: If a triangle is equilateral, it is
equiangular.



Multiples of an integer

* How many positive multiples of 12 are less
than 100,000°7

* The number of such multiples is | 100,000/12 |
which is 8333.

* |[n general, the number of t-multiples less
than N is given by:

Ii{ImEZ* | t|m and m=N}| =|N/t|.



The Division Algorithm

Theorem: Let a be an integer and d a positive
integer. Then there are unique integers g and r,
withO <r<d, suchthata=qd +r.

— ais called dividend,

— d is called divisor,

— g is called the quotient, and
—r is called the remainder



Prime numbers

Definition:
A number n = 2, is prime if it is only divisible by

1 and itself. A number n = 2 which is not a prime
is called composite.

* Numbers 2,3,5,7,11, ... are examples of prime
numbers.



Greatest Common Divisor (gcd)

Definition:
The gcd of integers a and b, denoted gcd(a,b), is
the largest integer that divides both a and b.

e gcd(18,24) = 6; gcd(10,9)=1; gcd(6,0) =6



Least Common Multiple (lcm)

Definition:
The Icm of non-zero integers a and b, denoted

lcm(a,b), is the smallest positive integer that is
multiple of both a and b.

* lcm(4,6) =12; lcm(7,7)=7.



Comments

* Not all terms can be defined.

 We accept some ideas as being so intuitively
clear that they require no definitions or
verifications.

 We accept natural ordering of the elements of
N, Z, Q and R. We also accept that for integers
aand b,
—a+b €7
—a—-b&E Z
—ab e Z



Direct Proofs

 We are interested in proving an implication:
P=Q,i.e.if P,then Q.



Direct Proofs

 We are interested in proving an implication:
P=Q,i.e.if P,then Q.
* Consider the truth table of P = Q:

P Q|P>Q
T|T T
T | F F
F|T T
F | F T

* Our goal is to show that this conditional
statement P = Q is true.



Direct Proofs

We are interested in proving an implication:
P=Q,i.e.if P, then Q.
Consider the truth table of P = Q:

P Q|P>@
T|T T
T |F F
F|T T
F | F T

Our goal is to show that this conditional
statement P = Q. is true.

Since P = Q is true, if P is false. Therefore, we
need to show that P = Q is true when P is true.



Direct Proof of P= Q

e Qutline of direct proof

Proposition If P, then Q.

Proof. Suppose P.

Therefore Q. N

e We use the rules of inference, axioms,
definitions, and logical equivalences to prove Q.




Direct Proofs

@ Direct proofs are used when we need to proof statements like
Vx (P(x) — Q(x))

@ Main steps
Our goal is to prove that P(a) — Q(a) is a tautology for a generic
value a.

1. Assume that P(a) is true

2. Using axioms, previous theorems etc. prove that Q(a) is true

3. Conclude that P(a) — Q(a) is true

4. Use the rule of universal generalization to infer
Vx (P(x) — Q(x))



Problem:

e Consider the following hypotheses (premises)
— More | study, more | know
— More | know, more | forget
— More | forget, less | know.

* Conclusion: Everyone who studies more knows less.
— s(x): x studies more; m(x): x knows more;
— f(x) : x forgets more ; I(x): x knows less
* Insymbols
Vx, [(s(x) = m(x)) A (m(x) = f(x)) A (f(x) = I(x)) = (s(x) = I(x)]



Problem (contd.):

* Conclusion: Everyone who studies more knows less.
— s(x): x studies more; m(x): x knows more;
— f(x) : x forgets more ; I(x): x knows less
— In symbols
Vx, [(s(x) = m(x)) A (m(x) = f(x)) A (f(x) = 1(x)) = (s(x) = 1(x)]
* Direct Proof: Let ¢ be an arbitrary element of the universe
 (population). We need to show that s(c) = l(c).

— s(c) is true.



