Proofs (Chapter 4, 5 and 6)

Proofs

- A proof of a mathematical statement is logical argument which establishes the truth of a statement.
- We will cover a variety of methods of proofs.
- There are terms which we should know while proving things.

Terminology

- A <u>theorem</u> is a statement that can be shown to be true (via a proof).
- A <u>proof</u> is a sequence of statements that form an argument.
- <u>Axioms</u> or <u>postulates</u> are statements taken to be self evident or assumed to be true.
- A <u>lemma</u> (plural lemmas or lemmata) is a theorem useful within the proof of a theorem.
- A <u>corollary</u> is a theorem that can be established from theorem that has just been proven.
- A <u>proposition</u> that is true is usually a 'less' important theorem.
- A <u>conjecture</u> is a statement whose truth value is unknown.
- The <u>rules of inference</u> are the means used to draw conclusions from other assertions, and to derive an argument or a proof.

Theorems: Example

- Theorem (Divisor theorem)
 - Let *a*, *b*, and *c* be integers. Then
 - If *a*|*b* and *a*|*c* then *a*|(*b*+*c*)
 - If *a*|*b* then *a*|*bc* for all integers c
 - If a | b and b | c, then a | c
- Corrollary:
 - If a, b, and c are integers such that a|b and a|c, then a|
 mb+nc whenever m and n are integers
 - By part 2 it follows that a | mb and a | nc.
 - By part 1 it follows that a (mb+nc).
- What is the assumption? What is the conclusion?

Definitions

- An integer n is **even** if n=2a for some integer $a \in Z$.
- A.n integer n is odd if n= 2a + 1 for some integer a ∈
 Z.
- Two integers have the same parity if they are both even or they are both odd. Otherwise, they have opposite parity.
- Other definitions...

Divisors

- Consider three integers a, b and c, a ≠ 0, such that b = ac. In this case we say that a divides b.
- We write a | b.
- We also say that **b** is a multiple of **a**.

Divisors (Examples)

- Which of the following is true?
 - 12 | 12
 - -13 | 0
 - -0|13
 - 121 | 11
 - -11 | 121

Accepted facts we will use as obvious (axioms):

- In algebra, a + b = b + a
- Laws of algebra
- Laws of set theory
- Laws of inference

Euclidean Geometry

- Points and lines are our universe.
- Definition: Two angles are supplementary if the sum of the angles is 180 degrees.
- Axiom: Given two points, there is exactly one line.
- Theorem: If the two sides of a triangle are equal, the angles opposite them are equal.
- Corollary: If a triangle is equilateral, it is equiangular.

Multiples of an integer

- How many positive multiples of 12 are less than 100,000?
- The number of such multiples is [100,000/12] which is 8333.
- In general, the number of t-multiples less than N is given by:

 $|\{m \in Z^+ \mid t \mid m \text{ and } m \leq N\}| = \lfloor N/t \rfloor.$

The Division Algorithm

Theorem: Let a be an integer and d a positive integer. Then there are unique integers q and r, with $0 \le r < d$, such that a = qd + r.

- a is called dividend,
- d is called divisor,
- q is called the quotient, and
- r is called the remainder

Prime numbers

Definition:

A number $n \ge 2$, is **prime** if it is only divisible by 1 and itself. A number $n \ge 2$ which is not a prime is called **composite**.

• Numbers 2,3,5,7,11, ... are examples of prime numbers.

Greatest Common Divisor (gcd)

Definition:

The gcd of integers a and b, denoted gcd(a,b), is the largest integer that divides both a and b.

• gcd(18,24) = 6; gcd(10,9)=1; gcd(6,0) =6

Least Common Multiple (Icm)

Definition:

The lcm of non-zero integers a and b, denoted lcm(a,b), is the smallest positive integer that is multiple of both a and b.

• lcm(4,6) = 12; lcm(7,7)=7.

Comments

- Not all terms can be defined.
- We accept some ideas as being so intuitively clear that they require no definitions or verifications.
- We accept natural ordering of the elements of N, Z, Q and R. We also accept that for integers a and b,
 - $-a+b \in Z$
 - $-a-b \in Z$
 - $-ab \in Z.$

• We are interested in proving an implication: $P \Rightarrow Q$, i.e. if P, then Q.