Problem (contd.):

* Conclusion: Everyone who studies more knows less.
— s(x): x studies more; m(x): x knows more;
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— In symbols
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Problem (contd.):

* Conclusion: Everyone who studies more knows less.
— s(x): x studies more; m(x): x knows more;
— f(x) : x forgets more ; |(x): x knows less
— In symbols
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— s(c) is true.
— s(c) = m(c); m(c) = f(c); f(c) = I(c)
— s(c) = I(c) by the transitivity



Problem (contd.):

* Conclusion: Everyone who studies more knows less.

— s(x): x studies more; m(x): x knows more;

— f(x) : x forgets more ; I(x): x knows less

— In symbols
Vx, [(s(x) = m(x)) A (m(x) = f(x)) A (f(x) = I(x)) = (s(x) = 1(x))]
* Direct Proof: Let ¢ be an arbitrary element of the universe

 (population). We need to show that s(c) = l(c).

s(c) is true.

s(c) = m(c); m(c) = f(c); f(c) = I(c)

s(c) = I(c) by the transitivity

Vx (s(x) = I(x)) Universal generalization



Proposition: Vx, if x is odd, x? is odd.



Proposition: Vx, if x is odd, x? is odd.

* We have the starting structure for an arbitrary
element x of the universe:

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.

Therefore x2 is odd. n

v

indicates the end
of the proof




Proposition: Vx, if x is odd, x? is odd.

* Using the definition of odd numbers we get

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.
Then x =2a+1 for some a € Z, by definition of an odd number.

Therefore x? is odd.




Proposition: Vx, if x is odd, x? is odd.

e We are almost there:

Proposition If x is odd, then x? is odd.

Proof. Suppose x is odd.

Then x =2a +1 for some a € Z, by definition of an odd number.
Thus x° = (2a +1)? = 4a” +4a +1=2(2a” + 2a) + 1.

So x? =2b+1 where b is the integer b =2a* + 2a.

Thus x% =2b + 1 for an integer b.

Therefore x? is odd, by definition of an odd number.




Proposition: Vx, if x is odd, x? is odd.

* The above proof can also be written as follows
(x is an arbitrary element of the universe):

— P(x): x is odd = (x=2a+1)
— (x=2a+1) = (x?=2(2a%+2a+1) +1)
— (x2=2b +1) = Q(x?): x% is odd
* Thus P(x) = Q(x?) is true for an arbitrary x.



Show that 1+2+3+ ...+ n =n(n+1)/2

e We assume that n & N.
e We write

— x=1+ 2 + .. + n.



Show that 1+2+3+ ...+ n =n(n+1)/2

e We assume that n & N.
e We write

— x=1+ 2 + .. + n.

= x=n+(n-1)+ .. + 1.(Commutative property)



Show that 1+2+3+ ...+ n =n(n+1)/2

e We assume that n & N.

* We write
— x=1+ 2 + .. + n.
= x=n+(n-1)+ .. + 1. (Commutative property)

= 2x=n(n+1) (adding both the rows)
= Xx=n(n+1)/2



Q. 4(4):

Suppose x, y are integers. If x and y are odd, xy
is odd.

— Assume x and y are odd integers.

— Then x=2a + 1, and y=2b+1 for some integers a and
b.



Q. 4(4):

* Suppose x, y are integers. If x and y are odd, xy
is odd.

— Assume x and y are odd integers.

— Then x=2a + 1, and y=2b+1 for some integers a and
b.

— As aresult xy =(2a+1).(2b+1)=4ab + 2a +2b +1
= 2(2ab+a+b) +1 =2t+1 where t is an integer.

— Therefore, if x and y are odd integers, xy is odd.
— This completes the proof.



Q. 4(6):

e Suppose a,b,c are integers. If a|b and a|c, the a|
(b+c).
— by definitions, a|b implies b=ad for some integer d.

— Similarly a|c imples c= af for some integer f.



Q. 4(6):

e Suppose a,b,c are integers. If a|b and a|c, the a|
(b+c).
— by definitions, a|b implies b=ad for some integer d.
— Similarly a|c imples c= af for some integer f.

— We can now write b + ¢ =a(f+d) = a.t, for some
integer t. Therefore, by definition, a | (b+c).



Q. 4(12):

e fxER,and 0<x<4, e x)_l



Q. 4(12):

. 4
IfxER,and 0 < x <4, A = 1.

— We can rewrite the above equation as 4 > x(4-x).

This is only possible if x(4-x) > 0. This is true since
O<x<4.



Q. 4(12):

4
IfxER,and 0 < x <4, A = 1.

— We can rewrite the above equation as 4 > x(4-x).

This is only possible if x(4-x) > 0. This is true since
O<x<4.

— Upon further simplification we get (x-2)2>0.
— Thus the above statement is true.



Proof by cases

* Sometimes it is easier to prove a theorem by
— breaking it down into cases and
— proving each case separately.

* |tis a direct method of proving statements like
P, VP,V ...V p,=>qisequivalent to proving

(P,=ad)A(p,= ) A (P;=0a) A .... A(p,= Q).



Example

* For any two reals x and y, show that|x+y| < |x]| + |y].

* Proof by cases:



Example

* For any two reals x and y, show that|x+y| < |x]| + |y].

* Proof by cases:
—(Case1)x=20,y=>0

 Theorem is true since (x+y)=x+y.



Example

* For any two reals x and y, show that|x+y| < |x]| + |y].

* Proof by cases:
—(Case1)x=20,y=>0

 Theorem is true since (x+y)=x+y.

— (Case 2)x<0,y =0

 Theorem is true since |x+y| < max{|x|,|y|} < |x]| + |vy|



Example

* For any two reals x and y, show that|x+y| < |x]| + |y].

* Proof by cases:
—(Case1)x=20,y=>0

 Theorem is true since (x+y)=x+y.

— (Case 2)x<0,y =0

e Theorem is true since |x+y| < |y| < |x] + |y]

—(Case 3)x20,y<0

* Very similar to the second case
— (Case 4)x<0,y<0

* In this case [x+y| = |x]| + |y].



Example

Problem: Let n € Z. Prove that 9n2+3n-2 is even.



Example

Problem: Let n € Z. Prove that 9n%+3n-2 is even.

* Observe that 9n?+3n-2=(3n+2)(3n-1)

* nisaninteger —(3n+2)(3n-1) is the product of
two integers

e Case 1: Assume 3n+2 is even

— 9n%+3n-2 is trivially even because it is the product
of two integers, one of which is even

e Case 2: Assume 3n+2 is odd

— 3n+2-3 is even — 3n-1is even — 9n?+3n-2 is even
because one of its factors is even




Proof by cases

* In proving a statement is true, we sometimes have
to examine multiple case before showing the
statement is true in all possible scenarios.

Proposition IfneN, then 1+(-1)"(2n—-1) is a multiple of 4.

Proof. Suppose n € N.
Then n is either even or odd. Let’s consider these two cases separately.

Case 1. Suppose n is even. Then n =2k for some 2€ Z, and (-1)" =1.
Thus 1+(-1)"(2n—-1) =1+(1)(2-2k —1) = 4k, which is a multiple of 4.

Case 2. Suppose n is odd. Then n =2k +1 for some k€ Z, and (-1)" = -1.
Thus 1+(-1)"(2n—-1) =1-(2(2k +1)-1) = —4k, which is a multiple of 4.

These cases show that 1+(-1)"(2n - 1) is always a multiple of 4. |



Practice problems from the text:

* Chapter 4
—-3,5,7,9, 14, 18, 19, 20, 21, 22, 26



Congruence of Integers

* Definition: Given integers a and b and ann €N,
we say that a and b are congruent modulo n if
a and b have the same remainders when a and
b are divided by n.
— In other words, n | (a-b).
— We express a=b (mod n)
—9=1(mod4)
— 109 =4 (mod 3)
— 14 # 8 (mod 4)



Problem

* Proposition: Given integers aand b and an n €
N. If a = b (mod n), then a?= b? (mod n).

* Direct Proof: Suppose a =b (mod n).
— By definition, n|(a-b).
— This means (a-b) = nc for some integer c.