- We are interested in proving an implication: $P \Rightarrow Q$, i.e. if P, then Q.
- Consider the truth table of $P \Rightarrow Q$:

 Our goal is to show that this conditional statement P ⇒ Q is true.

- We are interested in proving an implication:
 P ⇒ Q, i.e. if P, then Q.
- Consider the truth table of $P \Rightarrow Q$:

P	\boldsymbol{Q}	$P \Rightarrow Q$
T	T	T
T	F	F
F	T	T
F	F	T

- Our goal is to show that this conditional statement P ⇒ Q is true.
- Since $P \Rightarrow Q$ is true, if P is false. Therefore, we need to show that $P \Rightarrow Q$ is true when P is true.

Direct Proof of P \Rightarrow **Q**

• Outline of direct proof

```
Proposition If P, then Q.Proof. Suppose P.\vdotsTherefore Q.
```

• We use the rules of inference, axioms, definitions, and logical equivalences to prove Q.

■ Direct proofs are used when we need to proof statements like ∀x (P(x) → Q(x))

Main steps

Our goal is to prove that $P(a) \rightarrow Q(a)$ is a tautology for a generic value a.

- 1. Assume that P(a) is true
- 2. Using axioms, previous theorems etc. prove that Q(a) is true
- 3. Conclude that $P(a) \rightarrow Q(a)$ is true
- 4. Use the rule of universal generalization to infer

 $\forall x (P(x) \rightarrow Q(x))$

Problem:

- Consider the following hypotheses (premises)
 - More I study, more I know
 - More I know, more I forget
 - More I forget, less I know.
- Conclusion: Everyone who studies more knows less.
 - s(x): x studies more; m(x): x knows more;
 - f(x) : x forgets more ; I(x): x knows less
- In symbols

- Conclusion: Everyone who studies more knows less.
 - s(x): x studies more; m(x): x knows more;
 - f(x) : x forgets more ; l(x): x knows less
 - In symbols

- Direct Proof: Let **c** be an arbitrary element of the universe
- (population). We need to show that $s(c) \Rightarrow l(c)$.
 - s(c) is true.

- Conclusion: Everyone who studies more knows less.
 - s(x): x studies more; m(x): x knows more;
 - f(x) : x forgets more ; I(x): x knows less
 - In symbols

- Direct Proof: Let **c** be an arbitrary element of the universe
- (population). We need to show that $s(c) \Rightarrow l(c)$.
 - s(c) is true.
 - $s(c) \Rightarrow m(c); m(c) \Rightarrow f(c); f(c) \Rightarrow l(c)$

- Conclusion: Everyone who studies more knows less.
 - s(x): x studies more; m(x): x knows more;
 - f(x) : x forgets more ; I(x): x knows less
 - In symbols

- Direct Proof: Let **c** be an arbitrary element of the universe
- (population). We need to show that $s(c) \Rightarrow l(c)$.
 - s(c) is true.
 - $s(c) \Rightarrow m(c); m(c) \Rightarrow f(c); f(c) \Rightarrow l(c)$
 - $s(c) \Rightarrow l(c)$ by the transitivity

- Conclusion: Everyone who studies more knows less.
 - s(x): x studies more; m(x): x knows more;
 - f(x) : x forgets more ; I(x): x knows less
 - In symbols

- Direct Proof: Let c be an arbitrary element of the universe
- (population). We need to show that $s(c) \Rightarrow l(c)$.
 - s(c) is true.
 - $s(c) \Rightarrow m(c); m(c) \Rightarrow f(c); f(c) \Rightarrow l(c)$
 - $s(c) \Rightarrow l(c)$ by the transitivity
 - $\forall x (s(x) \Rightarrow I(x))$ Universal generalization

• We have the starting structure for an arbitrary element x of the universe:

Proposition If x is odd, then x^2 is odd.

Proof. Suppose *x* is odd.

Therefore x^2 is odd.

indicates the end of the proof

• Using the definition of odd numbers we get

Proposition If x is odd, then x^2 is odd.

Proof. Suppose x is odd. Then x = 2a + 1 for some $a \in \mathbb{Z}$, by definition of an odd number.

Therefore x^2 is odd.

• We are almost there:

Proposition If *x* is odd, then x^2 is odd.