— Multiplying both sides by (a+b) we get
a’ —b? = nc(a+b).

— Since c(a+b) is an integer, the above equation tells
us that n|(a? —b?).

— From the definition it follows that a2 = b2 (mod n).



Example

Show that VK& Z k =1(mod 3) = k3=1(mod 9)



Example

Show that VK& Z k =1(mod 3) = k3=1(mod 9)
1. k =1(mod 3)
2. dn k-1=3n



Example

Show that VK& Z k =1(mod 3) = k3=1(mod 9)
k =1(mod 3)

dn k-1=3n

dn k=3n+1

dn k3=(3n+1)3

dn k3=27n3+27n2+9n +1

dn k3-1=27n3+27n2+9n

dn k3-1=(3n3+3n?+n)9
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Example

Show that VK& Z k =1(mod 3) = k3=1(mod 9)
k =1(mod 3)

dn k-1=3n

dn k=3n+1

dn k3=(3n+1)3

dn k3=27n3+27n2+9n +1

dn k3-1=27n3+27n2+9n

dn k3-1=(3n3+3n?%+n)9

dm k3-1=m-9

k 3=1(mod 9)
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Discussion

* The first strategy you should try to prove an
assertion is the direct proof method.

 Don’t try to do too much at once. Be patient:
take small steps using the appropriate
definitions and previously proven facts.



Contrapositive Proof (Chapter 5)

e We use the factthatP = Qand -Q = =P are
logically equivalent.

 The expression =Q = =P is called the
contrapositive formof P = Q.






Contrapositive Proof (Chapter 5)

We use the factthat P = Qand - Q = —-P are
logically equivalent.

The expression =Q = —=P is called the
contrapositive formof P = Q.

In order to prove P = Q is true, it suffices to
instead prove that =Q = =P is true.

In order to use direct proof to show - Q = —=P
is true, we would assume that = Q is true, and
use this to deduce that =P is true.



Outline for Contrapositive Proof

Proposition If P, then Q.

Proof. Suppose ~ Q.

Therefore ~ P. |




Example

 Prove that for any sets A, B and C that if A-CZ A-B,
thenB € C

* Proof: The contrapositive statement of the above is



Example

 Prove that for any sets A, B and C that if A-CZ A-B,
thenB < C

* Proof: The contrapositive statement of the above is if
BC C, A-CC A-B.

* To conclude that A-CC A-B, we must show that if
x € A-C, then x & A — B.



Example

* Prove that for any sets A, B and C that if A-CZ A-B,
thenB £ C

* Proof: The contrapositive statement of the above is if
BC C, A-CC A-B.

* To conclude that A-CC A-B, we must show that if
x € A-C, then x & A — B.
— Suppose x € A—C. This means that x E A and x & C
— However, we are given that B C C.
— Because x & C, we deduce that x €& B either.
— Thus we have x € A and x & B.
— This implies that x € A-B.



Example

Prove that for any sets A, B and C that if A-CZ A-B,
thenB ¢ C

Proof: The contrapositive statement of the above is if
BC C, A-CC A-B.

To conclude that A-C C A-B, we must show that if
x € A-C, then x € A — B.

— Suppose x € A—C. This means that x E A and x & C

— However, we are given that B C C.

— Because x & C, we deduce that x & B either.

— Thus we have x € A and x & B.

— This implies that x € A-B.

Contrapositive statement is true.
Original statement is also true



Example

Proposition Suppose x,y€Z. If 5/xy, then 51x and 51.

Proof. (Contrapositive) Suppose it is not true that 5/x and 57y.
By DeMorgan’s law, it is not true that 51x or it is not true that 51y.
Therefore 5|x or 5|y. We consider these possibilities separately.
Case 1. Suppose 5|x. Then x =5a for some a € Z.

From this we get xy=5(ay), and that means 5| xy.

Case 2. Suppose 5|y. Then y=5a for some a € Z.

From this we get xy =5(ax), and that means 5| xy.

The above cases show that 5|xy, so it is not true that 5{xy.