Proof. Suppose x is odd. Then x = 2a + 1 for some $a \in \mathbb{Z}$, by definition of an odd number. Thus $x^2 = (2a + 1)^2 = 4a^2 + 4a + 1 = 2(2a^2 + 2a) + 1$. So $x^2 = 2b + 1$ where b is the integer $b = 2a^2 + 2a$. Thus $x^2 = 2b + 1$ for an integer b. Therefore x^2 is odd, by definition of an odd number.

 The above proof can also be written as follows (x is an arbitrary element of the universe):

$$- P(x): x \text{ is odd} \Rightarrow (x=2a+1)$$

$$-(x=2a+1) \Rightarrow (x^2=2(2a^2+2a+1)+1)$$

$$-(x^2=2b+1) \Rightarrow Q(x^2): x^2 \text{ is odd}$$

• Thus $P(x) \Rightarrow Q(x^2)$ is true for an arbitrary x.

Show that 1+2+3+ ...+ n =n(n+1)/2

- We assume that $n \in N$.
- We write

- x = 1 + 2 + ... + n.

Show that 1+2+3+ ...+ n =n(n+1)/2

- We assume that $n \in N$.
- We write

- x = 1 + 2 + ... + n.

 \Rightarrow x = n + (n-1) + ... + 1. (Commutative property)

Show that 1+2+3+ ...+ n =n(n+1)/2

- We assume that $n \in N$.
- We write

- x = 1 + 2 + ... + n.

- \Rightarrow x = n + (n-1) + ... + 1. (Commutative property)
- \Rightarrow 2x = n(n+1) (adding both the rows)
- \Rightarrow x = n(n+1)/2

Q. 4(4):

- Suppose x, y are integers. If x and y are odd, xy is odd.
 - Assume x and y are odd integers.
 - Then x=2a + 1, and y=2b+1 for some integers a and
 b.

Q. 4(4):

- Suppose x, y are integers. If x and y are odd, xy is odd.
 - Assume x and y are odd integers.
 - Then x=2a + 1, and y=2b+1 for some integers a and
 b.
 - As a result xy = (2a+1).(2b+1)=4ab + 2a +2b +1 = 2(2ab+a+b) +1 = 2t+1 where t is an integer.
 - Therefore, if x and y are odd integers, xy is odd.
 - This completes the proof.

Q. 4(6):

- Suppose a,b,c are integers. If a | b and a | c, the a | (b+c).
 - by definitions, a|b implies b=ad for some integer d.
 - Similarly a | c imples c= af for some integer f.
Q. 4(6):

- Suppose a,b,c are integers. If a | b and a | c, the a | (b+c).
 - by definitions, a|b implies b=ad for some integer d.
 - Similarly a | c imples c= af for some integer f.
 - We can now write b + c =a(f+d) = a.t, for some integer t. Therefore, by definition, a | (b+c).

Q. 4(12):

• If
$$x \in R$$
, and $0 < x < 4$, $\frac{4}{x(4-x)} \ge 1$.

Q. 4(12):

- If $x \in R$, and 0 < x < 4, $\frac{4}{x(4-x)} \ge 1$.
 - We can rewrite the above equation as $4 \ge x(4-x)$. This is only possible if x(4-x) > 0. This is true since 0 < x < 4.

Q. 4(12):

- If $x \in \mathbb{R}$, and 0 < x < 4, $\frac{4}{x(4-x)} \ge 1$.
 - We can rewrite the above equation as $4 \ge x(4-x)$. This is only possible if x(4-x) > 0. This is true since 0 < x < 4.
 - Upon further simplification we get $(x-2)^2 \ge 0$.
 - Thus the above statement is true.

Proof by cases

- Sometimes it is easier to prove a theorem by
 - breaking it down into cases and
 - proving each case separately.
- It is a direct method of proving statements like
 p₁ ∨ p₂ ∨ ∨ p_n ⇒ q is equivalent to proving
 (p₁ ⇒ q) ∧ (p₂ ⇒ q) ∧ (p₃ ⇒ q) ∧ ∧ (p_n ⇒ q).

- For any two reals x and y, show that $|x+y| \le |x| + |y|$.
- Proof by cases:

- For any two reals x and y, show that $|x+y| \le |x| + |y|$.
- Proof by cases:
 - (Case 1) x \ge 0, y \ge 0
 - Theorem is true since (x+y) = x + y.