Example 5(11)

* Suppose X, y are integers. If x?(y+3) is even, the x is
even ory is odd.

* The equivalent contrapositive statement is:
— if x is odd and y is even, x?(y+3) is odd.



Practice Problems of Chapter 5

* 4,5,12,13,17, 24, 25,27, 28



Proof by Contradiction (Chapter 6)

This method is not just limited to conditional
statements.

— Show that the number+/2 is irrational. (Note: A

number is irrational if it cannot be expressed as %
where a and b are integers, and b is non-zero.)



Proof by Contradiction (Chapter 6)

Outline for Proof by Contradiction

Proposition P.

Proof. Suppose ~ P.

Therefore C A ~C. |

e (Cissome statement.



Proof by Contradiction (Chapter 6)

Outline for Proof by Contradiction

Proposition P.

Proof. Suppose ~ P.
: -P= (C A =C)

Therefore C A ~C. |

e (Cissome statement.



Show that the number v2 is irrational.

* Suppose =P : /2 is rational.



Show that the number v2 is irrational.

e Suppose — P : /2 is rational.

— Then by definition/2 = % where a and b are integers and a

and non-zero b have no common factors, i.e. gcd(a,b) = 1.



Show that the number v2 is irrational.

e Suppose — P : /2 is rational.

— Then by definition/2 = % where a and b are integers and a
and non-zero b have no common factors, i.e. gcd(a,b) = 1.

— Squaring we get 2b? = a%. This implies that a is even.
Therefore, a=2k, for some k.



Show that the number v2 is irrational.

* Suppose — P: /2 is rational.

— Then by definition/2 = % where a and b are integers and a
and non-zero b have no common factors, i.e. gcd(a,b) = 1.

— Squaring we get 2b? = a%. This implies that a is even.
Therefore, a=2k, for some k.

— We can write 2b% = 4k? i.e. b? = 2k?.

— Hence b is also even.



Show that the number v2 is irrational.

e Suppose — P : /2 is rational.

— Then by definition/2 = % where a and b are integers and a
and non-zero b have no common factors, i.e. gcd(a,b) = 1.

— Squaring we get 2b? = a%. This implies that a is even.
Therefore, a=2k, for some k.

— We can write 2b? = 4k% i.e. b% = 2k?.

— Hence b is also even.

— This means that a and b have 2 as a common factor.
— We arrive at a contradiction.

— =P =F

— Pis true.



Arrangement of squares

* Consider a 32 x 33 rectangle partitioned into
nine squares:

14
18

4

10

1 7
\

15
9 8

e Claim: Smallest square in the partition must
always lie in the middle.



Proof by Contradiction.

e Suppose it is possible to place the smallest square on
the boundary.

?




Proof by Contradiction.

e Suppose it is possible to place the smallest square on
the boundary.

?

* Observe that the squares immediately adjacent to
the smallest square are larger.



Proof by Contradiction.

e Suppose it is possible to place the smallest square on
the boundary.

?

* Observe that the squares immediately adjacent to
the smallest square are larger.

 The area marked ? cannot be covered by larger size
squares.



Proof by Contradiction.

Suppose it is possible to place the smallest square on

the boundary.

?

Observe that the squares immediately adjacent to
the smallest square are larger.

The area marked ? cannot be covered by larger size
squares.

T
T
T

ne starting assumption leads to a contradiction.
ne starting assumption is wrong.

nerefore, the smallest square must appear in the

middle of the configuration of squares.



There are infinitely many primes.



There are infinitely many primes.

e Suppose there are finite number of primes, and they
are, say, Py, Py, «-er Py
* Let p,is the largest prime number in the list.



There are infinitely many primes.

e Suppose there are finite number of primes, and they
are, say, Py, Py, weer Ppre
* Let p,is the largest prime number in the list.

* Consider the numbera=pxp,x...xp, + 1.



There are infinitely many primes.

Suppose there are finite number of primes, and they
are, say, Py, Py, weer Ppre
Let p, is the largest prime number in the list.

Consider the number a =p x p,X ....x p, + 1.