- For any two reals x and y, show that $|x+y| \le |x| + |y|$.
- Proof by cases:
 - (Case 1) $x \ge 0$, $y \ge 0$
 - Theorem is true since (x+y) = x + y.
 - (Case 2) x < 0, y \ge 0
 - Theorem is true since $|x+y| < max\{|x|, |y|\} < |x| + |y|$

- For any two reals x and y, show that $|x+y| \le |x| + |y|$.
- Proof by cases:
 - (Case 1) $x \ge 0$, $y \ge 0$
 - Theorem is true since (x+y) = x + y.
 - (Case 2) x < 0, y \ge 0
 - Theorem is true since |x+y| < |y| < |x| + |y|
 - (Case 3) x \ge 0, y < 0
 - Very similar to the second case
 - (Case 4) x < 0, y < 0
 - In this case |x+y| = |x| + |y|.

Problem: Let $n \in Z$. Prove that $9n^2+3n-2$ is even.

Problem: Let $n \in Z$. Prove that $9n^2+3n-2$ is even.

- Observe that $9n^2+3n-2=(3n+2)(3n-1)$
- n is an integer →(3n+2)(3n-1) is the product of two integers
- Case 1: Assume 3n+2 is even

→ 9n²+3n-2 is trivially even because it is the product of two integers, one of which is even

• Case 2: Assume 3n+2 is odd

→ 3n+2-3 is even → 3n-1 is even → 9n²+3n-2 is even because one of its factors is even

Proof by cases

 In proving a statement is true, we sometimes have to examine multiple case before showing the statement is true in all possible scenarios.

Proposition If $n \in \mathbb{N}$, then $1 + (-1)^n (2n-1)$ is a multiple of 4.

Proof. Suppose $n \in \mathbb{N}$. Then *n* is either even or odd. Let's consider these two cases separately.

Case 1. Suppose *n* is even. Then n = 2k for some $k \in \mathbb{Z}$, and $(-1)^n = 1$. Thus $1 + (-1)^n (2n-1) = 1 + (1)(2 \cdot 2k - 1) = 4k$, which is a multiple of 4.

Case 2. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $(-1)^n = -1$. Thus $1 + (-1)^n (2n - 1) = 1 - (2(2k + 1) - 1) = -4k$, which is a multiple of 4.

These cases show that $1 + (-1)^n (2n - 1)$ is always a multiple of 4.

Practice problems from the text:

• Chapter 4

- 3,5, 7, 9, 14, 18, 19, 20, 21, 22, 26

Congruence of Integers

- Definition: Given integers a and b and an n ∈ N, we say that a and b are congruent modulo n if a and b have the same remainders when a and b are divided by n.
 - In other words, n | (a-b).
 - We express $a \equiv b \pmod{n}$
 - $-9 \equiv 1 \pmod{4}$
 - $-109 \equiv 4 \pmod{3}$
 - 14 ≠ 8 (mod 4)

Problem

- Proposition: Given integers a and b and an n ∈
 N. If a = b (mod n), then a² = b² (mod n).
- Direct Proof: Suppose $a \equiv b \pmod{n}$.
 - By definition, n|(a-b).
 - This means (a-b) = nc for some integer c.
 - Multiplying both sides by (a+b) we get $a^2 - b^2 = nc(a+b)$.
 - Since c(a+b) is an integer, the above equation tells us that n | (a² – b²).
 - From the definition it follows that $a^2 \equiv b^2 \pmod{n}$.

- 1. $k \equiv 1 \pmod{3}$
- 2. $\exists n \ k-1 = 3n$

- 1. $k \equiv 1 \pmod{3}$
- 2. $\exists n \ k-1 = 3n$
- 3. $\exists n \ k = 3n + 1$
- 4. $\exists n \ k^3 = (3n + 1)^3$
- 5. $\exists n \ k^3 = 27n^3 + 27n^2 + 9n + 1$
- 6. $\exists n \ k^{3}-1 = 27n^{3} + 27n^{2} + 9n$
- 7. $\exists n \ k^{3}-1 = (3n^{3} + 3n^{2} + n) \cdot 9$

- 1. $k \equiv 1 \pmod{3}$
- 2. $\exists n \ k-1 = 3n$
- 3. $\exists n \ k = 3n + 1$
- 4. $\exists n \ k^3 = (3n + 1)^3$
- 5. $\exists n \ k^3 = 27n^3 + 27n^2 + 9n + 1$
- 6. $\exists n \ k^{3}-1 = 27n^{3} + 27n^{2} + 9n$
- 7. $\exists n \ k^{3}-1 = (3n^{3} + 3n^{2} + n) \cdot 9$
- 8. $\exists m \ k^{3} 1 = m \cdot 9$
- 9. $k^{3} \equiv 1 \pmod{9}$

Discussion

- The first strategy you should try to prove an assertion is the direct proof method.
- Don't try to do too much at once. Be patient: take small steps using the appropriate definitions and previously proven facts.