Since a is not divisible by p, for any i, a is also a prime
number.



There are infinitely many primes.

Suppose there are finite number of primes, and they
are, say, Py, Py, weer Ppre
Let p, is the largest prime number in the list.

Consider the number a =p x p,X ....x p, + 1.

Since a is not divisible by a, for any i, a is also a prime
number.

Thus a is a prime number larger that p,.
The starting assumption leads to a contradiction.

This proves that there are infinitely many prime.



Proving conditional statements by
contradiction

Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ~ Q.

Therefore C A ~C.




Proving conditional statements by
contradiction

Outline for Proving a Conditional
Statement with Contradiction

Proposition If P, then Q.

Proof. Suppose P and ~ Q.

Therefore C A ~C.

PA-Q =F



Example

* Let xand y be real numbers. If 5x+25y = 1723, then x
or y is not an integer.



Example

* Let xand y be real numbers. If 5x+25y = 1723, then x
or y is not an integer.

 Here P(x,y): 5x + 25y =1723;
* Q(x,y): (xis not an integer) v (y is not an integer)



Example

Let x and y be real numbers. If 5x+25y = 1723, then x
or y is not an integer.

Here P(x,y): 5x + 25y =1723;

Q(x,y): (x is not an integer) v (y is not an integer)
Suppose Vx,y (P(x,y) A= Q(x,y))

- Q(x,y) : x and y are integers.



Example

Let x and y be real numbers. If 5x+25y = 1723, then x
or y is not an integer.

Here P(x,y): 5x + 25y =1723;

Q(x,y): (x is not an integer) v (y is not an integer)
Suppose Vx,y (P(x,y) A= Q(x,y))

- Q(x,y) : x and y are integers.

Note that 5x + 25y =1723 is 5(x+5y) =1723.

Since x+5y is an integer, therefore 5 divides 1723, a
contradiction.



Example

* Consider the statement: For all nonnegative
real numbers a, b, and ¢, if a2 + b2=c2, then
a+bz2c.

— Solve in the class.



Fill in the blanks

If we are proving the implication p — q we assume. ..

(1) p for a direct proof.
(2) for a proof by contrapositive
(3) for a proof by contradiction.

We are then allowed to use the truth of the assumption in 1, 2, or & in the proof.

After the initial assumption, we prove p — q by showing

(4) q must follow from the assumptions for a direct proof.
(5) must follow the assumptions for a proof by contrapositive.
(6) must follow the assumptions for a proof by contradiction.




Practice problems from Chapter 6.

* 3,4,5, 8, 14, 19, 21.



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).



Some properties of congruent modulo n

* Forallintegers a, a=a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).
— If n|(b-a), n|(a-b), vice versa.

e Ifa, bandcareintegers such that a=b (mod n) and
b =c(mod n), thena=c(nodn).



Some properties of congruent modulo n

* For all integers a, a =a (mod n).
— Follows easily sincea—a=0=nx0.

* Ifaandb areintegers suchthata=b (modn), b=a
(mod n).
— If n|(b-a), n|(a-b), vice versa.

e Ifa, bandcareintegers such that a=b (mod n) and
b =c(mod n), thena=c(nodn).

— Given n|(a-b) and n|(b-c). Now (a-c) = (a-b) + (b-c).
Therefore, n|(a-c).



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)

e (Easy) since(a— c)- (b—d)=(a—b)+ (d—c)
o ac= bd (mod n)



Modular arithmetic

e (5(24))Suppose that a, b and ¢, d are integers
such that a =b (mod n) and c =d (mod n).
Then

o(a+c)=b+d (mod n) (easy)
oa— c=b—-d(mod n)

* (Easy)since(a—c)- (b—d)=(a—b)+(d—-c)
o ac= bd (mod n)

* Givena-b=t.nandc—-d=1t'.n

e Therefore,a=b+t.n,andc=d+t'n

* Hence ac = bd + n(bt’ + dt + tt’'n).

e This implies that (ac —bd) is divisible by n.

e ac= bd (mod n)