Contrapositive Proof (Chapter 5)

- We use the fact that P ⇒ Q and ¬Q ⇒ ¬P are logically equivalent.
- The expression $\neg Q \Rightarrow \neg P$ is called the **contrapositive** form of $P \Rightarrow Q$.

Contrapositive Proof (Chapter 5)

- We use the fact that P ⇒ Q and ¬Q ⇒ ¬P are logically equivalent.
- The expression $\neg Q \Rightarrow \neg P$ is called the **contrapositive** form of $P \Rightarrow Q$.
- In order to prove P ⇒ Q is true, it suffices to instead prove that ¬Q ⇒ ¬P is true.
- In order to use direct proof to show ¬Q ⇒ ¬P is true, we would assume that ¬Q is true, and use this to deduce that ¬P is true.

Outline for Contrapositive Proof

Proposition If P, then Q. *Proof.* Suppose ~ Q. \vdots Therefore ~ P.

- Prove that for any sets A, B and C that if A-C ⊈ A-B, then B ⊈ C
- **Proof:** The contrapositive statement of the above is

- Prove that for any sets A, B and C that if A-C ⊈ A-B, then B ⊈ C
- Proof: The contrapositive statement of the above is if
 B ⊆ C , A-C ⊆ A-B.
- To conclude that $A-C \subseteq A-B$, we must show that if $x \in A-C$, then $x \in A B$.

- Prove that for any sets A, B and C that if A-C ⊈ A-B, then B ⊈ C
- Proof: The contrapositive statement of the above is if $B \subseteq C$, A-C \subseteq A-B.
- To conclude that $A-C \subseteq A-B$, we must show that if $x \in A-C$, then $x \in A B$.
 - Suppose $x \in A$ –C. This means that $x \in A$ and $x \notin C$
 - However, we are given that $B \subseteq C$.
 - Because $x \notin C$, we deduce that $x \notin B$ either.
 - Thus we have $x \in A$ and $x \notin B$.
 - This implies that $x \in A-B$.

- Prove that for any sets A, B and C that if A-C ⊈ A-B, then B ⊈ C
- Proof: The contrapositive statement of the above is if B ⊆ C , A-C ⊆ A-B.
- To conclude that $A-C \subseteq A-B$, we must show that if $x \in A-C$, then $x \in A B$.
 - Suppose $x \in A$ –C. This means that $x \in A$ and $x \notin C$
 - However, we are given that $B \subseteq C$.
 - Because $x \notin C$, we deduce that $x \notin B$ either.
 - Thus we have $x \in A$ and $x \notin B$.
 - This implies that $x \in A-B$.
- Contrapositive statement is true.
- Original statement is also true

Proposition Suppose $x, y \in \mathbb{Z}$. If $5 \nmid xy$, then $5 \nmid x$ and $5 \nmid y$.

Proof. (Contrapositive) Suppose it is not true that $5 \nmid x$ and $5 \nmid y$. By DeMorgan's law, it is not true that $5 \nmid x$ or it is not true that $5 \nmid y$. Therefore $5 \mid x$ or $5 \mid y$. We consider these possibilities separately. **Case 1.** Suppose $5 \mid x$. Then x = 5a for some $a \in \mathbb{Z}$. From this we get xy = 5(ay), and that means $5 \mid xy$. **Case 2.** Suppose $5 \mid y$. Then y = 5a for some $a \in \mathbb{Z}$. From this we get xy = 5(ax), and that means $5 \mid xy$. The above cases show that $5 \mid xy$, so it is not true that $5 \nmid xy$.

Example 5(11)

- Suppose x, y are integers. If x²(y+3) is even, the x is even or y is odd.
- The equivalent contrapositive statement is:
 - if x is odd and y is even, $x^2(y+3)$ is odd.

Practice Problems of Chapter 5

• 4, 5, 12, 13, 17, 24, 25, 27, 28

Proof by Contradiction (Chapter 6)

- This method is not just limited to conditional statements.
 - Show that the number $\sqrt{2}$ is irrational. (Note: A number is irrational if it cannot be expressed as $\frac{a}{b}$ where a and b are integers, and b is non-zero.)

Proof by Contradiction (Chapter 6)

Outline for Proof by Contradiction

```
Proposition P.

Proof. Suppose ~ P.

\vdots

Therefore C \wedge \sim C.
```

• C is some statement.

Proof by Contradiction (Chapter 6)

Outline for Proof by Contradiction

```
Proposition P.Proof. Suppose ~ P.::Therefore C \land \sim C.
```

• C is some statement.

Show that the number $\sqrt{2}$ is irrational.

• Suppose $\neg P : \sqrt{2}$ is rational.

Show that the number $\sqrt{2}$ is irrational.

• Suppose $\neg P: \sqrt{2}$ is rational.

- Then by definition $\sqrt{2} = \frac{a}{b}$ where a and b are integers and a and non-zero b have no common factors, i.e. gcd(a,b) = 1.
Show that the number $\sqrt{2}$ is irrational.

- Suppose $\neg P: \sqrt{2}$ is rational.
 - Then by definition $\sqrt{2} = \frac{a}{b}$ where a and b are integers and a and non-zero b have no common factors, i.e. gcd(a,b) = 1.
 - Squaring we get 2b² = a². This implies that a is even.
 Therefore, a=2k, for some k.

Show that the number $\sqrt{2}$ is irrational.

- Suppose $\neg P: \sqrt{2}$ is rational.
 - Then by definition $\sqrt{2} = \frac{a}{b}$ where a and b are integers and a and non-zero b have no common factors, i.e. gcd(a,b) = 1.
 - Squaring we get 2b² = a². This implies that a is even.
 Therefore, a=2k, for some k.
 - We can write $2b^2 = 4k^{2}$, i.e. $b^2 = 2k^2$.
 - Hence b is also even.

Show that the number $\sqrt{2}$ is irrational.

- Suppose $\neg P: \sqrt{2}$ is rational.
 - Then by definition $\sqrt{2} = \frac{a}{b}$ where a and b are integers and a and non-zero b have no common factors, i.e. gcd(a,b) = 1.
 - Squaring we get 2b² = a². This implies that a is even.
 Therefore, a=2k, for some k.
 - We can write $2b^2 = 4k^{2}$, i.e. $b^2 = 2k^2$.
 - Hence b is also even.
 - This means that a and b have 2 as a common factor.
 - We arrive at a contradiction.
 - $\neg \mathsf{P} \Rightarrow \mathsf{F}$
 - P is true.

Arrangement of squares

 Consider a 32 x 33 rectangle partitioned into nine squares:

• Claim: Smallest square in the partition must always lie in the middle.

 Suppose it is possible to place the smallest square on the boundary.

• Suppose it is possible to place the smallest square on the boundary.

• Observe that the squares immediately adjacent to the smallest square are larger.

• Suppose it is possible to place the smallest square on the boundary.

- Observe that the squares immediately adjacent to the smallest square are larger.
- The area marked ? cannot be covered by larger size squares.

 Suppose it is possible to place the smallest square on the boundary.

- Observe that the squares immediately adjacent to the smallest square are larger.
- The area marked ? cannot be covered by larger size squares.
- The starting assumption leads to a contradiction.
- The starting assumption is wrong.
- Therefore, the smallest square must appear in the middle of the configuration of squares.

- Suppose there are finite number of primes, and they are, say, p₁, p₂,, p_n.
- Let p_n is the largest prime number in the list.

- Suppose there are finite number of primes, and they are, say, p₁, p₂,, p_n.
- Let p_n is the largest prime number in the list.
- Consider the number $a = p_1 x p_2 x \dots x p_n + 1$.

- Suppose there are finite number of primes, and they are, say, p₁, p₂,, p_n.
- Let p_n is the largest prime number in the list.
- Consider the number $a = p_1 x p_2 x \dots x p_n + 1$.
- Since a is not divisible by p_i for any i, a is also a prime number.

- Suppose there are finite number of primes, and they are, say, p₁, p₂,, p_n.
- Let p_n is the largest prime number in the list.
- Consider the number $a = p_1 x p_2 x \dots x p_n + 1$.
- Since a is not divisible by a_i for any i, a is also a prime number.
- Thus a is a prime number larger that p_n.
- The starting assumption leads to a contradiction.
- This proves that there are infinitely many prime.

Proving conditional statements by contradiction

Outline for Proving a Conditional Statement with Contradiction

Proposition If P, then Q.

```
Proof. Suppose P and \sim Q.
```

```
Therefore C \wedge \sim C.
```

Proving conditional statements by contradiction

Outline for Proving a Conditional Statement with Contradiction

Proposition If P, then Q.

```
Proof. Suppose P and \sim Q.
```

Therefore $C \wedge \sim C$.

 $P \land \neg Q \Rightarrow F$

 Let x and y be real numbers. If 5x+25y = 1723, then x or y is not an integer.

- Let x and y be real numbers. If 5x+25y = 1723, then x or y is not an integer.
- Here P(x,y): 5x + 25 y =1723;
- Q(x,y): (x is not an integer) v (y is not an integer)

- Let x and y be real numbers. If 5x+25y = 1723, then x or y is not an integer.
- Here P(x,y): 5x + 25 y =1723;
- Q(x,y): (x is not an integer) v (y is not an integer)
- Suppose $\forall x, y (P(x,y) \land \neg Q(x,y))$
- \neg Q(x,y) : x and y are integers.

- Let x and y be real numbers. If 5x+25y = 1723, then x or y is not an integer.
- Here P(x,y): 5x + 25 y =1723;
- Q(x,y): (x is not an integer) v (y is not an integer)
- Suppose $\forall x, y (P(x,y) \land \neg Q(x,y))$
- \neg Q(x,y) : x and y are integers.
- Note that 5x + 25 y =1723 is 5(x+5y) =1723.
- Since x+5y is an integer, therefore 5 divides 1723, a contradiction.

- Consider the statement: For all nonnegative real numbers a, b, and c, if a² + b² = c², then a + b ≥ c.
 - Solve in the class.

Fill in the blanks

If we are proving the implication $p \rightarrow q$ we assume...

(1) p for a direct proof.
(2) _____ for a proof by contrapositive
(3) _____ for a proof by contradiction.

We are then allowed to use the truth of the assumption in 1, 2, or 3 in the proof. After the initial assumption, we prove $p \rightarrow q$ by showing

(4) q must follow from the assumptions for a direct proof.
(5) _____ must follow the assumptions for a proof by contrapositive.
(6) _____ must follow the assumptions for a proof by contradiction.

Practice problems from Chapter 6.

• 3, 4, 5, 8, 14, 19, 21.

• For all integers $a, a \equiv a \pmod{n}$.

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

If a and b are integers such that a = b (mod n), b = a (mod n).

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

If a and b are integers such that a = b (mod n), b = a (mod n).

If n|(b-a), n|(a-b), vice versa.

 If a, b and c are integers such that a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (nod n).

• For all integers $a, a \equiv a \pmod{n}$.

- Follows easily since $a - a = 0 = n \times 0$.

If a and b are integers such that a = b (mod n), b = a (mod n).

If n|(b-a), n|(a-b), vice versa.

- If a, b and c are integers such that a = b (mod n) and b = c (mod n), then a = c (nod n).
 - Given n|(a-b) and n|(b-c). Now (a-c) = (a-b) + (b-c).
 Therefore, n|(a-c).

 (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then

 \circ (a + c) \equiv b + d (mod n)

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) = b + d (mod n) (easy)

 $\circ a - c \equiv b - d \pmod{n}$

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) \equiv b + d (mod n) (easy)
 - $\circ a c \equiv b d \pmod{n}$
 - (Easy) since (a c) (b d) = (a b) + (d c)

 \circ ac = bd (mod n)

- (5(24))Suppose that a, b and c, d are integers such that a = b (mod n) and c = d (mod n). Then
 - \circ (a + c) \equiv b + d (mod n) (easy)
 - $\circ a c \equiv b d \pmod{n}$
 - (Easy) since (a c) (b d) = (a b) + (d c)
 - \circ ac = bd (mod n)
 - Given a-b = t.n and c d = t'.n
 - Therefore, a = b+ t.n, and c = d + t'n
 - Hence ac = bd + n(bt' + dt + tt'n).
 - This implies that (ac –bd) is divisible by n.
 - $ac \equiv bd \pmod{n}$